1
|
Walker SE, Yu K, Burgess S, Echeverri K. Neuronal activation in the axolotl brain promotes tail regeneration. NPJ Regen Med 2025; 10:22. [PMID: 40341072 PMCID: PMC12062227 DOI: 10.1038/s41536-025-00413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
The axolotl retains a remarkable capacity for regenerative repair and is one of the few vertebrate species capable of regenerating its brain and spinal cord after injury. To date, studies investigating axolotl spinal cord regeneration have placed particular emphasis on understanding how cells immediately adjacent to the injury site respond to damage to promote regenerative repair. How neurons outside of this immediate injury site respond to an injury remains unknown. Here, we identify a population of dpErk+/etv1+ glutamatergic neurons in the axolotl telencephalon that are activated in response to injury and are essential for tail regeneration. Furthermore, these neurons project to the hypothalamus where they upregulate the neuropeptide neurotensin in response to injury. Together, these findings identify a unique population of neurons in the axolotl brain whose activation is necessary for successful tail regeneration, and sheds light on how neurons outside of the immediate injury site respond to an injury.
Collapse
Affiliation(s)
- S E Walker
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology, Woods Hole, MA, USA
| | - K Yu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - K Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology, Woods Hole, MA, USA.
| |
Collapse
|
2
|
Helfrich-Förster C, Reinhard N. Mutual coupling of neurons in the circadian master clock: What we can learn from fruit flies. Neurobiol Sleep Circadian Rhythms 2025; 18:100112. [PMID: 39906412 PMCID: PMC11791320 DOI: 10.1016/j.nbscr.2025.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Circadian master clocks in the brain consist of multiple neurons that are organized into populations with different morphology, physiology, and neuromessenger content and presumably different functions. In most animals, these master clocks are distributed bilaterally, located in close proximity to the visual system, and synchronized by the eyes with the light-dark cycles of the environment. In mammals and cockroaches, each of the two master clocks consists of a core region that receives information from the eyes and a shell region from which most of the output projections originate, whereas in flies and several other insects, the master clocks are distributed in lateral and dorsal brain regions. In all cases, morning and evening clock neurons seem to exist, and the communication between them and other populations of clock neurons, as well as the connection across the two brain hemispheres, is a prerequisite for normal rhythmic function. Phenomena such as rhythm splitting, and internal desynchronization are caused by the "decoupling" of the master clocks in the two brain hemispheres or by the decoupling of certain clock neurons within the master clock of one brain hemisphere. Since the master clocks in flies contain relatively few neurons that are well characterized at the individual level, the fly is particularly well suited to study the communication between individual clock neurons. Here, we review the organization of the bilateral master clocks in the fly brain, with a focus on synaptic and paracrine connections between the multiple clock neurons, in comparison with other insects and mammals.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
3
|
Braden K, Castro DC. The role of dorsal raphe nucleus neuropeptides in reward and aversion. Front Behav Neurosci 2025; 19:1553470. [PMID: 40270681 PMCID: PMC12014661 DOI: 10.3389/fnbeh.2025.1553470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025] Open
Abstract
The dorsal raphe nucleus is a critical node for affective and motivated circuits in the brain. Though typically known as a serotonergic hub, the dorsal raphe nucleus is also highly enriched in a variety of neuropeptides. Recent advances in biotechnology and behavioral modeling have led to a resurgence in neuropeptide research, allowing investigators to target unique peptide systems with unprecedented clarity. Here, we review and discuss multiple neuropeptide systems in dorsal raphe and consider how their activity may contribute to reward and aversion. While this is not an exhaustive review, this short overview will highlight the many opportunities available to refine our understanding of multiple dorsal raphe neuropeptides. By more thoroughly studying dorsal raphe neuropeptides, we will reveal novel pathways to design more effective therapeutics and tailor treatments for millions of patients.
Collapse
Affiliation(s)
- Kathryn Braden
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, United States
| | | |
Collapse
|
4
|
Hevesi Z, Hökfelt T, Harkany T. Neuropeptides: The Evergreen Jack-of-All-Trades in Neuronal Circuit Development and Regulation. Bioessays 2025; 47:e202400238. [PMID: 39723681 PMCID: PMC11848124 DOI: 10.1002/bies.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Neuropeptides are key modulators of adult neurocircuits, balancing their sensitivity to both excitation and inhibition, and fine-tuning fast neurotransmitter action under physiological conditions. Here, we reason that transient increases in neuropeptide availability and action exist during brain development for synapse maturation, selection, and maintenance. We discuss fundamental concepts of neuropeptide signaling at G protein-coupled receptors (GPCRs), with a particular focus on how signaling at neuropeptide GPCRs could underpin neuronal morphogenesis. We use galanin, a 29/30 amino acid-long neuropeptide, as an example for its retrograde release from the dendrites of thalamic neurons to impact the selection and wiring of sensory afferents originating at the trigeminal nucleus through galanin receptor 1 (GalR1) engagement. Thus, we suggest novel roles for neuropeptides, expressed transiently or permanently during both pre- and postnatal neuronal circuit development, with potentially life-long effects on circuit layout and ensuing behavioral operations.
Collapse
Affiliation(s)
- Zsofia Hevesi
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
| | - Tomas Hökfelt
- Department of NeuroscienceKarolinska InstitutetSolnaSweden
| | - Tibor Harkany
- Department of Molecular NeurosciencesCenter for Brain ResearchMedical University of ViennaViennaAustria
- Department of NeuroscienceKarolinska InstitutetSolnaSweden
| |
Collapse
|
5
|
Lu M, Zhang J, Zhang Q, Sun J, Zou D, Huang J, Liu W. The parasubthalamic nucleus: A novel eating center in the brain. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111250. [PMID: 39788409 DOI: 10.1016/j.pnpbp.2025.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Eating behavior stands as a fundamental determinant of animal survival and growth, intricately regulated by an amalgamation of internal and external stimuli. Coordinated movements of facial muscles and the mandible orchestrate prey capture and food processing, propelled by the allure of taste and rewarding food properties. Conversely, satiation, pain, aversion, negative emotion or perceived threats can precipitate the cessation or avoidance of eating activities. In recent years, the parasubthalamic nucleus (PSTN), located in the lateral hypothalamic area, has emerged as a focal point in feeding research. PSTN neurons assume pivotal roles within multiple feeding circuits, bridging central feeding centers with peripheral organs. They intricately modulate regulation of oral sensorimotor functions, hedonic feeding, appetite motivation and the processing of satiation and aversive signals, thereby orchestrating the initiation or termination of feeding behaviors. This review delves into the distinctive neuronal subpopulations within the PSTN and their associated neural networks, aiming to refine our comprehension of the neural underpinnings of feeding while also seeking to unearth more efficacious therapeutic avenues for feeding and eating disorders.
Collapse
Affiliation(s)
- Mingxuan Lu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jiayao Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Qi Zhang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Jiyu Sun
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Danni Zou
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Jinyin Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Weicai Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
6
|
Bakhtazad A, Kabbaj M, Garmabi B, Joghataei MT. The role of CART peptide in learning and memory: A potential therapeutic target in memory-related disorders. Peptides 2024; 181:171298. [PMID: 39317295 DOI: 10.1016/j.peptides.2024.171298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Cocaine and amphetamine-regulated transcript (CART) mRNA and peptide are vastly expressed in both cortical and subcortical brain areas and are involved in critical cognitive functions. CART peptide (CARTp), described in reward-related brain structures, regulates drug-induced learning and memory, and its role appears specific to psychostimulants. However, many other drugs of abuse, such as alcohol, opiates, nicotine, and caffeine, have been shown to alter the expression levels of CART mRNA and peptides in brain structures directly or indirectly associated with learning and memory processes. However, the number of studies demonstrating the contribution of CARTp in learning and memory is still minimal. Notably, the exact cellular and molecular mechanisms underlying CARTp effects are still unknown. The discoveries that CARTp effects are mediated through a putative G-protein coupled receptor and activation of cellular signaling cascades via NMDA receptor-coupled ERK have enhanced our knowledge about the action of this neuropeptide and allowed us to comprehend better CARTp exact cellular/molecular mechanisms that could mediate drug-induced changes in learning and memory functions. Unfortunately, these efforts have been impeded by the lack of suitable and specific CARTp receptor antagonists. In this review, following a short introduction about CARTp, we report on current knowledge about CART's roles in learning and memory processes and its recently described role in memory-related neurological disorders. We will also discuss the importance of further investigating how CARTp interacts with its receptor(s) and other neurotransmitter systems to influence learning and memory functions. This topic is sure to intrigue and motivate further exploration in the field of neuroscience.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-1270, United States; Program of Neuroscience, Florida State University, Tallahassee, FL 32306-1270, United States
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Deputy of Research and Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Butt A, Van Damme S, Santiago E, Olson A, Beets I, Koelle MR. Neuropeptide and serotonin co-transmission sets the activity pattern in the C. elegans egg-laying circuit. Curr Biol 2024; 34:4704-4714.e5. [PMID: 39395419 DOI: 10.1016/j.cub.2024.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 10/14/2024]
Abstract
Neurons typically release both a neurotransmitter and one or more neuropeptides, but how these signals are integrated within neural circuits to generate and tune behaviors remains poorly understood. We studied how the two hermaphrodite-specific neurons (HSNs) activate the egg-laying circuit of Caenorhabditis elegans by releasing both the neurotransmitter serotonin and NLP-3 neuropeptides. Egg laying occurs in a temporal pattern with approximately 2-min active phases, during which eggs are laid, separated by approximately 20-min inactive phases, during which no eggs are laid. To understand how serotonin and NLP-3 neuropeptides together help produce this behavior pattern, we identified the G-protein-coupled receptor neuropeptide receptor 36 (NPR-36) as an NLP-3 neuropeptide receptor using genetic and molecular experiments. We found that NPR-36 is expressed in, and promotes egg laying within, the egg-laying muscle cells, the same cells where two serotonin receptors also promote egg laying. During the active phase, when HSN activity is high, we found that serotonin and NLP-3 neuropeptides each have a different effect on the timing of egg laying. During the inactive phase, HSN activity is low, which may result in release of only serotonin, yet mutants lacking either serotonin or nlp-3 signaling have longer inactive phases. This suggests that NLP-3 peptide signaling may persist through the inactive phase to help serotonin signaling terminate the inactive phase. We propose a model for neural circuit function in which multiple signals with short- and long-lasting effects compete to generate and terminate persistent internal states, thus patterning a behavior over tens of minutes.
Collapse
Affiliation(s)
- Allison Butt
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA
| | | | - Emerson Santiago
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Andrew Olson
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
9
|
Mir DA, Cox M, Horrocks J, Ma Z, Rogers A. Roles of Progranulin and FRamides in Neural Versus Non-Neural Tissues on Dietary Restriction-Related Longevity and Proteostasis in C. elegans. JOURNAL OF CLINICAL AND MEDICAL SCIENCES 2024; 8:276. [PMID: 39323482 PMCID: PMC11423770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Dietary Restriction (DR) mitigates loss of proteostasis associated with aging that underlies neurodegenerative conditions including Alzheimer's disease and related dementias. Previously, we observed increased translational efficiency of certain FMRFamide-Like neuro-Peptide (FLP) genes and the neuroprotective growth factor progranulin gene prgn-1 under dietary restriction in C. elegans. Here, we tested the effects of flp-5, flp-14, flp-15 and pgrn-1 on lifespan and proteostasis under both standard and dietary restriction conditions. We also tested and distinguished function based on their expression in either neuronal or non-neuronal tissue. Lowering the expression of pgrn-1 and flp genes selectively in neural tissue showed no difference in survival under normal feeding conditions nor under DR in two out of three experiments performed. Reduced expression of flp-14 in non-neuronal tissue showed decreased lifespan that was not specific to DR. With respect to proteostasis, a genetic model of DR from mutation of the eat-2 gene that showed increased thermotolerance compared to fully fed wild type animals demonstrated no change in thermotolerance in response to knockdown of pgrn-1 or flp genes. Finally, we tested effects on motility in a neural-specific model of proteotoxicity and found that neuronal knockdown of pgrn-1 and flp genes improved motility in early life regardless of diet. However, knocking these genes down in non-neuronal tissue had variable results. RNAi targeting flp-14 increased motility by day seven of adulthood regardless of diet. Interestingly, non-neuronal RNAi of pgrn-1 decreased motility under standard feeding conditions while DR increased motility for this gene knockdown by day seven (early mid-life). Results show that pgrn-1, flp-5, flp-14, and flp-15 do not have major roles in diet-related changes in longevity or whole-body proteostasis. However, reduced expression of these genes in neurons increases motility early in life in a neural-specific model of proteotoxicity, whereas knockdown of non-neuronal expression mostly increases motility in mid-life under the same conditions.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Matthew Cox
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| | - Aric Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Maine, United States of America
| |
Collapse
|
10
|
Hevesi Z, Bakker J, Tretiakov EO, Adori C, Raabgrund A, Barde SS, Caramia M, Krausgruber T, Ladstätter S, Bock C, Hökfelt T, Harkany T. Transient expression of the neuropeptide galanin modulates peripheral‑to‑central connectivity in the somatosensory thalamus during whisker development in mice. Nat Commun 2024; 15:2762. [PMID: 38553447 PMCID: PMC10980825 DOI: 10.1038/s41467-024-47054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.
Collapse
Affiliation(s)
- Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Joanne Bakker
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Csaba Adori
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Anika Raabgrund
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Swapnali S Barde
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Martino Caramia
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Sabrina Ladstätter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
11
|
Mir DA, Cox M, Horrocks J, Ma Z, Rogers A. Roles of progranulin and FRamides in neural versus non-neural tissues on dietary restriction-related longevity and proteostasis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579250. [PMID: 38370756 PMCID: PMC10871266 DOI: 10.1101/2024.02.06.579250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dietary restriction (DR) mitigates loss of proteostasis associated with aging that underlies neurodegenerative conditions including Alzheimer's disease and related dementias. Previously, we observed increased translational efficiency of certain FMRFamide-like neuropeptide ( flp ) genes and the neuroprotective growth factor progranulin gene prgn-1 under dietary restriction in C. elegans . Here, we tested the effects of flp-5 , flp-14 , flp-15 and pgrn-1 on lifespan and proteostasis under both standard and dietary restriction conditions. We also tested and distinguished function based on their expression in either neuronal or non-neuronal tissue. Lowering the expression of pgrn-1 and flp genes selectively in neural tissue showed no difference in survival under normal feeding conditions nor under DR in two out of three experiments performed. Reduced expression of flp-14 in non-neuronal tissue showed decreased lifespan that was not specific to DR. With respect to proteostasis, a genetic model of DR from mutation of the eat-2 gene that showed increased thermotolerance compared to fully fed wild type animals demonstrated no change in thermotolerance in response to knockdown of pgrn-1 or flp genes. Finally, we tested effects on motility in a neural-specific model of proteotoxicity and found that neuronal knockdown of pgrn-1 and flp genes improved motility in early life regardless of diet. However, knocking these genes down in non-neuronal tissue had variable results. RNAi targeting flp-14 increased motility by day seven of adulthood regardless of diet. Interestingly, non-neuronal RNAi of pgrn-1 decreased motility under standard feeding conditions while DR increased motility for this gene knockdown by day seven (early mid-life). Results show that pgrn-1 , flp-5 , flp-14 , and flp-15 do not have major roles in diet-related changes in longevity or whole-body proteostasis. However, reduced expression of these genes in neurons increases motility early in life in a neural-specific model of proteotoxicity, whereas knockdown of non-neuronal expression mostly increases motility in mid-life under the same conditions.
Collapse
|
12
|
Rai G, Sharma S, Bhasin J, Aggarwal K, Ahuja A, Dang S. Nanotechnological advances in the treatment of epilepsy: a comprehensive review. NANOTECHNOLOGY 2024; 35:152002. [PMID: 38194705 DOI: 10.1088/1361-6528/ad1c95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Epilepsy is one of the most prevalent chronic neurological disorders characterized by frequent unprovoked epileptic seizures. Epileptic seizures can develop from a broad range of underlying abnormalities such as tumours, strokes, infections, traumatic brain injury, developmental abnormalities, autoimmune diseases, and genetic predispositions. Sometimes epilepsy is not easily diagnosed and treated due to the large diversity of symptoms. Undiagnosed and untreated seizures deteriorate over time, impair cognition, lead to injuries, and can sometimes result in death. This review gives details about epilepsy, its classification on the basis of International League Against Epilepsy, current therapeutics which are presently offered for the treatment of epilepsy. Despite of the fact that more than 30 different anti-epileptic medication and antiseizure drugs are available, large number of epileptic patients fail to attain prolonged seizure independence. Poor onsite bioavailability of drugs due to blood brain barrier poses a major challenge in drug delivery to brain. The present review covers the limitations with the state-of-the-art strategies for managing seizures and emphasizes the role of nanotechnology in overcoming these issues. Various nano-carriers like polymeric nanoparticles, dendrimers, lipidic nanoparticles such as solid lipid nanoparticles, nano-lipid carriers, have been explored for the delivery of anti-epileptic drugs to brain using oral and intranasal routes. Nano-carries protect the encapsulated drugs from degradation and provide a platform to deliver controlled release over prolonged periods, improved permeability and bioavailability at the site of action. The review also emphasises in details about the role of neuropeptides for the treatment of epilepsy.
Collapse
Affiliation(s)
- Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Jasveen Bhasin
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Kanica Aggarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Alka Ahuja
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
13
|
Barde S, Aguila J, Zhong W, Solarz A, Mei I, Prud'homme J, Palkovits M, Turecki G, Mulder J, Uhlén M, Nagy C, Mechawar N, Hedlund E, Hökfelt T. Substance P, NPY, CCK and their receptors in five brain regions in major depressive disorder with transcriptomic analysis of locus coeruleus neurons. Eur Neuropsychopharmacol 2024; 78:54-63. [PMID: 37931511 DOI: 10.1016/j.euroneuro.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Major depressive disorder (MDD) is a serious disease and a burden to patients, families and society. Rodent experiments and human studies suggest that several neuropeptide systems are involved in mood regulation. The aim of this study is two-fold: (i) to monitor, with qPCR, transcript levels of the substance P/tachykinin (TAC), NPY and CCK systems in bulk samples from control and suicide subjects, targeting five postmortem brain regions including locus coeruleus (LC); and (ii) to analyse expression of neuropeptide family transcripts in LC neurons of 'normal' postmortem brains by using laser capture microdissection with Smart-Seq2 RNA sequencing. qPCR revealed distinct regional expression patterns in male and female controls with higher levels for the TAC system in the dorsal raphe nucleus and LC, versus higher transcripts levels of the NPY and CCK systems in prefrontal cortex. In suicide patients, TAC, TAC receptors and a few NPY family transcript levels were increased mainly in prefrontal cortex and LC. The second study on 'normal' noradrenergic LC neurons revealed expression of transcripts for GAL, NPY, TAC1, CCK, and TACR1 and many other peptides (e.g. Cerebellin4 and CARTPT) and receptors (e.g. Adcyap1R1 and GPR173). These data and our previous results on suicide brains indicates that the tachykinin and galanin systems may be valid targets for developing antidepressant medicines. Moreover, the perturbation of neuropeptide systems in MDD patients, and the detection of further neuropeptide and receptor transcripts in LC, shed new light on signalling in noradrenergic LC neurons and on mechanisms possibly associated with mood disorders.
Collapse
Affiliation(s)
- Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Julio Aguila
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Wen Zhong
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, 11428, Sweden
| | - Anna Solarz
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Irene Mei
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Josee Prud'homme
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Miklos Palkovits
- The Hungarian Academy of Sciences, Budapest, Hungary and Human Brain Tissue Bank and Laboratory, Semmelweis University, H-1085, Budapest, Hungary
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, 11428, Sweden
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Eva Hedlund
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Havranek T, Bacova Z, Bakos J. Oxytocin, GABA, and dopamine interplay in autism. Endocr Regul 2024; 58:105-114. [PMID: 38656256 DOI: 10.2478/enr-2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Oxytocin plays an important role in brain development and is associated with various neurotransmitter systems in the brain. Abnormalities in the production, secretion, and distribution of oxytocin in the brain, at least during some stages of the development, are critical for the pathogenesis of neuropsychiatric diseases, particularly in the autism spectrum disorder. The etiology of autism includes changes in local sensory and dopaminergic areas of the brain, which are also supplied by the hypothalamic sources of oxytocin. It is very important to understand their mutual relationship. In this review, the relationship of oxytocin with several components of the dopaminergic system, gamma-aminobutyric acid (GABA) inhibitory neurotransmission and their alterations in the autism spectrum disorder is discussed. Special attention has been paid to the results describing a reduced expression of inhibitory GABAergic markers in the brain in the context of dopaminergic areas in various models of autism. It is presumed that the altered GABAergic neurotransmission, due to the absence or dysfunction of oxytocin at certain developmental stages, disinhibits the dopaminergic signaling and contributes to the autism symptoms.
Collapse
Affiliation(s)
- Tomas Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Zuzana Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
15
|
Tringali G, Lavanco G, Castelli V, Pizzolanti G, Kuchar M, Currò D, Cannizzaro C, Brancato A. Cannabidiol tempers alcohol intake and neuroendocrine and behavioural correlates in alcohol binge drinking adolescent rats. Focus on calcitonin gene-related peptide's brain levels. Phytother Res 2023; 37:4870-4884. [PMID: 37525534 DOI: 10.1002/ptr.7972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
Alcohol binge drinking is common among adolescents and may challenge the signalling systems that process affective stimuli, including calcitonin gene-related peptide (CGRP) signalling. Here, we employed a rat model of adolescent binge drinking to evaluate reward-, social- and aversion-related behaviour, glucocorticoid output and CGRP levels in affect-related brain regions. As a potential rescue, the effect of the phytocannabinoid cannabidiol was explored. Adolescent male rats underwent the intermittent 20% alcohol two-bottle choice paradigm; at the binge day (BD) and the 24 h withdrawal day (WD), we assessed CGRP expression in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), amygdala, hypothalamus and brainstem; in addition, we evaluated sucrose preference, social motivation and drive, nociceptive response, and serum corticosterone levels. Cannabidiol (40 mg/kg, i.p.) was administered before each drinking session, and its effect was measured on the above-mentioned readouts. At BD and WD, rats displayed decreased CGRP expression in mPFC, NAc and amygdala; increased CGRP levels in the brainstem; increased response to rewarding- and nociceptive stimuli and decreased social drive; reduced serum corticosterone levels. Cannabidiol reduced alcohol consumption and preference; normalised the abnormal corticolimbic CGRP expression, and the reward and aversion-related hyper-responsivity, as well as glucocorticoid levels in alcohol binge-like drinking rats. Overall, CGRP can represent both a mediator and a target of alcohol binge-like drinking and provides a further piece in the intricate puzzle of alcohol-induced behavioural and neuroendocrine sequelae. CBD shows promising effects in limiting adolescent alcohol binge drinking and rebalancing the bio-behavioural abnormalities.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia
- Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Diego Currò
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Hernández-Pérez OR, Hernández VS, Zetter MA, Eiden LE, Zhang L. Nucleus of the lateral olfactory tract: A hub linking the water homeostasis-associated supraoptic nucleus-arginine vasopressin circuit and neocortical regions to promote social behavior under osmotic challenge. J Neuroendocrinol 2023; 35:e13202. [PMID: 36283814 PMCID: PMC10027625 DOI: 10.1111/jne.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Homeostatic challenges may alter the drive for social interaction. The neural activity that prompts this motivation remains poorly understood. In the present study, we identify direct projections from the hypothalamic supraoptic nucleus to the cortico-amygdalar nucleus of the lateral olfactory tract (NLOT). Dual in situ hybridization with probes for pituitary adenylate cyclase-activating polypeptide (PACAP), as well as vesicular glutamate transporter (VGLUT)1, VGLUT2, V1a and V1b, revealed a population of vasopressin-receptive PACAPergic neurons in NLOT layer 2 (NLOT2). Water deprivation (48 h, WD48) increased sociability compared to euhydrated subjects, as assessed with the three-chamber social interaction test (3CST). Fos expression immunohistochemistry showed NLOT and its main efferent regions had further increases in rats subjected to WD48 + 3CST. These regions strongly expressed PAC1 mRNA. Microinjections of arginine vasopressin (AVP) into the NLOT produced similar changes in sociability to water deprivation, and these were reduced by co-injection of V1a or V1b antagonists along with AVP. We conclude that, during challenge to water homeostasis, there is a recruitment of a glutamatergic-multi-peptidergic cooperative circuit that promotes social behavior.
Collapse
Affiliation(s)
- Oscar R. Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
- Authors contributed equally to this work
| | - Vito S. Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
- Authors contributed equally to this work
| | - Mario A. Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
| | - Lee E. Eiden
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
| |
Collapse
|
17
|
Blitz DM. Neural circuit regulation by identified modulatory projection neurons. Front Neurosci 2023; 17:1154769. [PMID: 37008233 PMCID: PMC10063799 DOI: 10.3389/fnins.2023.1154769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Rhythmic behaviors (e.g., walking, breathing, and chewing) are produced by central pattern generator (CPG) circuits. These circuits are highly dynamic due to a multitude of input they receive from hormones, sensory neurons, and modulatory projection neurons. Such inputs not only turn CPG circuits on and off, but they adjust their synaptic and cellular properties to select behaviorally relevant outputs that last from seconds to hours. Similar to the contributions of fully identified connectomes to establishing general principles of circuit function and flexibility, identified modulatory neurons have enabled key insights into neural circuit modulation. For instance, while bath-applying neuromodulators continues to be an important approach to studying neural circuit modulation, this approach does not always mimic the neural circuit response to neuronal release of the same modulator. There is additional complexity in the actions of neuronally-released modulators due to: (1) the prevalence of co-transmitters, (2) local- and long-distance feedback regulating the timing of (co-)release, and (3) differential regulation of co-transmitter release. Identifying the physiological stimuli (e.g., identified sensory neurons) that activate modulatory projection neurons has demonstrated multiple “modulatory codes” for selecting particular circuit outputs. In some cases, population coding occurs, and in others circuit output is determined by the firing pattern and rate of the modulatory projection neurons. The ability to perform electrophysiological recordings and manipulations of small populations of identified neurons at multiple levels of rhythmic motor systems remains an important approach for determining the cellular and synaptic mechanisms underlying the rapid adaptability of rhythmic neural circuits.
Collapse
|