1
|
Wehbe M, Zalzal RN, El-Khoury R, Charafeddine L, Karam PE. Mitochondria and Peroxisome Crosstalk in Peroxisome Biogenesis Disorder 8A Caused by a Rare Variant in PEX16 Gene. Clin Genet 2025. [PMID: 40271797 DOI: 10.1111/cge.14753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
Peroxisome biogenesis disorder 8A is a rare autosomal recessive disorder caused by mutations in the PEX16 gene. We report the clinical, biochemical, and molecular features of a patient harboring the homozygous NM_004813.4: c.526C>T, p.(Arg176*) mutation in PEX16 associated with mitochondrial dysfunction. This newborn presented with microcephaly, encephalopathy, hypotonia, failure to thrive, hepatomegaly, and abnormal retinal pigmentation. He had elevated plasma very long-chain fatty acids. Skeletal muscle biopsy revealed significant mitochondrial depletion with deficiencies of the respiratory chain Complexes I-IV, with significant reductions in cytochrome c oxidase and citrate synthase activity. The peroxisome biogenesis disorder 8A was confirmed by whole genome sequencing. This is the first case delineating the association of mitochondrial dysfunction with peroxisome biogenesis disorder 8A caused by the above mutation. Further studies are needed to elucidate the underlying pathophysiological mechanisms of mitochondria and peroxisome crosstalk.
Collapse
Affiliation(s)
- Mohamad Wehbe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rudy N Zalzal
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Riyad El-Khoury
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lama Charafeddine
- Division of Neonatology, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Pascale E Karam
- Inherited Metabolic Diseases Program, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
2
|
Tahri-Joutey M, Hamer I, Tevel V, Raas Q, Gondcaille C, Trompier D, Kebbaj RE, Ménétrier F, Latruffe N, Lizard G, Nasser B, Savary S, Jadot M, Cherkaoui-Malki M, Andreoletti P. Analytical subcellular fractionation of microglial BV-2 cells with peroxisomal beta-oxidation defect. Histochem Cell Biol 2025; 163:44. [PMID: 40229507 DOI: 10.1007/s00418-025-02372-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/16/2025]
Abstract
Peroxisomes have gained increasing attention and are now considered vital players in normal physiological functions. To gain further insight into how peroxisomal defects influence cellular functions, we developed BV-2 microglial models featuring CRISPR/Cas9 gene-edited mutations in peroxisomal Acox1 or Abcd1 and Abcd2 genes. The Acox1-/- BV-2 cell line we generated lacks acyl-CoA oxidase 1, the key enzyme that initiates peroxisomal β-oxidation. In contrast, the double mutant Abcd1/d2-/- BV-2 cell line carries mutations in the genes encoding the membranous ABC transporters ABCD1 and ABCD2, which are responsible for transporting fatty acyl-thioesters inside peroxisome. Here, for the first time, we used analytical fractionation to compare these three genotypes. Through flow cytometry, we observed an increase in cell granularity in these mutant cells, which could be associated with alterations in peroxisome distribution and mitochondrial dynamics. Additionally, the analysis of organelle markers in microglial cells, employing differential centrifugation, exhibited an enrichment of peroxisomes particularly in both L and P fractions of these BV-2 cell line models. The use of an isopycnic Nycodenz density gradient showed that peroxisomes sedimented with a median density of 1.18 g/ml. Notably, our results revealed no significant differences in the distribution profiles of organelles when comparing microglial BV-2 Wt cells with deficient Acox1‒/‒ or Abcd1/d2-/‒ BV-2 cells, which lack peroxisomal fatty acid beta-oxidation. Our study is the first to report on the fractionation of brain-derived microglial cells, laying valuable groundwork for future proteomic and/or metabolomic analyses of peroxisome fractions.
Collapse
Grants
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- 17UHP2019, Morocco Ministère de l'Enseignement et de la Recherche and the CNRST,
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- TBK 19/92 n° n° Campus France: 41501RJ PHC Toubkal program
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- CA 16112 COST Action
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
- 2022Y-14248 Projet d'Envergure Neurosens
Collapse
Affiliation(s)
- Mounia Tahri-Joutey
- Laboratoire Biochimie, Faculté des Sciences et Techniques, Neurosciences, Ressources Naturelles et Environnement, Université Hassan I, BP577, 26000, Settat, Morocco
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Isabelle Hamer
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Virginie Tevel
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Quentin Raas
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Catherine Gondcaille
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Doriane Trompier
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Riad El Kebbaj
- Sciences and Engineering of Biomedicals, Biophysics and Health. Higher Institute of Health Sciences, Hassan First University, 26000, Settat, Morocco
| | - Franck Ménétrier
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Norbert Latruffe
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Gérard Lizard
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Boubker Nasser
- Laboratoire Biochimie, Faculté des Sciences et Techniques, Neurosciences, Ressources Naturelles et Environnement, Université Hassan I, BP577, 26000, Settat, Morocco
| | - Stéphane Savary
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France
| | - Michel Jadot
- Physiological Chemistry Laboratory, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Mustapha Cherkaoui-Malki
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France.
| | - Pierre Andreoletti
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAe, Institut Agro, Université de Bourgogne Europe, 21000, Dijon, France.
| |
Collapse
|
3
|
Zhang X, Xiao J, Jiang M, Phillips CJC, Shi B. Thermogenesis and Energy Metabolism in Brown Adipose Tissue in Animals Experiencing Cold Stress. Int J Mol Sci 2025; 26:3233. [PMID: 40244078 PMCID: PMC11989373 DOI: 10.3390/ijms26073233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Cold exposure is a regulatory biological functions in animals. The interaction of thermogenesis and energy metabolism in brown adipose tissue (BAT) is important for metabolic regulation in cold stress. Brown adipocytes (BAs) produce uncoupling protein 1 (UCP1) in mitochondria, activating non-shivering thermogenesis (NST) by uncoupling fuel combustion from ATP production in response to cold stimuli. To elucidate the mechanisms underlying thermogenesis and energy metabolism in BAT under cold stress, we explored how cold exposure triggers the activation of BAT thermogenesis and regulates overall energy metabolism. First, we briefly outline the precursor composition and function of BA. Second, we explore the roles of the cAMP- protein kinase A (PKA) and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways in thermogenesis and energy metabolism in BA during cold stress. Then, we analyze the mechanism by which BA regulates mitochondria homeostasis and energy balance during cold stress. This research reveals potential therapeutic targets, such as PKA, AMPK, UCP1 and PGC-1α, which can be used to develop innovative strategies for treating metabolic diseases. Furthermore, it provides theoretical support for optimizing cold stress response strategies, including the pharmacological activation of BAT and the genetic modulation of thermogenic pathways, to improve energy homeostasis in livestock.
Collapse
Affiliation(s)
- Xuekai Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Jin Xiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Min Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| |
Collapse
|
4
|
Yang YM, Ma HB, Xiong Y, Wu Q, Gao XK. PEX11B palmitoylation couples peroxisomal dysfunction with Schwann cells fail in diabetic neuropathy. J Biomed Sci 2025; 32:20. [PMID: 39934809 PMCID: PMC11818136 DOI: 10.1186/s12929-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/22/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is a prevalent and painful complication of diabetes; however, the mechanisms underlying its pathogenesis remain unclear, and effective clinical treatments are lacking. This study aims to explore the role of peroxisomes in Schwann cells in DN. METHODS The abundance of peroxisomes in the sciatic nerves of mice or Schwann cells was analyzed using laser confocal super-resolution imaging and western blotting. The RFP-GFP-SKL (Ser-Lys-Leu) probe was utilized to assess pexophagy (peroxisomes autophagy) levels. To evaluate the palmitoylation of PEX11B, the acyl-resin assisted capture (acyl-RAC) assay and the Acyl-Biotin Exchange (ABE) assay were employed. Additionally, MR (Mendelian randomization) analysis was conducted to investigate the potential causal relationship between DN and MS (Multiple sclerosis). RESULTS There was a decrease in peroxisomal abundance in the sciatic nerves of diabetic mice, and palmitic acid (PA) induced a reduction in peroxisomal abundance by inhibiting peroxisomal biogenesis in Schwann cells. Mechanistically, PA induced the palmitoylation of PEX11B at C25 site, disrupting its self-interaction and impeding peroxisome elongation. Fenofibrate, a PPARα agonist, effectively rescued peroxisomal dysfunction caused by PA and restored the peroxisomal abundance in diabetic mice. Lastly, MR analysis indicates a notable causal influence of DN on MS, with its onset and progression intricately linked to peroxisomal dysfunction. CONCLUSIONS Targeting the peroxisomal biogenesis pathway may be an effective strategy for preventing and treating DN, underscoring the importance of addressing MS risk at the onset of DN.
Collapse
Affiliation(s)
- Yu Mei Yang
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Hang Bin Ma
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yue Xiong
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Xiu Kui Gao
- Department of Endocrinology, Center for Metabolism Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
5
|
Dafsari HS, Martinelli D, Saffari A, Ebrahimi‐Fakhari D, Fanto M, Dionisi‐Vici C, Jungbluth H. An update on autophagy disorders. J Inherit Metab Dis 2025; 48:e12798. [PMID: 39420677 PMCID: PMC11669743 DOI: 10.1002/jimd.12798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Macroautophagy is a highly conserved cellular pathway for the degradation and recycling of defective cargo including proteins, organelles, and macromolecular complexes. As autophagy is particularly relevant for cellular homeostasis in post-mitotic tissues, congenital disorders of autophagy, due to monogenic defects in key autophagy genes, share a common "clinical signature" including neurodevelopmental, neurodegenerative, and neuromuscular features, as well as variable abnormalities of the eyes, skin, heart, bones, immune cells, and other organ systems, depending on the expression pattern and the specific function of the defective proteins. Since the clinical and genetic resolution of EPG5-related Vici syndrome, the paradigmatic congenital disorder of autophagy, the widespread use of massively parallel sequencing has resulted in the identification of a growing number of autophagy-associated disease genes, encoding members of the core autophagy machinery as well as related proteins. Recently identified monogenic disorders linking selective autophagy, vesicular trafficking, and other pathways have further expanded the molecular and phenotypical spectrum of congenital disorders of autophagy as a clinical disease spectrum. Moreover, significant advances in basic research have enhanced the understanding of the underlying pathophysiology as a basis for therapy development. Here, we review (i) autophagy in the context of other intracellular trafficking pathways; (ii) the main congenital disorders of autophagy and their typical clinico-pathological signatures; and (iii) the recommended primary health surveillance in monogenic disorders of autophagy based on available evidence. We further discuss recently identified molecular mechanisms that inform the current understanding of autophagy in health and disease, as well as perspectives on future therapeutic approaches.
Collapse
Affiliation(s)
- Hormos Salimi Dafsari
- Department of Pediatrics and Center for Rare Diseases, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Max‐Planck‐Institute for Biology of Ageing; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD)CologneGermany
| | - Diego Martinelli
- Division of Metabolic DiseasesBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Afshin Saffari
- Division of Child Neurology and Inherited Metabolic DiseasesHeidelberg University HospitalHeidelbergGermany
| | - Darius Ebrahimi‐Fakhari
- Department of Neurology and F.M. Kirby Neurobiology CenterBoston Children's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Manolis Fanto
- Department of Basic & Clinical NeurosciencesInstitute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUK
| | - Carlo Dionisi‐Vici
- Division of Metabolic DiseasesBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina London Children's HospitalGuy's and St Thomas' Hospital NHS Foundation TrustLondonUK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signaling SectionFaculty of Life Sciences and Medicine (FoLSM), King's College LondonLondonUK
| |
Collapse
|
6
|
Kawamura M, Parmentier C, Ray S, Clotet-Freixas S, Leung S, John R, Mazilescu L, Nogueira E, Noguchi Y, Goto T, Arulratnam B, Ganesh S, Tamang T, Lees K, Reichman TW, Andreazza AC, Kim PK, Konvalinka A, Selzner M, Robinson LA. Normothermic ex vivo kidney perfusion preserves mitochondrial and graft function after warm ischemia and is further enhanced by AP39. Nat Commun 2024; 15:8086. [PMID: 39278958 PMCID: PMC11402965 DOI: 10.1038/s41467-024-52140-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
We previously reported that normothermic ex vivo kidney perfusion (NEVKP) is superior in terms of organ protection compared to static cold storage (SCS), which is still the standard method of organ preservation, but the mechanisms are incompletely understood. We used a large animal kidney autotransplant model to evaluate mitochondrial function during organ preservation and after kidney transplantation, utilizing live cells extracted from fresh kidney tissue. Male porcine kidneys stored under normothermic perfusion showed preserved mitochondrial function and higher ATP levels compared to kidneys stored at 4 °C (SCS). Mitochondrial respiration and ATP levels were further enhanced when AP39, a mitochondria-targeted hydrogen sulfide donor, was administered during warm perfusion. Correspondingly, the combination of NEVKP and AP39 was associated with decreased oxidative stress and inflammation, and with improved graft function after transplantation. In conclusion, our findings suggest that the organ-protective effects of normothermic perfusion are mediated by maintenance of mitochondrial function and enhanced by AP39 administration. Activation of mitochondrial function through the combination of AP39 and normothermic perfusion could represent a new therapeutic strategy for long-term renal preservation.
Collapse
Affiliation(s)
- Masataka Kawamura
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
- Department of Urology, Osaka General Medical Center, Osaka, Japan
| | - Catherine Parmentier
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Samrat Ray
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Sergi Clotet-Freixas
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Division of Nephrology, McMaster University and St. Joseph's Healthcare, Hamilton, Canada
| | - Sharon Leung
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Rohan John
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology, University Health Network, Toronto, Canada
| | - Laura Mazilescu
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
- Department of General, Visceral, and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Emmanuel Nogueira
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Yuki Noguchi
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Toru Goto
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | | | - Sujani Ganesh
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
| | - Tomas Tamang
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
| | - Kaitlin Lees
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Trevor W Reichman
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Division of General Surgery, University Health Network, Toronto, Canada
| | - Ana C Andreazza
- Departments of Pharmacology & Toxicology and Psychiatry, Mitochondrial Innovation Initiative, MITO2i, University of Toronto, Toronto, Canada
| | - Peter K Kim
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Ana Konvalinka
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada
| | - Markus Selzner
- Ajmera Transplant Centre, Toronto General Hospital, Toronto, Canada.
- Division of General Surgery, University Health Network, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Lisa A Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada.
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Liu Y, Li J, Xiong Y, Tan C, Li C, Cao Y, Xie W, Deng Z. Long-term exposure to PM 2.5 leads to mitochondrial damage and differential expression of associated circRNA in rat hepatocytes. Sci Rep 2024; 14:11870. [PMID: 38789588 PMCID: PMC11126672 DOI: 10.1038/s41598-024-62748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Fine particulate matter (PM2.5) is one of the four major causes of mortality globally. The objective of this study was to investigate the mechanism underlying liver injury following exposure to PM2.5 and the involvement of circRNA in its regulation. A PM2.5 respiratory tract exposure model was established in SPF SD male rats with a dose of 20 mg/kg, and liver tissue of rats in control group and PM2.5-exposed groups rats were detected. The results of ICP-MS showed that Mn, Cu and Ni were enriched in the liver. HE staining showed significant pathological changes in liver tissues of PM2.5-exposed group, transmission electron microscopy showed significant changes in mitochondrial structure of liver cells, and further mitochondrial function detection showed that the PM2.5 exposure resulted in an increase in cell reactive oxygen species content and a decrease in mitochondrial transmembrane potential, while the expression of SOD1 and HO-1 antioxidant oxidase genes was upregulated. Through high-throughput sequencing of circRNAs, we observed a significant down-regulation of 10 and an up-regulation of 17 circRNAs in the PM2.5-exposed groups. The functional enrichment and pathway analyses indicated that the differentially expressed circRNAs by PM2.5 exposure were primarily associated with processes related to protein ubiquitination, zinc ion binding, peroxisome function, and mitochondrial regulation. These findings suggest that the mechanism underlying liver injury induced by PM2.5-exposure may be associated with mitochondrial impairment resulting from the presence of heavy metal constituents. Therefore, this study provides a novel theoretical foundation for investigating the molecular mechanisms underlying liver injury induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Jing Li
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Yican Xiong
- Department of Ophthalmology and Stomatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Chaochao Tan
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Cunyan Li
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Youde Cao
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Wanying Xie
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Zhonghua Deng
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China.
| |
Collapse
|
8
|
Wang L, Wang B, Zhang X, Yang Z, Zhang X, Gong H, Song Y, Zhang K, Sun M. TDCPP and TiO 2 NPs aggregates synergistically induce SH-SY5Y cell neurotoxicity by excessive mitochondrial fission and mitophagy inhibition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123740. [PMID: 38462198 DOI: 10.1016/j.envpol.2024.123740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a halogen-containing phosphorus flame retardant, is widely used and has been shown to possess health risks to humans. The sustained release of artificial nanomaterials into the environment increases the toxicological risks of their coexisting pollutants. Nanomaterials may seriously change the environmental behavior and fate of pollutants. In this study, we investigated this combined toxicity and the potential mechanisms of toxicity of TDCPP and titanium dioxide nanoparticles (TiO2 NPs) aggregates on human neuroblastoma SH-SY5Y cells. TDCPP and TiO2 NPs aggregates were exposed in various concentration combinations, revealing that TDCPP (25 μg/mL) reduced cell viability, while synergistic exposure to TiO2 NPs aggregates exacerbated cytotoxicity. This combined exposure also disrupted mitochondrial function, leading to dysregulation in the expression of mitochondrial fission proteins (DRP1 and FIS1) and fusion proteins (OPA1 and MFN1). Consequently, excessive mitochondrial fission occurred, facilitating the translocation of cytochrome C from mitochondria to activate apoptotic signaling pathways. Furthermore, exposure of the combination of TDCPP and TiO2 NPs aggregates activated upstream mitochondrial autophagy but disrupted downstream Parkin recruitment to damaged mitochondria, preventing autophagosome-lysosome fusion and thereby disrupting mitochondrial autophagy. Altogether, our findings suggest that TDCPP and TiO2 NPs aggregates may stimulate apoptosis in neuronal SH-SY5Y cells by inducing mitochondrial hyperfission and inhibiting mitochondrial autophagy.
Collapse
Affiliation(s)
- Ling Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xing Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuanyuan Song
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
9
|
Muñoz JP, Basei FL, Rojas ML, Galvis D, Zorzano A. Mechanisms of Modulation of Mitochondrial Architecture. Biomolecules 2023; 13:1225. [PMID: 37627290 PMCID: PMC10452872 DOI: 10.3390/biom13081225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial network architecture plays a critical role in cellular physiology. Indeed, alterations in the shape of mitochondria upon exposure to cellular stress can cause the dysfunction of these organelles. In this scenario, mitochondrial dynamics proteins and the phospholipid composition of the mitochondrial membrane are key for fine-tuning the modulation of mitochondrial architecture. In addition, several factors including post-translational modifications such as the phosphorylation, acetylation, SUMOylation, and o-GlcNAcylation of mitochondrial dynamics proteins contribute to shaping the plasticity of this architecture. In this regard, several studies have evidenced that, upon metabolic stress, mitochondrial dynamics proteins are post-translationally modified, leading to the alteration of mitochondrial architecture. Interestingly, several proteins that sustain the mitochondrial lipid composition also modulate mitochondrial morphology and organelle communication. In this context, pharmacological studies have revealed that the modulation of mitochondrial shape and function emerges as a potential therapeutic strategy for metabolic diseases. Here, we review the factors that modulate mitochondrial architecture.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
| | - Fernanda Luisa Basei
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, 13083-871 Campinas, SP, Brazil
| | - María Laura Rojas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - David Galvis
- Programa de Química Farmacéutica, Universidad CES, Medellín 050031, Colombia
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|