1
|
Bonazza S, Courtney DG. Influenza A virus RNA localisation and the interceding trafficking pathways of the host cell. PLoS Pathog 2025; 21:e1013090. [PMID: 40267083 PMCID: PMC12017568 DOI: 10.1371/journal.ppat.1013090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Viruses have evolved to efficiently navigate host cells to deliver, express, and replicate their genetic material. Understanding the mechanisms underlying viral RNA localisation is paramount to designing new antivirals. In this review, we discuss Influenza A Virus (IAV) as a model system to highlight some of the ways in which RNA viruses can hijack the endomembrane systems, as well as nuclear transporters, to achieve the correct localisation of their transcripts. IAV exemplifies a nuclear-replicating RNA virus with a complex and highly regulated RNA localisation and trafficking system within host cells. The virus subverts various vesicular transport systems and nuclear transporters, altering normal cellular functions. IAV RNA trafficking begins during entry; after clathrin-mediated endocytosis, the viral genome (vRNPs) is released into the cytosol after fusion with the endosomal membrane, and it is subsequently imported into the nucleus via the importin system. There, vRNPs engage with most major subnuclear structures and exploit host chromatin, the transcription machinery and splicing apparatus to achieve efficient viral mRNA synthesis and export. Subsequently, newly synthesised vRNPs are rapidly exported from the nucleus and contact the host's recycling endosome network for transport to the plasma membrane. We discuss the critical viral remodelling of the entire endomembrane system, particularly the Rab11 recycling endosome and the endoplasmic reticulum. Lastly, replicated genomes come together into bundles to be inserted in budding virions, and we discuss the current models being proposed and the evidence behind them. Despite advances in understanding these processes, several knowledge gaps remain, particularly regarding the specific export of unspliced IAV transcripts, the remodelling of the endomembrane system, and segment bundling.
Collapse
Affiliation(s)
- Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - David G. Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
2
|
Arragain B, Pelosse M, Huard K, Cusack S. Structure of the tilapia lake virus nucleoprotein bound to RNA. Nucleic Acids Res 2025; 53:gkaf112. [PMID: 39995042 PMCID: PMC11850232 DOI: 10.1093/nar/gkaf112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Tilapia Lake virus (TiLV) belongs to the Amnoonviridae family within the Articulavirales order of segmented negative-strand RNA viruses and is highly diverged from more familiar orthomyxoviruses, such as influenza. The viral nucleoprotein (NP), a key component of the replication machinery, packages the viral genome into protective ribonucleoprotein particles. Here we describe the electron cryo-microscopy (cryo-EM) structure of TiLV-NP bound to RNA within in vitro reconstituted, small ring-like, pseudo-symmetrical oligomers. Although TiLV-NP is considerably smaller than its influenza counterpart and unrelated in sequence, it maintains the same topology and domain organisation. This comprises a head and body domain between which is a positively charged groove, where single-stranded RNA binds. In addition, an oligomerisation loop inserts into a hydrophobic pocket in the neighbouring NP, the flexible hinges of which allow variable orientation of adjacent NPs. Focused cryo-EM maps unambiguously define the 5' to 3' direction of the bound RNA, confirmed by double stranded, A-form RNA regions that extrude out from some of the NP-NP interfaces. This is the first fully resolved description of how single-stranded and stem-loop RNA binds to an articulaviral NP assembly. Superposition with orthomyxoviral NPs suggest that the mode of RNA binding is likely similar across the Articulavirales order.
Collapse
Affiliation(s)
- Benoît Arragain
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble Cedex 9, France
| | - Martin Pelosse
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble Cedex 9, France
| | - Karine Huard
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble Cedex 9, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble Cedex 9, France
| |
Collapse
|
3
|
Panthi S, Hong JY, Satange R, Yu CC, Li LY, Hou MH. Antiviral drug development by targeting RNA binding site, oligomerization and nuclear export of influenza nucleoprotein. Int J Biol Macromol 2024; 282:136996. [PMID: 39486729 DOI: 10.1016/j.ijbiomac.2024.136996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The quasispecies of the influenza virus poses a significant challenge for developing effective therapies. Current antiviral drugs such as oseltamivir, zanamivir, peramivir and baloxavir marboxil along with seasonal vaccines have limitations due to viral variability caused by antigenic drift and shift as well as the development of drug resistance. Therefore, there is a clear need for novel antiviral agents targeting alternative mechanisms, either independently or in combination with existing modalities, to reduce the impact of influenza virus-related infections. The influenza nucleoprotein (NP) is a key component of the viral ribonucleoprotein complex. The multifaceted nature of the NP makes it an attractive target for antiviral intervention. Recent reports have identified inhibitors that specifically target this protein. Recognizing the importance of developing influenza treatments for potential pandemics, this review explores the structural and functional aspects of NP and highlights its potential as an emerging target for anti-influenza drugs. We discuss various strategies for targeting NP, including RNA binding, oligomerization, and nuclear export, and also consider the potential of NP-based vaccines. Overall, this review provides insights into recent developments and future perspectives on targeting influenza NP for antiviral therapies.
Collapse
Affiliation(s)
- Sankar Panthi
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Jhen-Yi Hong
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Long-Yuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ming-Hon Hou
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
4
|
Sharma SP, Chawla-Sarkar M, Sandhir R, Dutta D. Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1871. [PMID: 39501458 DOI: 10.1002/wrna.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 04/10/2025]
Abstract
Influenza viruses (types A, B, C, and D) belong to the family orthomyxoviridae. Out of all the influenza types, influenza A virus (IAV) causes human pandemic outbreaks. Its pandemic potential is predominantly attributed to the genetic reassortment favored by a broad spectrum of host species that could lead to an antigenic shift along with a high rate of mutations in its genome, presenting a possibility of subtypes with heightened pathogenesis and virulence in humans (antigenic drift). In addition to antigenic shift and drift, there are several other inherent properties of its viral RNA species (vRNA, vmRNA, and cRNA) that significantly contribute to the success of specific stages of viral infection. In this review, we compile the key features of IAV RNA, such as sequence motifs and secondary structures, their functional significance in the infection cycle, and their overall impact on the virus's adaptive and evolutionary fitness. Because many of these motifs and folds are conserved, we also assess the existing antiviral approaches focused on targeting IAV RNA. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Satya P Sharma
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Mamta Chawla-Sarkar
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Dipanjan Dutta
- School of Biological Sciences, Amity University, Punjab, India
| |
Collapse
|
5
|
Shalamova L, Barth P, Pickin MJ, Kouti K, Ott B, Humpert K, Janssen S, Lorenzo G, Brun A, Goesmann A, Hain T, Hartmann RK, Rossbach O, Weber F. Nucleocapsids of the Rift Valley fever virus ambisense S segment contain an exposed RNA element in the center that overlaps with the intergenic region. Nat Commun 2024; 15:7602. [PMID: 39217162 PMCID: PMC11365940 DOI: 10.1038/s41467-024-52058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen. Its RNA genome consists of two negative-sense segments (L and M) with one gene each, and one ambisense segment (S) with two opposing genes separated by the noncoding "intergenic region" (IGR). These vRNAs and the complementary cRNAs are encapsidated by nucleoprotein (N). Using iCLIP2 (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to map all N-vRNA and N-cRNA interactions, we detect N coverage along the L and M segments. However, the S segment vRNA and cRNA each contain approximately 100 non-encapsidated nucleotides stretching from the IGR into the 5'-adjacent reading frame. These exposed regions are RNase-sensitive and predicted to form stem-loop structures with the mRNA transcription termination motif positioned near the top. Moreover, optimal S segment transcription and replication requires the entire exposed region rather than only the IGR. Thus, the RVFV S segment contains a central, non-encapsidated RNA region with a functional role.
Collapse
Affiliation(s)
- Lyudmila Shalamova
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Patrick Barth
- Bioinformatics & Systems Biology, Justus-Liebig University, Giessen, Germany
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Matthew J Pickin
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Kiriaki Kouti
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Benjamin Ott
- Institute for Medical Microbiology, FB11-Medicine, Justus-Liebig University, Giessen, Germany
| | - Katharina Humpert
- Institute for Medical Microbiology, FB11-Medicine, Justus-Liebig University, Giessen, Germany
- Institute of Molecular Oncology, Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Stefan Janssen
- Algorithmic Bioinformatics, Justus-Liebig University, Giessen, Germany
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, Madrid, Spain
| | - Alexander Goesmann
- Bioinformatics & Systems Biology, Justus-Liebig University, Giessen, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, FB11-Medicine, Justus-Liebig University, Giessen, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Oliver Rossbach
- Institute for Biochemistry, FB 08-Biology and Chemistry, Justus-Liebig University, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
6
|
Beniston E, Skittrall JP. Locations and structures of influenza A virus packaging-associated signals and other functional elements via an in silico pipeline for predicting constrained features in RNA viruses. PLoS Comput Biol 2024; 20:e1012009. [PMID: 38648223 PMCID: PMC11034665 DOI: 10.1371/journal.pcbi.1012009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Influenza A virus contains regions of its segmented genome associated with ability to package the segments into virions, but many such regions are poorly characterised. We provide detailed predictions of the key locations within these packaging-associated regions, and their structures, by applying a recently-improved pipeline for delineating constrained regions in RNA viruses and applying structural prediction algorithms. We find and characterise other known constrained regions within influenza A genomes, including the region associated with the PA-X frameshift, regions associated with alternative splicing, and constraint around the initiation motif for a truncated PB1 protein, PB1-N92, associated with avian viruses. We further predict the presence of constrained regions that have not previously been described. The extra characterisation our work provides allows investigation of these key regions for drug target potential, and points towards determinants of packaging compatibility between segments.
Collapse
Affiliation(s)
- Emma Beniston
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
7
|
Quignon E, Ferhadian D, Hache A, Vivet-Boudou V, Isel C, Printz-Schweigert A, Donchet A, Crépin T, Marquet R. Structural Impact of the Interaction of the Influenza A Virus Nucleoprotein with Genomic RNA Segments. Viruses 2024; 16:421. [PMID: 38543786 PMCID: PMC10974462 DOI: 10.3390/v16030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.
Collapse
Affiliation(s)
- Erwan Quignon
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Damien Ferhadian
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Antoine Hache
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Catherine Isel
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Anne Printz-Schweigert
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| | - Amélie Donchet
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France (T.C.)
| | - Thibaut Crépin
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France (T.C.)
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, 67000 Strasbourg, France; (E.Q.); (A.H.); (V.V.-B.); (C.I.)
| |
Collapse
|
8
|
Sabsay KR, te Velthuis AJW. Negative and ambisense RNA virus ribonucleocapsids: more than protective armor. Microbiol Mol Biol Rev 2023; 87:e0008223. [PMID: 37750733 PMCID: PMC10732063 DOI: 10.1128/mmbr.00082-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
SUMMARYNegative and ambisense RNA viruses are the causative agents of important human diseases such as influenza, measles, Lassa fever, and Ebola hemorrhagic fever. The viral genome of these RNA viruses consists of one or more single-stranded RNA molecules that are encapsidated by viral nucleocapsid proteins to form a ribonucleoprotein complex (RNP). This RNP acts as protection, as a scaffold for RNA folding, and as the context for viral replication and transcription by a viral RNA polymerase. However, the roles of the viral nucleoproteins extend beyond these functions during the viral infection cycle. Recent advances in structural biology techniques and analysis methods have provided new insights into the formation, function, dynamics, and evolution of negative sense virus nucleocapsid proteins, as well as the role that they play in host innate immune responses against viral infection. In this review, we discuss the various roles of nucleocapsid proteins, both in the context of RNPs and in RNA-free states, as well as the open questions that remain.
Collapse
Affiliation(s)
- Kimberly R. Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Aartjan J. W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
9
|
Takizawa N, Kawaguchi RK. Comprehensive in virio structure probing analysis of the influenza A virus identifies functional RNA structures involved in viral genome replication. Comput Struct Biotechnol J 2023; 21:5259-5272. [PMID: 37954152 PMCID: PMC10632597 DOI: 10.1016/j.csbj.2023.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The influenza A virus genome is segmented into eight viral RNAs (vRNA). Secondary structures of vRNA are known to be involved in the viral proliferation process. Comprehensive vRNA structures in vitro, in virio, and in cellulo have been analyzed. However, the resolution of the structure map can be improved by comparative analysis and statistical modeling. Construction of a more high-resolution and reliable RNA structure map can identify uncharacterized functional structure motifs on vRNA in virion. Here, we establish the global map of the vRNA secondary structure in virion using the combination of dimethyl sulfate (DMS)-seq and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE)-seq with a robust statistical analysis. Our high-resolution analysis identified a stem-loop structure at nucleotide positions 39 - 60 of segment 6 and further validated the structure at nucleotide positions 87 - 130 of segment 5 that was previously predicted to form a pseudoknot structure in silico. Notably, when the cells were infected with recombinant viruses which possess the mutations to disrupt the structure, the replication and packaging of the viral genome were drastically decreased. Our results provide comprehensive and high-resolution information on the influenza A virus genome structures in virion and evidence that the functional RNA structure motifs on the influenza A virus genome are associated with appropriate replication and packaging of the viral genome.
Collapse
Affiliation(s)
- Naoki Takizawa
- Laboratory of Virology, Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | | |
Collapse
|