1
|
Chautard R, Caulet M, Bouché O, Borg C, Manfredi S, Capitain O, Spano JP, Raoul W, Guéguinou M, Herault O, Ferru A, Pobel C, Sire O, Lecomte T. Evaluation of serum mid-infrared spectroscopy as new prognostic marker for first-line bevacizumab-based chemotherapy in metastatic colorectal cancer. Dig Liver Dis 2025; 57:141-148. [PMID: 39164167 DOI: 10.1016/j.dld.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND AND AIMS Bevacizumab-based chemotherapy is a recommended first-line treatment for metastatic colorectal cancer (mCRC). Robust biomarkers with clinical practice applicability have not been identified for patients with this treatment. We aimed to evaluate the prognostic yield of serum mid-infrared spectroscopy (MIRS) on patients receiving first-line bevacizumab-based chemotherapy for mCRC. METHODS We conducted an ancillary analysis from a multicentre prospective study (NCT00489697). All baseline serums were screened by attenuated total reflection method. Principal component analysis and unsupervised k-mean partitioning methods were performed blinded to all patients' data. Endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS From the 108 included patients, MIRS discriminated two prognostic groups. First group patients had significantly lower body mass index (p = 0.026) and albumin levels (p < 0.001), and higher levels of angiogenic markers, lactate dehydrogenase and carcinoembryonic antigen (p < 0.001). In univariate analysis, their OS and PFS were shorter with respective medians: 17.6 vs 27.9 months (p = 0.02) and 8.7 vs 11.3 months (p = 0.03). In multivariate analysis, PFS was significantly shorter (HR = 1.74, p = 0.025) with a similar trend for OS (HR = 1.69, p = 0.061). CONCLUSION By metabolomic fingerprinting, MIRS proves to be a promising prognostic tool for patients receiving first-line bevacizumab-based chemotherapy for mCRC.
Collapse
Affiliation(s)
- Romain Chautard
- Department of Hepato-Gastroenterology and Digestive Oncology, Centre Hospitalier Régional Universitaire de Tours, Université François Rabelais, Tours, France; Université de Tours, Inserm, UMR 1069, Nutrition Croissance et Cancer (N2C), Faculté de Médecine, Tours, France.
| | - Morgane Caulet
- Department of Hepato-Gastroenterology and Digestive Oncology, Centre Hospitalier Régional Universitaire de Tours, Université François Rabelais, Tours, France
| | - Olivier Bouché
- Department of Digestive Oncology, Hôpital Robert Debré, CHU de Reims, Avenue Général Koenig, 51092, Reims, France
| | - Christophe Borg
- Department of Medical Oncology, Hôpital Jean Minjoz, CHRU de Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
| | - Sylvain Manfredi
- Department of Gastroenterology, CHU Dijon, University of Bourgogne-Franche Comté, INSERM U1231, Dijon, France
| | - Olivier Capitain
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest Paul Papin, Angers, France
| | - Jean-Philippe Spano
- Oncology Department, Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
| | - William Raoul
- Université de Tours, Inserm, UMR 1069, Nutrition Croissance et Cancer (N2C), Faculté de Médecine, Tours, France
| | - Maxime Guéguinou
- Université de Tours, Inserm, UMR 1069, Nutrition Croissance et Cancer (N2C), Faculté de Médecine, Tours, France
| | - Olivier Herault
- CNRS ERL7001 LNOX, EA7501, Tours University, 37000 Tours, France
| | - Aurélie Ferru
- Medical Oncology Department, Poitiers University Hospital, Poitiers, France
| | - Cédric Pobel
- INSERM U981, Gustave Roussy Institute, Villejuif, France
| | | | - Thierry Lecomte
- Department of Hepato-Gastroenterology and Digestive Oncology, Centre Hospitalier Régional Universitaire de Tours, Université François Rabelais, Tours, France; Université de Tours, Inserm, UMR 1069, Nutrition Croissance et Cancer (N2C), Faculté de Médecine, Tours, France
| |
Collapse
|
2
|
Li Y, Xu C, Weng W, Goel A. Combined treatment with Aronia berry extract and oligomeric proanthocyanidins exhibit a synergistic anticancer efficacy through LMNB1-AKT signaling pathways in colorectal cancer. Mol Carcinog 2024; 63:2145-2157. [PMID: 39282961 DOI: 10.1002/mc.23800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and highly recurrent malignancies worldwide and currently ranks as the second leading cause of cancer-related deaths. The high degree of morbidity and mortality associated with CRC is primarily attributed to the limited effectiveness of current therapeutic approaches and the emergence of chemoresistance to standard treatment modalities. Recent research indicates that several natural products, including Aronia berry extracts (ABE) and oligomeric proanthocyanidins (OPCs), might offer a safe, cost-effective, and multitargeted adjunctive role to cancer treatment. Herein, we hypothesized a combined treatment with ABE and OPCs could synergistically modulate multiple oncogenic pathways in CRC, thereby enhancing their anticancer activity. We initially conducted a series of in vitro experiments to assess the synergistic anticancer effects of ABE and OPCs on CRC cell lines. We demonstrate that these two compounds exhibited a superior synergistic anticancer potential versus individual treatments in enhancing the ability to inhibit cell viability, suppress colony formation, and induce apoptosis (p < 0.05). Consistent with our in vitro findings, we validated this combinatorial anticancer effect in tumor-derived 3D organoids (PDOs; p < 0.01). Using genome-wide transcriptomic profiling, we identified that a specific gene, LMNB1, associated with the cell apoptosis pathway, was found to play a crucial role in exhibiting anticancer effects with these two products. Furthermore, the combined treatment of ABE and OPCs significantly impacted the expression of key proteins involved in apoptosis, including suppressed expression levels of LMNB1 in CRC cell lines (p < 0.05), which resulted in inhibiting downstream AKT phosphorylation. In conclusion, our study provides novel evidence of the synergistic anticancer effects of ABE and OPCs in CRC cells, partially mediated through the regulation of apoptosis and the oncogene LMNB1 within the AKT signaling pathway. These findings have the potential to better appreciate the anticancer potential of natural products in CRC and help improve treatment outcomes in this malignancy.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California, USA
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California, USA
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California, USA
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
3
|
Robert A, Crottès D, Bourgeais J, Gueguen N, Chevrollier A, Dumas JF, Servais S, Domingo I, Chadet S, Sobilo J, Hérault O, Lecomte T, Vandier C, Raoul W, Guéguinou M. MICU2 up-regulation enhances tumor aggressiveness and metabolic reprogramming during colorectal cancer development. PLoS Biol 2024; 22:e3002854. [PMID: 39466877 PMCID: PMC11542858 DOI: 10.1371/journal.pbio.3002854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/07/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
The mitochondrial Ca2+ uniporter (MCU) plays crucial role in intramitochondrial Ca2+ uptake, allowing Ca2+-dependent activation of oxidative metabolism. In recent decades, the role of MCU pore-forming proteins has been highlighted in cancer. However, the contribution of MCU-associated regulatory proteins mitochondrial calcium uptake 1 and 2 (MICU1 and MICU2) to pathophysiological conditions has been poorly investigated. Here, we describe the role of MICU2 in cell proliferation and invasion using in vitro and in vivo models of human colorectal cancer (CRC). Transcriptomic analysis demonstrated an increase in MICU2 expression and the MICU2/MICU1 ratio in advanced CRC and CRC-derived metastases. We report that expression of MICU2 is necessary for mitochondrial Ca2+ uptake and quality of the mitochondrial network. Our data reveal the interplay between MICU2 and MICU1 in the metabolic flexibility between anaerobic glycolysis and OXPHOS. Overall, our study sheds light on the potential role of the MICUs in diseases associated with metabolic reprogramming.
Collapse
Affiliation(s)
- Alison Robert
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - David Crottès
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Jérôme Bourgeais
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Naig Gueguen
- CNRS UMR 6015, Inserm U1083 MITOVASC, MitoLab team, Angers University, Angers, France
| | - Arnaud Chevrollier
- CNRS UMR 6015, Inserm U1083 MITOVASC, MitoLab team, Angers University, Angers, France
| | - Jean-François Dumas
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Stéphane Servais
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Isabelle Domingo
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Stéphanie Chadet
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | | | - Olivier Hérault
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Thierry Lecomte
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Christophe Vandier
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - William Raoul
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| | - Maxime Guéguinou
- UMR Inserm 1069 N2COx « Niche, Nutrition, Cancer et métabolisme Oxydatif », Tours University, Tours, France
| |
Collapse
|
4
|
Zhang L, Ren C, Liu J, Huang S, Wu C, Zhang J. Development and therapeutic implications of small molecular inhibitors that target calcium-related channels in tumor treatment. Drug Discov Today 2024; 29:103995. [PMID: 38670255 DOI: 10.1016/j.drudis.2024.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Calcium ion dysregulation exerts profound effects on various physiological activities such as tumor proliferation, migration, and drug resistance. Calcium-related channels play a regulatory role in maintaining calcium ion homeostasis, with most channels being highly expressed in tumor cells. Additionally, these channels serve as potential drug targets for the development of antitumor medications. In this review, we first discuss the current research status of these pathways, examining how they modulate various tumor functions such as epithelial-mesenchymal transition (EMT), metabolism, and drug resistance. Simultaneously, we summarize the recent progress in the study of novel small-molecule drugs over the past 5 years and their current status.
Collapse
Affiliation(s)
- Linxi Zhang
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110000, Liaoning, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Jiao Liu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Vaidya B, Gupta P, Biswas S, Laha JK, Roy I, Sharma SS. Effect of Clemizole on Alpha-Synuclein-Preformed Fibrils-Induced Parkinson's Disease Pathology: A Pharmacological Investigation. Neuromolecular Med 2024; 26:19. [PMID: 38703217 DOI: 10.1007/s12017-024-08785-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Pankaj Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
6
|
Chang J, Xin C, Wang Y, Wang Y. Dihydroartemisinin inhibits liver cancer cell migration and invasion by reducing ATP synthase production through CaMKK2/NCLX. Oncol Lett 2023; 26:540. [PMID: 38020296 PMCID: PMC10660190 DOI: 10.3892/ol.2023.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) and mitochondrial sodium/calcium exchanger protein (NCLX) are key regulatory factors in calcium homeostasis. Finding natural drugs that target regulators of calcium homeostasis is critical. Dihydroartemisinin (DHA) is considered to have anticancer effects. The present study aimed to investigate the mechanism of DHA in regulating liver cancer migration and invasion. The present study used HepG2 and HuH-7 cells and overexpressed CaMKK2 and knocked down CaMKK2 and NCLX. The antiproliferative activity of DHA on liver cancer cells was assessed through colony formation and EdU assays. Cell apoptosis was detected through YO-PRO-1/PI staining. The levels of reactive oxygen species (ROS) were measured using a ROS detection kit (DCFH-DA fluorescent probe). Cell migratory and invasive abilities were examined using wound healing and Transwell assays. The ATP production of liver cancer cells was detected using ATP fluorescent probes. Cell microfilaments were monitored for changes using Actin-Tracker Green-488. The effects of DHA on the expression of CaMKK2, NCLX, sodium/potassium-transporting ATPase subunit α-1 (ATP1A1) and ATP synthase subunit d, mitochondrial (ATP5H) were determined by western blotting and reverse transcription-quantitative PCR. The results revealed that DHA significantly inhibited proliferation, reduced ROS levels and promoted apoptosis in liver cancer cells. CaMKK2 overexpression significantly enhanced the invasive and migratory ability of liver cancer cells, whereas DHA inhibited the pro-migratory effects of CaMKK2 overexpression. DHA significantly reduced the mitochondrial ATP production and altered the arrangement of microfilaments in liver cancer cells. In addition, DHA significantly decreased the expression of CaMKK2, NCLX, ATP1A1 and ATP5H. Furthermore, by knockdown experiments of NCLX the results demonstrated that CaMKK2 downregulated the expression of ATP1A1 and ATP5H in liver cancer cells through NCLX. In conclusion, DHA may reduce ATP synthase production via the CaMKK2/NCLX signaling pathway to inhibit the invasive phenotype of liver cancer cells. It is essential to further investigate the effectiveness of DHA in the anticancer mechanism of liver cancer cells.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Chengyi Xin
- Department of Pharmacy, Bayannur Hospital, Bayannur, Inner Mongolia Autonomous Region 015000, P.R. China
| | - Yong Wang
- Department of Neurosurgery, Hainan West Central Hospital, Danzhou, Hainan 571700, P.R. China
| | - Ying Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
7
|
Vaidya B, Gupta P, Laha JK, Roy I, Sharma SS. Amelioration of Parkinson's disease by pharmacological inhibition and knockdown of redox sensitive TRPC5 channels: Focus on mitochondrial health. Life Sci 2023:121871. [PMID: 37352915 DOI: 10.1016/j.lfs.2023.121871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
AIMS Transient receptor potential canonical 5 (TRPC5) channels are redox-sensitive cation-permeable channels involved in temperature and mechanical sensation. Increased expression and over-activation of these channels has been implicated in several central nervous system disorders such as epilepsy, depression, traumatic brain injury, anxiety, Huntington's disease and stroke. TRPC5 channel activation causes increased calcium influx which in turn activates numerous downstream signalling pathways involved in the pathophysiology of neurological disorders. Therefore, we hypothesized that pharmacological blockade and knockdown of TRPC5 channels could attenuate the behavioural deficits and molecular changes seen in CNS disease models such as MPTP/MPP+ induced Parkinson's disease (PD). MATERIALS AND METHODS In the present study, PD was induced after bilateral intranigral infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the Sprague Dawley rats. Additionally, SH-SY5Y neurons were exposed to 1-methyl-4-phenylpyridinium (MPP+) to further determine the role of TRPC5 channels in PD. KEY FINDINGS We used clemizole hydrochloride, a potent TRPC5 channel blocker, to reverse the behavioural deficits, molecular changes and biochemical parameters in MPTP/MPP+-induced-PD. Furthermore, knockdown of TRPC5 expression using siRNA also closely phenocopies these effects. We further observed restoration of tyrosine hydroxylase levels and improved mitochondrial health following clemizole treatment and TRPC5 knockdown. These changes were accompanied by diminished calcium influx, reduced levels of reactive oxygen species and decreased apoptotic signalling in the PD models. SIGNIFICANCE These findings collectively suggest that increased expression of TRPC5 channels is a potential risk factor for PD and opens a new therapeutic window for the development of pharmacological agents targeting neurodegeneration and PD.
Collapse
Affiliation(s)
- Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, India
| | - Pankaj Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education, S.A.S. Nagar, Mohali, Punjab, India.
| |
Collapse
|
8
|
Pouliquen DL, Trošelj KG, Anto RJ. Curcuminoids as Anticancer Drugs: Pleiotropic Effects, Potential for Metabolic Reprogramming and Prospects for the Future. Pharmaceutics 2023; 15:1612. [PMID: 37376060 DOI: 10.3390/pharmaceutics15061612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of published studies on curcuminoids in cancer research, including its lead molecule curcumin and synthetic analogs, has been increasing substantially during the past two decades. Insights on the diversity of inhibitory effects they have produced on a multitude of pathways involved in carcinogenesis and tumor progression have been provided. As this wealth of data was obtained in settings of various experimental and clinical data, this review first aimed at presenting a chronology of discoveries and an update on their complex in vivo effects. Secondly, there are many interesting questions linked to their pleiotropic effects. One of them, a growing research topic, relates to their ability to modulate metabolic reprogramming. This review will also cover the use of curcuminoids as chemosensitizing molecules that can be combined with several anticancer drugs to reverse the phenomenon of multidrug resistance. Finally, current investigations in these three complementary research fields raise several important questions that will be put among the prospects for the future research related to the importance of these molecules in cancer research.
Collapse
Affiliation(s)
- Daniel L Pouliquen
- Université d'Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ruby John Anto
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram 695317, India
| |
Collapse
|
9
|
de los Ríos C, Viejo L, Carretero VJ, Juárez NH, Cruz-Martins N, Hernández-Guijo JM. Promising Molecular Targets in Pharmacological Therapy for Neuronal Damage in Brain Injury. Antioxidants (Basel) 2023; 12:118. [PMID: 36670980 PMCID: PMC9854812 DOI: 10.3390/antiox12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The complex etiopathogenesis of brain injury associated with neurodegeneration has sparked a lot of studies in the last century. These clinical situations are incurable, and the currently available therapies merely act on symptoms or slow down the course of the diseases. Effective methods are being sought with an intent to modify the disease, directly acting on the properly studied targets, as well as to contribute to the development of effective therapeutic strategies, opening the possibility of refocusing on drug development for disease management. In this sense, this review discusses the available evidence for mitochondrial dysfunction induced by Ca2+ miscommunication in neurons, as well as how targeting phosphorylation events may be used to modulate protein phosphatase 2A (PP2A) activity in the treatment of neuronal damage. Ca2+ tends to be the catalyst for mitochondrial dysfunction, contributing to the synaptic deficiency seen in brain injury. Additionally, emerging data have shown that PP2A-activating drugs (PADs) suppress inflammatory responses by inhibiting different signaling pathways, indicating that PADs may be beneficial for the management of neuronal damage. In addition, a few bioactive compounds have also triggered the activation of PP2A-targeted drugs for this treatment, and clinical studies will help in the authentication of these compounds. If the safety profiles of PADs are proven to be satisfactory, there is a case to be made for starting clinical studies in the setting of neurological diseases as quickly as possible.
Collapse
Affiliation(s)
- Cristóbal de los Ríos
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, University Rey Juan Carlos, Avda. Atenas s/n, 28922 Alcorcón, Spain
| | - Lucía Viejo
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Natalia Hernández Juárez
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Natália Cruz-Martins
- Faculty of Medicine, Institute for Research and Innovation in Health (i3S), University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Advanced Training in Health Sciences and Technologies, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic and Teófilo Hernando Institute, Faculty of Medicine, University Autónoma de Madrid, C/. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research, IRYCIS, Hospital Ramón y Cajal, Ctra. de Colmenar Viejo, Km. 9,100, 28029 Madrid, Spain
| |
Collapse
|