1
|
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int J Mol Sci 2025; 26:4240. [PMID: 40362481 PMCID: PMC12072030 DOI: 10.3390/ijms26094240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Bile acids and their corresponding intestinal epithelial receptors, the farnesoid X receptor (FXR), the G protein-coupled bile acid receptor (TGR5), play crucial roles in the physiological and pathological processes of intestinal epithelial cells. These acids and receptors are involved in the regulation of intestinal absorption, signal transduction, cellular proliferation and repair, cellular senescence, energy metabolism, and the modulation of gut microbiota. A comprehensive literature search was conducted using PubMed, employing keywords such as bile acid, bile acid receptor, FXR (nr1h4), TGR5 (gpbar1), intestinal epithelial cells, proliferation, differentiation, senescence, energy metabolism, gut microbiota, inflammatory bowel disease (IBD), colorectal cancer (CRC), and irritable bowel syndrome (IBS), with a focus on publications available in English. This review examines the diverse effects of bile acid signaling and bile receptor pathways on the proliferation, differentiation, senescence, and energy metabolism of intestinal epithelial cells. Additionally, it explores the interactions between bile acids, their receptors, and the microbiota, as well as the implications of these interactions for host health, particularly in relation to prevalent intestinal diseases. Finally, the review highlights the importance of developing highly specific ligands for FXR and TGR5 receptors in the context of metabolic and intestinal disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.L.); (L.X.); (Y.Z.); (J.X.); (Q.T.); (L.L.)
| |
Collapse
|
2
|
Xiao Y, Feng Y, Zhao J, Chen W, Lu W. Achieving healthy aging through gut microbiota-directed dietary intervention: Focusing on microbial biomarkers and host mechanisms. J Adv Res 2025; 68:179-200. [PMID: 38462039 PMCID: PMC11785574 DOI: 10.1016/j.jare.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Population aging has become a primary global public health issue, and the prevention of age-associated diseases and prolonging healthy life expectancies are of particular importance. Gut microbiota has emerged as a novel target in various host physiological disorders including aging. Comprehensive understanding on changes of gut microbiota during aging, in particular gut microbiota characteristics of centenarians, can provide us possibility to achieving healthy aging or intervene pathological aging through gut microbiota-directed strategies. AIM OF REVIEW This review aims to summarize the characteristics of the gut microbiota associated with aging, explore potential biomarkers of aging and address microbiota-associated mechanisms of host aging focusing on intestinal barrier and immune status. By summarizing the existing effective dietary strategies in aging interventions, the probability of developing a diet targeting the gut microbiota in future is provided. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key notions: Firstly, gut microbiota has become a new target for regulating health status and lifespan, and its changes are closely related to age. Thus, we summarized aging-associated gut microbiota features at the levels of key genus/species and important metabolites through comparing the microbiota differences among centenarians, elderly people and younger people. Secondly, exploring microbiota biomarkers related to aging and discussing future possibility using dietary regime/components targeted to aging-related microbiota biomarkers promote human healthy lifespan. Thirdly, dietary intervention can effectively improve the imbalance of gut microbiota related to aging, such as probiotics, prebiotics, and postbiotics, but their effects vary among.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Liu JY, Wang Y, Guo Y, Zheng RQ, Wang YY, Shen YY, Liu YH, Cao AP, Wang RB, Xie BY, Jiang S, Han QY, Chen J, Dong FT, He K, Wang N, Pan X, Li T, Zhou T, Li AL, Xia Q, Zhang WN. Tauroursodeoxycholic acid targets HSP90 to promote protein homeostasis and extends healthy lifespan. SCIENCE CHINA. LIFE SCIENCES 2025; 68:416-430. [PMID: 39327392 DOI: 10.1007/s11427-024-2717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
As the elderly population expands, the pursuit of therapeutics to reduce morbidity and extend lifespan has become increasingly crucial. As an FDA-approved drug for chronic cholestatic liver diseases, tauroursodeoxycholic acid (TUDCA), a natural bile acid, offers additional health benefits beyond liver protection. Here, we show that TUDCA extends the lifespan and healthspan of C. elegans. Importantly, oral supplementation of TUDCA improves fitness in old mice, including clinically relevant phenotypes, exercise capacity and cognitive function. Consistently, TUDCA treatment drives broad transcriptional changes correlated with anti-aging characteristics. Mechanistically, we discover that TUDCA targets the chaperone HSP90 to promote its protein refolding activity. This collaboration further alleviates aging-induced endoplasmic reticulum (ER) stress and facilitates protein homeostasis, thus offering resistance to aging. In summary, our findings uncover new molecular links between an endogenous metabolite and protein homeostasis, and propose a novel anti-aging strategy that could improve both lifespan and healthspan.
Collapse
Affiliation(s)
- Jia-Yu Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yao Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yue Guo
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Run-Qi Zheng
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yun-Ying Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan-Yan Shen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan-Hong Liu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ai-Ping Cao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Rui-Bo Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Bo-Yang Xie
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Shuai Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qiu-Ying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jing Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Fang-Ting Dong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Kun He
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Na Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xin Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ai-Ling Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Qing Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Wei-Na Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| |
Collapse
|
4
|
Wu H, Qin B, Yang G, Ji P, Gao Y, Zhang L, Wang B, Liu G. The Protective Effects of Melatonin on Hainan Black Goats Under Heat Stress: Understanding Its Actions and Mechanisms. Antioxidants (Basel) 2025; 14:44. [PMID: 39857379 PMCID: PMC11760882 DOI: 10.3390/antiox14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
As the global climate changes, high temperatures will cause heat stress, which significantly affects the productive efficiency of livestock. Currently, there is a lack of efficient methods to use in targeting this issue. In this study, we report that melatonin supplementation may represent an alternative method to reduce the negative impact of heat stress on livestock, particularly in Hainan black goats. Our results show that melatonin treatment increased the average daily gain of Hainan black goats that were exposed to constantly high temperatures for two months compared to controls. Our mechanistic exploration revealed that melatonin treatment not only reduced the oxidative stress and inflammatory reaction caused by heat stress but also improved goats' metabolic capacity, promoting their growth and development. More importantly, for the first time, we observed that melatonin treatment modified the abundance of the intestinal microflora, altering the metabolism of the goats, which further improved their tolerance to constant heat stress.
Collapse
Affiliation(s)
- Hao Wu
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Baochun Qin
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Guang Yang
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Yu Gao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Lu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Bingyuan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| | - Guoshi Liu
- Sany Institute of China Agricultural University, Sanya 572025, China; (H.W.); (B.Q.); (G.Y.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (P.J.); (Y.G.); (L.Z.)
| |
Collapse
|
5
|
Lv D, Ren Y, Chen J, Pang Z, Tang Y, Zhang L, Yan L, Ai X, Xv X, Wang D, Cai Z. Protective Effects of Exogenous Melatonin Administration on White Fat Metabolism Disruption Induced by Aging and a High-Fat Diet in Mice. Antioxidants (Basel) 2024; 13:1500. [PMID: 39765828 PMCID: PMC11672923 DOI: 10.3390/antiox13121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity has emerged as a major risk factor for human health, exacerbated by aging and changes in dietary habits. It represents a significant health challenge, particularly for older people. While numerous studies have examined the effects of obesity and aging on fat metabolism independently, research on their combined effects is limited. In the present study, the protective action against white fat accumulation after a high-fat diet (HFD) exerted by exogenous melatonin, a circadian hormone endowed with antioxidant properties also involved in fat metabolism, was investigated in a mouse model. For this purpose, a battery of tests was applied before and after the dietary and melatonin treatments of the animals, including epididymal white adipose tissue (eWAT) histological evaluations, transcriptomic and lipidomic analyses, real-time PCR tests, immunofluorescence staining, Western blot, the appraisal of serum melatonin levels, and transmission electron microscopy. This study found that aged mice on a high-fat diet (HFD) showed increased lipid deposition, inflammation, and reduced antioxidant glutathione (GSH) levels compared to younger mice. Lipidomic and transcriptomic analyses revealed elevated triglycerides, diglycerides, ceramides, and cholesterol, along with decreased sphingomyelin and fatty acids in eWAT. The genes linked to inflammation, NF-κB signaling, autophagy, and lipid metabolism, particularly the melatonin and glutathione pathways, were significantly altered. The aged HFD mice also exhibited reduced melatonin levels in serum and eWAT. Melatonin supplementation reduced lipid deposition, increased melatonin and GSH levels, and upregulated AANAT and MTNR1A expression in eWAT, suggesting that melatonin alleviates eWAT damage via the MTNR1A pathway. It also suppressed inflammatory markers (e.g., TNF-α, NLRP3, NF-κB, IL-1β, and CEBPB) and preserved mitochondrial function through enhanced mitophagy. This study highlights how aging and HFD affect lipid metabolism and gene expression, offering potential intervention strategies. These findings provide important insights into the mechanisms of fat deposition associated with aging and a high-fat diet, suggesting potential intervention strategies.
Collapse
Affiliation(s)
- Dongying Lv
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Yujie Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
| | - Jiayan Chen
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
| | - Ziyao Pang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
| | - Yaxuan Tang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Lizong Zhang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Laiqing Yan
- State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xiufeng Ai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Xiaoping Xv
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
| | - Dejun Wang
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
| | - Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (D.L.); (Y.T.); (L.Z.); (X.A.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.R.); (J.C.); (Z.P.)
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
6
|
Chen S, Wang C, Zou X, Li H, Yang G, Su X, Mo Z. Multi-omics insights implicate the remodeling of the intestinal structure and microbiome in aging. Front Genet 2024; 15:1450064. [PMID: 39600316 PMCID: PMC11588687 DOI: 10.3389/fgene.2024.1450064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background Aging can impair the ability of elderly individuals to fight infections and trigger persistent systemic inflammation, a condition known as inflammaging. However, the mechanisms underlying the development of inflammaging remain unknown. Methods We conducted 16S rRNA sequencing of intestinal contents from young and old C57BL/6J mice to elucidate changes in gut microbiota diversity and microbial community composition after aging. Aging-related differential bacterial taxa were then identified, and their abundance trends were validated in human samples. The variances in intestinal barrier function and circulating endotoxin between groups were also assessed. Furthermore, widely targeted metabolomics was conducted to characterize metabolic profiles after aging and to investigate the key metabolic pathways enriched by the differential metabolites. Results Our findings demonstrated an increase in relative proportion of pathogenic bacteria with age, a trend also revealed in healthy populations of different age groups. Additionally, aging individuals exhibited reduced intestinal barrier function and increased circulating endotoxin levels. Widely targeted metabolomics revealed a significant increase in various secondary bile acid metabolites after aging, positively correlated with the relative abundance of several aging-related bacterial taxa. Furthermore, old group had lower levels of various anti-inflammatory or beneficial metabolites. Enrichment analysis identified the starch and sucrose metabolism pathway as potentially the most significantly impacted signaling pathway during aging. Conclusion This study aimed to provide insights into the complex interactions involved in organismal inflammaging through microbial multi-omics. These findings lay a solid foundation for future research aimed at identifying novel biomarkers for the clinical diagnosis of aging-related diseases or potential therapeutic targets.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chengbang Wang
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiong Zou
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Hanwen Li
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Guanglin Yang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaotao Su
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Li Z, Chen L, Qu L, Yu W, Liu T, Ning F, Li J, Guo X, Sun F, Sun B, Luo L. Potential implications of natural compounds on aging and metabolic regulation. Ageing Res Rev 2024; 101:102475. [PMID: 39222665 DOI: 10.1016/j.arr.2024.102475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aging is generally accompanied by a progressive loss of metabolic homeostasis. Targeting metabolic processes is an attractive strategy for healthy-aging. Numerous natural compounds have demonstrated strong anti-aging effects. This review summarizes recent findings on metabolic pathways involved in aging and explores the anti-aging effects of natural compounds by modulating these pathways. The potential anti-aging effects of natural extracts rich in biologically active compounds are also discussed. Regulating the metabolism of carbohydrates, proteins, lipids, and nicotinamide adenine dinucleotide is an important strategy for delaying aging. Furthermore, phenolic compounds, terpenoids, alkaloids, and nucleotide compounds have shown particularly promising effects on aging, especially with respect to metabolism regulation. Moreover, metabolomics is a valuable tool for uncovering potential targets against aging. Future research should focus on identifying novel natural compounds that regulate human metabolism and should delve deeper into the mechanisms of metabolic regulation using metabolomics methods, aiming to delay aging and extend lifespan.
Collapse
Affiliation(s)
- Zhuozhen Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liangliang Qu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tao Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiali Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Fu Q, Lv R, Wang S, Wang W, Li Y, Qiu G, Chen X, Sun C. Ndufa8 promotes white fat Browning by improving mitochondrial respiratory chain complex I function to ameliorate obesity by in vitro and in vivo. Cell Signal 2024; 122:111340. [PMID: 39127135 DOI: 10.1016/j.cellsig.2024.111340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Obesity and its complications have become a global health problem that needs to be addressed urgently. White adipose tissue (WAT) browning contributes to consuming excess energy in WAT, which is important for improving obesity and maintaining a healthy energy homeostasis. Mitochondria, as the energy metabolism center of cells, are extensively involved in many metabolic processes, including the browning of WAT. NADH: Ubiquinone oxidoreductase subunit A8 (NDUFA8) is a constituent subunit of respiratory chain complex I (CI), which has been found to participate in a wide range of physiological processes by affecting the activity of respiratory CI. However, the regulatory effect of Ndufa8 on the browning of WAT has not been reported. Here, we used β3-adrenergic agonis CL316, 243 to construct WAT browning models in vivo and in vitro to investigate the role and mechanism of Ndufa8 in the regulation of WAT browning. Briefly, Ndufa8 significantly increased CI activity and suppressed mitochondrial ROS levels in vitro, thereby improving mitochondrial function. Ndufa8 also increased the transcriptional levels and protein levels of UCP1 in vitro and in vivo, which promoted WAT browning. Our findings provide a new molecular approach for the research of browning of WAT in animals, as well as a new target for animal metabolism improvement and obesity treatments.
Collapse
Affiliation(s)
- Qinghua Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Lv
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Simeng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wentao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guiping Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinhao Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Luo Y, Wen Y, Huang J, Chen B, Lv S, Qiu H, Li S, Liu S, Yang Q, He L, Yu Z, Zhao M, He M, Li D, Gu C. Matcha alleviates obesity by modulating gut microbiota and its metabolites. Curr Res Food Sci 2024; 9:100823. [PMID: 39253721 PMCID: PMC11381447 DOI: 10.1016/j.crfs.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Matcha shows promise for diabetes, obesity, and gut microbiota disorders. Studies suggest a significant link between gut microbiota, metabolites, and obesity. Thus, matcha may have a positive impact on obesity by modulating gut microbiota and metabolites. This study used 16S rDNA sequencing and untargeted metabolomics to examine the cecal contents in mice. By correlation analysis, we explored the potential mechanisms responsible for the positive effects of matcha on obesity. The results indicated that matcha had a mitigating effect on the detrimental impacts of a high-fat diet (HFD) on multiple physiological indicators in mice, including body weight, adipose tissue weight, serum total cholesterol (TC), and low-density lipoprotein (LDL) levels, as well as glucose tolerance. Moreover, it was observed that matcha had an impact on the structural composition of gut microbiota and gut metabolites. Specifically, matcha was able to reverse the alterations in the abundance of certain obesity-improving bacteria, such as Alloprevotella, Ileibacterium, and Rikenella, as well as the abundance of obesity-promoting bacteria Romboutsia, induced by a HFD. Furthermore, matcha can influence the levels of metabolites, including formononetin, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate, within the gastrointestinal tract. Additionally, matcha enhances caffeine metabolism and the HIF-1 signaling pathway in the KEGG pathway. The results of the correlation analysis suggest that formononetin, theobromine, 1,3,7-trimethyluric acid, and Vitamin C displayed negative correlation with both the obesity phenotype and microbiota known to exacerbate obesity, while demonstrating positive correlations with microbiota that alleviated obesity. However, glutamic acid, pyroglutamic acid, and taurochenodeoxycholate had the opposite effect. In conclusion, the impact of matcha on gut metabolites may be attributed to its modulation of the abundance of Alloprevotella, Ileibacterium, Rikenella, and Romboutsia within the gastrointestinal tract, thereby potentially contributing to the amelioration of obesity.
Collapse
Affiliation(s)
- Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Hao Qiu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Shuaibing Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Songwei Liu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Mingde Zhao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Dong Li
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 643002, China
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
- Department of Nutrition and Food Hygiene, School of Public Health, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
11
|
Han W, Song T, Huang Z, Liu Y, Xu B, Huang C. Distinct signatures of gut microbiota and metabolites in primary biliary cholangitis with poor biochemical response after ursodeoxycholic acid treatment. Cell Biosci 2024; 14:80. [PMID: 38879547 PMCID: PMC11180406 DOI: 10.1186/s13578-024-01253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/24/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND About 1/3 of primary biliary cholangitis (PBC) patients suffered from poor response worldwide. And these patients present intestinal disturbances. We aimed to identify signatures of microbiota and metabolites in PBC patients with poor response, comparing to patients with response. METHODS This study enrolled 25 subjects (14 PBC patients with response and 11 PBC patients with poor response). Metatranscriptomics and metabolomics analysis were carried out on their fecal. RESULTS PBC patients with poor response had significant differences in the composition of bacteria, characterized by decreased Gemmiger etc. and increased Ruminococcus etc. The differential microbiota functions characterized by decreased abundance of elongation factor Tu and elongation factor G base on the KO database, as well as decreased abundance of Replicase large subunit etc. based on the SWISS-PROT database. PBC with poor response also had significant differences in 17 kinds of bacterial metabolites, characterized by decreased level of metabolites vital in bile acids metabolism pathway (L-Cysteine etc.) and the all-trans-Retinoic acid, a kind of immune related metabolite. The altered microbiota was associated with the differential expressed metabolites and clinical liver function indicators. 1 bacterial genera, 2 bacterial species and 9 metabolites simultaneously discriminated PBC with poor response from PBC with response with high accuracy. CONCLUSION PBC patients with poor response exhibit unique changes in microbiota and metabolite. Gut microbiota and metabolite-based algorithms could be used as additional tools for differential prediction of PBC with poor prognosis.
Collapse
Affiliation(s)
- Weijia Han
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ting Song
- Department of Hepatology, The Sixth People's Hospital of Qingdao, Qingdao, 266033, Shandong, China
| | - Zhongyi Huang
- Emergency Department, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yanmin Liu
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Xu
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chunyang Huang
- Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Li N, Zhao C, Zhang P, Wu S, Dou X, Xu S, Zhang X, Peng C, Xie Y, Huang S, Zhou L, Shen Y, Wang L, Wang J, Yu C. The role of gut microbiota associated metabolites in digestive disorders. ENGINEERED REGENERATION 2024; 5:228-246. [DOI: 10.1016/j.engreg.2024.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
|
13
|
Gan G, Lin S, Luo Y, Zeng Y, Lu B, Zhang R, Chen S, Lei H, Cai Z, Huang X. Unveiling the oral-gut connection: chronic apical periodontitis accelerates atherosclerosis via gut microbiota dysbiosis and altered metabolites in apoE -/- Mice on a high-fat diet. Int J Oral Sci 2024; 16:39. [PMID: 38740741 PMCID: PMC11091127 DOI: 10.1038/s41368-024-00301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
The aim of this study was to explore the impact of chronic apical periodontitis (CAP) on atherosclerosis in apoE-/- mice fed high-fat diet (HFD). This investigation focused on the gut microbiota, metabolites, and intestinal barrier function to uncover potential links between oral health and cardiovascular disease (CVD). In this study, CAP was shown to exacerbate atherosclerosis in HFD-fed apoE-/- mice, as evidenced by the increase in plaque size and volume in the aortic walls observed via Oil Red O staining. 16S rRNA sequencing revealed significant alterations in the gut microbiota, with harmful bacterial species thriving while beneficial species declining. Metabolomic profiling indicated disruptions in lipid metabolism and primary bile acid synthesis, leading to elevated levels of taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), and tauroursodeoxycholic acid (TDCA). These metabolic shifts may contribute to atherosclerosis development. Furthermore, impaired intestinal barrier function, characterized by reduced mucin expression and disrupted tight junction proteins, was observed. The increased intestinal permeability observed was positively correlated with the severity of atherosclerotic lesions, highlighting the importance of the intestinal barrier in cardiovascular health. In conclusion, this research underscores the intricate interplay among oral health, gut microbiota composition, metabolite profiles, and CVD incidence. These findings emphasize the importance of maintaining good oral hygiene as a potential preventive measure against cardiovascular issues, as well as the need for further investigations into the intricate mechanisms linking oral health, gut microbiota, and metabolic pathways in CVD development.
Collapse
Affiliation(s)
- Guowu Gan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shihan Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yufang Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yu Zeng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Beibei Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ren Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
14
|
Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel) 2024; 17:441. [PMID: 38675402 PMCID: PMC11054783 DOI: 10.3390/ph17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a ubiquitous molecule found in living organisms, ranging from bacteria to plants and mammals. It possesses various properties, partly due to its robust antioxidant nature and partly owed to its specific interaction with melatonin receptors present in almost all tissues. Melatonin regulates different physiological functions and contributes to the homeostasis of the entire organism. In the human eye, a small amount of melatonin is also present, produced by cells in the anterior segment and the posterior pole, including the retina. In the eye, melatonin may provide antioxidant protection along with regulating physiological functions of ocular tissues, including intraocular pressure (IOP). Therefore, it is conceivable that the exogenous topical administration of sufficiently high amounts of melatonin to the eye could be beneficial in several instances: for the treatment of eye pathologies like glaucoma, due to the IOP-lowering and neuroprotection effects of melatonin; for the prevention of other dysfunctions, such as dry eye and refractive defects (cataract and myopia) mainly due to its antioxidant properties; for diabetic retinopathy due to its metabolic influence and neuroprotective effects; for macular degeneration due to the antioxidant and neuroprotective properties; and for uveitis, mostly owing to anti-inflammatory and immunomodulatory properties. This paper reviews the scientific evidence supporting the use of melatonin in different ocular districts. Moreover, it provides data suggesting that the topical administration of melatonin as eye drops is a real possibility, utilizing nanotechnological formulations that could improve its solubility and permeation through the eye. This way, its distribution and concentration in different ocular tissues may support its pleiotropic therapeutic effects.
Collapse
Affiliation(s)
- Dario Rusciano
- Fidia Research Centre, c/o University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| |
Collapse
|
15
|
Li Y, Liang J, Tian X, Chen Q, Zhu L, Wang H, Liu Z, Dai X, Bian C, Sun C. Intermittent fasting promotes adipocyte mitochondrial fusion through Sirt3-mediated deacetylation of Mdh2. Br J Nutr 2023; 130:1473-1486. [PMID: 36815302 DOI: 10.1017/s000711452300048x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Fat deposition and lipid metabolism are closely related to the morphology, structure and function of mitochondria. The morphology of mitochondria between fusion and fission processes is mainly regulated by protein posttranslational modification. Intermittent fasting (IF) promotes high expression of Sirtuin 3 (Sirt3) and induces mitochondrial fusion in high-fat diet (HFD)-fed mice. However, the mechanism by which Sirt3 participates in mitochondrial protein acetylation during IF to regulate mitochondrial fusion and fission dynamics remains unclear. This article demonstrates that IF promotes mitochondrial fusion and improves mitochondrial function in HFD mouse inguinal white adipose tissue. Proteomic sequencing revealed that IF increased protein deacetylation levels in HFD mice and significantly increased Sirt3 mRNA and protein expression. After transfecting with Sirt3 overexpression or interference vectors into adipocytes, we found that Sirt3 promoted adipocyte mitochondrial fusion and improved mitochondrial function. Furthermore, Sirt3 regulates the JNK-FIS1 pathway by deacetylating malate dehydrogenase 2 (MDH2) to promote mitochondrial fusion. In summary, our study indicates that IF promotes mitochondrial fusion and improves mitochondrial function by upregulating the high expression of Sirt3 in HFD mice, promoting deacetylation of MDH2 and inhibiting the JNK-FIS1 pathway. This research provides theoretical support for studies related to energy limitation and animal lipid metabolism.
Collapse
Affiliation(s)
- Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Juntong Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Qi Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Longbo Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Han Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Xulei Dai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Chenqi Bian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, People's Republic of China
| |
Collapse
|
16
|
Wei D, Tian X, Zhu L, Wang H, Sun C. USP14 governs CYP2E1 to promote nonalcoholic fatty liver disease through deubiquitination and stabilization of HSP90AA1. Cell Death Dis 2023; 14:566. [PMID: 37633951 PMCID: PMC10460448 DOI: 10.1038/s41419-023-06091-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) begins with excessive triglyceride accumulation in the liver, and overly severe hepatic steatosis progresses to nonalcoholic steatohepatitis (NASH), which is characterized by lipid peroxidation, inflammation, and fibrosis. Ubiquitin-specific proteinase 14 (USP14) regulates inflammation, hepatocellular carcinoma and viral infection, but the effect of USP14 on NAFLD is unknown. The aim of this study was to reveal the role of USP14 in the progression of NAFLD and its underlying mechanism. We demonstrated that hepatic USP14 expression was significantly increased in NAFLD in both humans and mice. Hepatic USP14 overexpression exacerbated diet-induced hepatic steatosis, inflammation and fibrosis in mice, in contrast to the results of hepatic USP14 knockdown. Furthermore, palmitic/oleic acid-induced lipid peroxidation and inflammation in hepatocytes were markedly increased by USP14 overexpression but decreased by USP14 knockdown. Notably, in vivo or in vitro data show that USP14 promotes NAFLD progression in a cytochrome p4502E1 (CYP2E1)-dependent manner, which exacerbates hepatocyte oxidative stress, impairs the mitochondrial respiratory chain and inflammation by promoting CYP2E1 protein levels. Mechanistically, we demonstrated by immunoprecipitation and ubiquitination analysis that USP14 inhibits the degradation of heat shock protein 90 alpha family class A member 1 (HSP90AA1) by decreasing its lysine 48-linkage ubiquitination. Meanwhile, upregulation of HAP90AA1 protein promotes CYP2E1 protein accumulation. Collectively, our data indicate that an unknown USP14-HSP90AA1-CYP2E1 axis contributes to NAFLD progression, and we propose that inhibition of USP14 may be an effective strategy for NASH treatment.
Collapse
Affiliation(s)
- Dongqin Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Longbo Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Han Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shanxi, China.
| |
Collapse
|
17
|
Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023; 12:1888. [PMID: 37508557 PMCID: PMC10377837 DOI: 10.3390/cells12141888] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Li F, Lai J, Ma F, Cai Y, Li S, Feng Z, Lu Z, Liu X, Ke Q, Hao H, Xiao X. Maternal melatonin supplementation shapes gut microbiota and protects against inflammation in early life. Int Immunopharmacol 2023; 120:110359. [PMID: 37257272 DOI: 10.1016/j.intimp.2023.110359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Gut microbiota colonization is critical for immune education and nutrient metabolism. Research shows that melatonin has beneficial effects as a therapy for many diseases via modulating gut dysbiosis. However, it is unclear whether melatonin alters gut microbiota colonization in early life. METHODS In the experimental group (Mel), mice were intraperitoneally injected with melatonin at 10 mg/kg body weight for embryonic days 14-16 and received drinking water containing 0.4 mg/mL melatonin until 28 days postpartum. In the control group (Ctrl), mice were injected with the same volume of 2.5% ethanol in saline and provided with standard water. Two more groups were created by treating neonatal mice with 20 mg/kg lipopolysaccharide (LPS) to induce inflammation, resulting in the groups Ctrl + LPS and Mel + LPS, respectively. We examined the gut microbiota of the neonatal mice in the Ctrl and Mel group on Days 7, 14, 21, and 28 post-birth. On Day 14, melatonin and short-chain fatty acids (SCFAs) concentrations were measured in the Ctrl and Mel group and the mice were treated with LPS to be evaluated for intestinal injury and inflammatory response 15 h post treatment. According to the result of the SCFAs concentrations, some neonatal mice were intraperitoneally injected with 500 mg/kg sodium butyrate (SB) from Days 11-13, intraperitoneally injected with 20 mg/kg LPS on Day 14, and then euthanized by carbon dioxide inhalation the next morning. Intestinal injury and inflammatory responses were evaluated in the Ctrl + LPS and SB + LPS groups, respectively. RESULTS By Day 14, it was evident that maternal melatonin supplementation significantly increased the relative abundance of Firmicutes in the ileal [61.03 (35.35 - 76.18) % vs. 98.02 (86.61 - 99.01) %, P = 0.003] and colonic [73.88 (69.77 - 85.99) % vs. 96.16 (94.57 - 96.34) %, P = 0.04] microbiota, the concentration of melatonin (0.79 ± 0.49 ng/ml vs. 6.11 ± 3.48 ng/ml, P = 0.008) in the gut lumen, and the fecal butyric acid (12.91 ± 5.74 μg/g vs. 23.58 ± 10.71 μg/g, P = 0.026) concentration of neonatal mice. Melatonin supplementation, and sodium butyrate treatment markedly alleviated intestinal injury and decreased inflammatory factors in neonatal mice. CONCLUSION This study suggests that maternal melatonin supplementation can shape the gut microbiota and metabolism of offspring under normal physiological conditions and protect them against LPS-induced inflammation in early life.
Collapse
Affiliation(s)
- Fei Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Jiahao Lai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Fei Ma
- Department of Pediatrics, Zhuhai Maternity and Child Health Hospital, Zhuhai, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Zhoushan Feng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhendong Lu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Xiao Liu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University.
| |
Collapse
|
19
|
Zhang S, Yao X. Mechanism of action and promising clinical application of melatonin from a dermatological perspective. J Transl Autoimmun 2023; 6:100192. [PMID: 36860771 PMCID: PMC9969269 DOI: 10.1016/j.jtauto.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 10/28/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Melatonin is the main neuroendocrine product in the pineal gland. Melatonin can regulate circadian rhythm-related physiological processes. Evidence indicates an important role of melatonin in hair follicles, skin, and gut. There appears to be a close association between melatonin and skin disorders. In this review, we focus on the latest research of the biochemical activities of melatonin (especially in the skin) and its promising clinical applications.
Collapse
Key Words
- 5HT, Serotonin
- AAD, Aromatic amino acid decarboxylase
- AANAT/NAT, serotonin-N-acetyltransferase(s)
- Anti-Inflammation
- Antioxidation
- CAT, catalase
- COX-2, Cyclooxygenase-2
- CYP450, cytochrome P450
- Casp-1/3, caspase 1/3
- DNCB, 2,4-dinitrochlorobenzene
- GPx, Glutathione peroxidase
- GSH, Glutathione
- HIOMT, 4-hydroxyindole-O-methyl transferase
- HO-1, heme oxygenase-1
- HSP 70, Heat Shock Protein 70
- IKK-α, IkB kinase-α
- IL-1β, interleukin-1 β
- IL-6, interleukin- 6
- IkB, NF-κ-B inhibitor
- Immunoregulation
- MT, Melatonin
- MT1/2, Melatonin receptor
- Melatonin
- NF-κB, Nuclear factor kappa-B
- NQO1, NAD(P), quinone oxidoreductase 1
- NQO2, NRH, Quinone oxidoreductase 2
- Nrf2, Nuclear erythroid 2-related factor
- Oncostatic mechanism
- PEPT1/2, oligopeptide transporter 1/2
- RNS, Reactive nitrogen species
- ROS, Reactive oxygen species
- RZR-α, Retinoid Z receptor α
- SOD, superoxide dismutase
- Skin barrier
- TPH, tryptophan5-hydroxylase enzymes, including dominant TPH1 and TPH2
- Trp, Tryptophan
- iNOS, Inducible nitric oxide synthase
- γ-GCS, c-glutamylcysteine synthetase
Collapse
Affiliation(s)
| | - Xu Yao
- Corresponding author. Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|