1
|
Gao S, Sun J, Hou Y, Ge X, Shi M, Zheng H, Zhang Y, Li M, Gao B, Xi P. HBimmCue: A Versatile Fluorescent Probe for Multi-Scale Imaging of Lipid Polarity and Membrane Order in Inner Mitochondrial Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414343. [PMID: 39924938 PMCID: PMC11967834 DOI: 10.1002/advs.202414343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/30/2025] [Indexed: 02/11/2025]
Abstract
Mitochondrial membrane environmental dynamics are crucial for understanding function, yet high-resolution observation remains challenging. Here, HBimmCue is introduced as a fluorescent probe localized to inner mitochondrial membrane (IMM) that reports lipid polarity and membrane order changes, which correlate with cellular respiration levels. Using HBimmCue and fluorescence lifetime imaging microscopy (FLIM), IMM lipid heterogeneity is uncovered across scales, from nanoscale structures within individual mitochondria to mouse pre-implantation embryos. At the sub-organelle level, stimulated emission depletion (STED)-FLIM imaging highlights nanoscale polarity variations within the IMM. At the sub-cellular and cellular level, reduced IMM lipid polarity is observed in damaged mitochondria marked for lysosomal degradation and distinct IMM lipid distributions are identified in neurons and disease models. Additionally, metabolic dysfunction associated with oocytes aging and metabolic reprogramming from zygote to blastocyst is detected. Together, the work demonstrates the broad applicability of HBimmCue, offering a new paradigm for investigating lipid polarity and respiration level at multiple scales.
Collapse
Affiliation(s)
- Shu Gao
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Material ScienceHebei UniversityBaoding071002P. R. China
| | - Yiwei Hou
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Xichuan Ge
- Key Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Material ScienceHebei UniversityBaoding071002P. R. China
| | - Ming Shi
- School of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Hongxi Zheng
- School of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Yan Zhang
- School of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Meiqi Li
- School of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Baoxiang Gao
- Key Laboratory of Analytical Science and Technology of Hebei ProvinceCollege of Chemistry and Material ScienceHebei UniversityBaoding071002P. R. China
| | - Peng Xi
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| |
Collapse
|
2
|
García-Cazorla Á, Morava E, Saudubray JM. "Trafficking Disorders: Phenotypical Similarities and Differences With Other IMDs". J Inherit Metab Dis 2025; 48:e70004. [PMID: 39985262 DOI: 10.1002/jimd.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/24/2025]
Abstract
Cell trafficking disorders (CTD) are genetic defects in complex molecules and correspond to the largest category of IEM with mutations in more than 370 genes described. They are still poorly recognized as a global entity but rather seen as isolated rare diseases by non-metabolic specialists. Complex lipid metabolism (mostly phospholipids, sphingolipids, and non-mitochondrial fatty acids) is tightly associated with cell trafficking and interactions between organelles at the membrane contact sites. Accordingly, from a clinical point of view CTD presents with multisystem manifestations that may overlap and mimic mitochondrial and other complex molecule disorders such as peroxisomal, lysosomal defects, CDG, or autophagy disorders. The nervous system is especially vulnerable and neurological presentations are prominent, but CTD targets any organ at any age. Interestingly the involvement of the immune system is particularly characteristic of CTD and rarely (or at least little described so far) in other categories of IEM. Most CTD are progressive disorders, except for CDG. They may have "metabolic crises" mimicking disorders of intermediary and energy metabolism for which emergency protocols have been developed. They are generally diagnosed by exome sequencing. Relatively few biomarkers are available.
Collapse
Affiliation(s)
- Ángeles García-Cazorla
- Neurometabolic Unit and Synaptic Metabolism Laboratory. Department of Neurology, Hospital Sant Joan de Déu, IRSJD, CIBERER and MetabERN, Barcelona, Spain
| | - Eva Morava
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean-Marie Saudubray
- Groupe de Recherche Clinique Neurométabolique, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
3
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Yang Q, Cai Y, Wang Z, Guo S, Qiu S, Zhang A. Understanding the physiological mechanisms and therapeutic targets of diseases: Lipidomics strategies. Life Sci 2025; 363:123411. [PMID: 39848598 DOI: 10.1016/j.lfs.2025.123411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
As a pivotal branch of metabolomics, lipidomics studies global changes in lipid metabolism under different physiological and pathological conditions or drug interventions, discovers key lipid markers, and elaborates the associated lipid metabolism network. There are a considerable number of lipids in the host, which act on various functional networks such as metabolism and immune regulation. As an indispensable research method, lipidomics plays a key character in the analysis of lipid composition in organisms, the elaboration of the physiological mechanism of lipids, and the decoding of their character in the occurrence and development of diseases by exploring the character of lipids in the host environmental network. As an essential means of driving lipidomics research, High-throughput and High-resolution mass spectrometry is helpful in exploring disease phenotypic characteristics, diagnosing disease biomarkers, regulating related metabolic pathways, and discovering related active components. In this paper, we discuss the specific role of lipidomics in the analysis of disease diagnosis, prognosis and treatment, which is conducive to the realization of accurate and personalized medicine.
Collapse
Affiliation(s)
- Qiang Yang
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Cai
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China; International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Zhibo Wang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China
| | - Sifan Guo
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| | - Aihua Zhang
- GAP Center, Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China; International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Engineering Research Center for Biological Sample Resources of Major Diseases, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Medical University, Xueyuan Road 3, Haikou 571199, China.
| |
Collapse
|
5
|
Wong S, Bertram KR, Raghuram N, Knight T, Hughes AL. Alterations in Lipid Saturation Trigger Remodeling of the Outer Mitochondrial Membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633997. [PMID: 39896499 PMCID: PMC11785037 DOI: 10.1101/2025.01.20.633997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lipid saturation is a key determinant of membrane function and organelle health, with changes in saturation triggering adaptive quality control mechanisms to maintain membrane integrity. Among cellular membranes, the mitochondrial outer membrane (OMM) is an important interface for many cellular functions, but how lipid saturation impacts OMM function remains unclear. Here, we show that increased intracellular unsaturated fatty acids (UFAs) remodel the OMM by promoting the formation of multilamellar mitochondrial-derived compartments (MDCs), which sequester proteins and lipids from the OMM. These effects depend on the incorporation of UFAs into membrane phospholipids, suggesting that changes in membrane bilayer composition mediate this process. Furthermore, elevated UFAs impair the assembly of the OMM protein translocase (TOM) complex, with unassembled TOM components captured into MDCs. Collectively, these findings suggest that alterations in phospholipid saturation may destabilize OMM protein complexes and trigger an adaptive response to sequester excess membrane proteins through MDC formation.
Collapse
Affiliation(s)
- Sara Wong
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Katherine R. Bertram
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Nidhi Raghuram
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Thomas Knight
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam L. Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Lead contact
| |
Collapse
|
6
|
Szabo M, Cs. Szabo B, Kurtan K, Varga Z, Panyi G, Nagy P, Zakany F, Kovacs T. Look Beyond Plasma Membrane Biophysics: Revealing Considerable Variability of the Dipole Potential Between Plasma and Organelle Membranes of Living Cells. Int J Mol Sci 2025; 26:889. [PMID: 39940660 PMCID: PMC11816637 DOI: 10.3390/ijms26030889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Due to the lack of measurement techniques suitable for examining compartments of intact, living cells, membrane biophysics is almost exclusively investigated in the plasma membrane despite the fact that its alterations in intracellular organelles may also contribute to disease pathogenesis. Here, we employ a novel, easy-to-use, confocal microscopy-based approach utilizing F66, an environment-sensitive fluorophore in combination with fluorescent organelle markers and quantitative image analysis to determine the magnitude of the molecular order-related dipole potential in the plasma membrane and intracellular organelles of various tumor and neural cell lines. Our comparative analysis demonstrates considerable intracellular variations of the dipole potential that may be large enough to modulate protein functions, with an inward decreasing gradient on the route of the secretory/endocytic pathway (plasma membrane >> lysosome > Golgi > endoplasmic reticulum), whereas mitochondrial membranes are characterized by a dipole potential slightly larger than that of lysosomes. Our approach is suitable and sensitive enough to quantify membrane biophysical properties selectively in intracellular compartments and their comparative analysis in intact, living cells, and, therefore, to identify the affected organelles and potential therapeutic targets in diseases associated with alterations in membrane lipid composition and thus biophysics such as tumors, metabolic, neurodegenerative, or lysosomal storage disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.S.); (B.C.S.); (K.K.); (Z.V.); (G.P.); (P.N.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (M.S.); (B.C.S.); (K.K.); (Z.V.); (G.P.); (P.N.)
| |
Collapse
|
7
|
Qian W, Tang H, Yao H. Lipidomics and temporal-spatial distribution of organelle lipid. J Biol Methods 2025; 12:e99010049. [PMID: 40200947 PMCID: PMC11973048 DOI: 10.14440/jbm.2025.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/17/2024] [Accepted: 12/16/2024] [Indexed: 04/10/2025] Open
Abstract
Background Lipids are crucial signaling molecules or cellular membrane components orchestrating biological processes. To gain insights into lipid functions and the communication between organelles, it is essential to understand the subcellular localization of individual lipids. Advancements in lipid quantification techniques, improvements in chemical and spatial resolution for detecting various lipid species, and enhancements in organelle isolation speed have allowed for profiling of the organelle lipidome, capturing its temporal-spatial distribution. Objective This review examined approaches used to develop organelle lipidome and aimed to gain insights into cellular lipid homeostasis from an organelle perspective. In addition, this review discussed the advancements in lipid-mediated inter-organelle communication within complex physiological and pathological processes. Conclusion With the advancement of lipidomic technologies, more detailed explorations of organelle structures and the specific lipid-mediating functions they perform are feasible.
Collapse
Affiliation(s)
- Wenjuan Qian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hongyan Yao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Domingues N, Pires J, Milosevic I, Raimundo N. Role of lipids in interorganelle communication. Trends Cell Biol 2025; 35:46-58. [PMID: 38866684 PMCID: PMC11632148 DOI: 10.1016/j.tcb.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Cell homeostasis and function rely on well-orchestrated communication between different organelles. This communication is ensured by signaling pathways and membrane contact sites between organelles. Many players involved in organelle crosstalk have been identified, predominantly proteins and ions. The role of lipids in interorganelle communication remains poorly understood. With the development and broader availability of methods to quantify lipids, as well as improved spatiotemporal resolution in detecting different lipid species, the contribution of lipids to organelle interactions starts to be evident. However, the specific roles of various lipid molecules in intracellular communication remain to be studied systematically. We summarize new insights in the interorganelle communication field from the perspective of organelles and discuss the roles played by lipids in these complex processes.
Collapse
Affiliation(s)
- Neuza Domingues
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Joana Pires
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Ira Milosevic
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Hershey, PA, USA.
| |
Collapse
|
9
|
Liu Y, Yang Z, Zhou X, Li Z, Hideki N. Diacylglycerol Kinases and Its Role in Lipid Metabolism and Related Diseases. Int J Mol Sci 2024; 25:13207. [PMID: 39684917 DOI: 10.3390/ijms252313207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Lipids are essential components of eukaryotic membranes, playing crucial roles in membrane structure, energy storage, and signaling. They are predominantly synthesized in the endoplasmic reticulum (ER) and subsequently transported to other organelles. Diacylglycerol kinases (DGKs) are a conserved enzyme family that phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), both of which are key intermediates in lipid metabolism and second messengers involved in numerous cellular processes. Dysregulation of DGK activity is associated with several diseases, including cancer and metabolic disorders. In this review, we provide a comprehensive overview of DGK types, functions, cellular localization, and their potential as therapeutic targets. We also discuss DGKs' roles in lipid metabolism and their physiological functions and related diseases.
Collapse
Affiliation(s)
- Yishi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zehui Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoman Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Nakanishi Hideki
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Yang LY, Ping K, Luo Y, McShan AC. BioDolphin as a comprehensive database of lipid-protein binding interactions. Commun Chem 2024; 7:288. [PMID: 39633021 PMCID: PMC11618342 DOI: 10.1038/s42004-024-01384-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
Lipid-protein interactions are crucial for virtually all biological processes in living cells. However, existing structural databases focusing on these interactions are limited to integral membrane proteins. A systematic understanding of diverse lipid-protein interactions also encompassing lipid-anchored, peripheral membrane and soluble lipid binding proteins remains to be elucidated. To address this gap and facilitate the research of universal lipid-protein assemblies, we developed BioDolphin - a curated database with over 127,000 lipid-protein interactions. BioDolphin provides comprehensive annotations, including protein functions, protein families, lipid classifications, lipid-protein binding affinities, membrane association type, and atomic structures. Accessible via a publicly available web server ( www.biodolphin.chemistry.gatech.edu ), users can efficiently search for lipid-protein interactions using a wide range of options and download datasets of interest. Additionally, BioDolphin features interactive 3D visualization of each lipid-protein complex, facilitating the exploration of structure-function relationships. BioDolphin also includes detailed information on atomic-level intermolecular interactions between lipids and proteins that enable large scale analysis of both paired complexes and larger assemblies. As an open-source resource, BioDolphin enables global analysis of lipid-protein interactions and supports data-driven approaches for developing predictive machine learning algorithms for lipid-protein binding affinity and structures.
Collapse
Affiliation(s)
- Li-Yen Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kaike Ping
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yunan Luo
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
11
|
Halasz M, Łuczaj W, Jarocka-Karpowicz I, Stasiewicz A, Soldo AM, Soldo I, Pajtak A, Senčar M, Grgić T, Kolak T, Žarković N, Skrzydlewska E, Jaganjac M. Relationship between systemic biomarker of lipid peroxidation 4-hydroxynonenal and lipidomic profile of morbidly obese patients undergoing bariatric surgery. Free Radic Biol Med 2024; 224:564-573. [PMID: 39278574 DOI: 10.1016/j.freeradbiomed.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Obesity is characterized by fat accumulation, impaired metabolism and oxidative stress, frequently associated with lipid peroxidation and generation of bioactive 4-hydroxynonenal (4-HNE). This study aimed to evaluate the impact of bariatric surgery-induced weight loss on lipid peroxidation and associated perturbations in lipid profile. Plasma samples of twenty obese individuals before and 6 months after bariatric surgery were collected in addition to samples of ten healthy controls. HILIC-LC-MS/MS platform was used to characterize phospholipid profile, while lipid peroxidation markers 15-F2t-IsoP, 10-F4t-NeuroP and reactive aldehyde 4-HNE were quantified by RP-LC-MS/MS and GC-MS, respectively. Six months post-surgery lipid peroxidation markers decreased significantly and the BMI of morbidly obese patients decreased by 13 on average. Lipidomics analysis, identified 117 phospholipid species from seven classes, and showed obesity-associated lipidome perturbations, particularly in ether-linked phosphatidylethanolamines (PEo). A total of 45 lipid species were found to be significantly altered with obesity, while 10 lipid species correlated with lipid peroxidation markers. Sample pairwise analyses indicated an interesting link between 4-HNE and the amount of two PEos, PEo (38:2) and PEo (36:2). The results indicate that weight loss-induced improvement of redox homeostasis together with changes in lipid metabolites may serve as markers of metabolic improvement. However, further studies are needed to understand the role of obesity-induced oxidative stress on ether lipid biosynthesis and lipidome perturbations, as well as the impact of bariatric surgery on metabolic improvement.
Collapse
Affiliation(s)
- Mirna Halasz
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Białystok, 15-222 Białystok, Poland
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Białystok, 15-222 Białystok, Poland
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Białystok, 15-222 Białystok, Poland
| | - Ana Maria Soldo
- Internal Medicine Clinic, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Ivo Soldo
- Surgery Clinic, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Alen Pajtak
- Department of Abdominal Surgery, General Hospital Varazdin, Varazdin, Croatia
| | - Marin Senčar
- Department of Abdominal Surgery, General Hospital Varazdin, Varazdin, Croatia
| | - Tihomir Grgić
- Surgery Clinic, University Hospital "Sveti Duh", Zagreb, Croatia
| | - Toni Kolak
- Department of Abdominal Surgery, University Hospital Dubrava, Zagreb, Croatia
| | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, 15-222 Białystok, Poland.
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
12
|
Wang A, Wang Y, Chen Y, Wan P, Saeed A, Ma Q, Chen X. The role of SEC14L4 in esophageal squamous cell cancer: insights into clinical relevance and molecular pathways. Transl Cancer Res 2024; 13:5535-5549. [PMID: 39525030 PMCID: PMC11543032 DOI: 10.21037/tcr-24-1657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Background Esophageal squamous cell cancer (ESCC) is the most common type of esophageal cancer. This study aimed to elucidate the role of Saccharomyces cerevisiae-like 4 (SEC14L4) in ESCC. Methods To elucidate the role of SEC14L4 in ESCC, this study analyzed the clinical data, gene sequencing data, and other relevant data retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) of the National Center for Biotechnology Information. The methodology involved several analytical approaches, including nomogram model analysis, co-expression analysis, gene set enrichment and variation analysis, weighted correlation network analysis, drug susceptibility analysis, and single-cell analysis. These methods were employed to evaluate the significance of SEC14L4 in ESCC. The expression of SEC14L4 was evaluated via quantitative real-time polymerase chain reaction (qRT-PCR). Results SEC14L4 expression (P<0.001) was significantly elevated in those with ESCC, especially in patients with locally advanced disease (P=0.005), and indicated a poor prognosis (P=0.045). Findings from the nomogram model analysis identified the contribution of clinical indicators to survival prediction with good efficacy. Subsequently, the single-nucleotide polymorphisms and co-expressed genes of SEC14L4 were identified. Furthermore, pathways associated with SEC14L4, including DNA metabolic process, transcription factor binding, apoptosis, and others, were examined. Notably, SEC14L4 expression was predominantly observed in monocytes. Drug sensitivity analysis indicated the association of SEC14L4 expression with sensitivity of ESCC to the common chemotherapy drugs AICAR, BMS.708163, GNF.2, Nutlin.3a, PD.0325901, and RDEA119. Verification of the high expression of SEC14L4 in KYSE520 and KYSE150 was conducted, thereby confirming the study's findings. Conclusions High expression of SEC14L4 is associated with poorer clinical outcomes, highlighting its potential as a therapeutic target and suggesting its involvement in the molecular mechanisms underlying ESCC.
Collapse
Affiliation(s)
- An Wang
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Youbo Wang
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanhui Chen
- Department of Nursing, Huashan Hospital, Fudan University, Shanghai, China
| | - Posum Wan
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Anwaar Saeed
- Division of Hematology & Oncology, Department of Medicine, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, USA
| | - Qinyun Ma
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Szoke-Kovacs R, Khakoo S, Gogolak P, Salio M. Insights into the CD1 lipidome. Front Immunol 2024; 15:1462209. [PMID: 39238636 PMCID: PMC11375338 DOI: 10.3389/fimmu.2024.1462209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
CD1 isoforms are MHC class I-like molecules that present lipid-antigens to T cells and have been associated with a variety of immune responses. The lipid repertoire bound and presented by the four CD1 isoforms may be influenced by factors such as the cellular lipidome, subcellular microenvironment, and the properties of the binding pocket. In this study, by shotgun mass spectrometry, we performed a comprehensive lipidomic analysis of soluble CD1 molecules. We identified 1040 lipids, of which 293 were present in all isoforms. Comparative analysis revealed that the isoforms bind almost any cellular lipid.CD1a and CD1c closely mirrored the cellular lipidome, while CD1b and CD1d showed a preference for sphingolipids. Each CD1 isoform was found to have unique lipid species, suggesting some distinct roles in lipid presentation and immune responses. These findings contribute to our understanding of the role of CD1 system in immunity and could have implications for the development of lipid-based therapeutics.
Collapse
Affiliation(s)
- Rita Szoke-Kovacs
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Sophie Khakoo
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
| | - Peter Gogolak
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Mariolina Salio
- Immunocore Ltd, Experimental Immunology, Abingdon, United Kingdom
| |
Collapse
|
14
|
Beiter J, Voth GA. Making the cut: Multiscale simulation of membrane remodeling. Curr Opin Struct Biol 2024; 87:102831. [PMID: 38740001 PMCID: PMC11283976 DOI: 10.1016/j.sbi.2024.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Biological membranes are dynamic heterogeneous materials, and their shape and organization are tightly coupled to the properties of the proteins in and around them. However, the length scales of lipid and protein dynamics are far below the size of membrane-bound organelles, much less an entire cell. Therefore, multiscale modeling approaches are often necessary to build a comprehensive picture of the interplay of these factors, and have provided critical insights into our understanding of membrane dynamics. Here, we review computational methods for studying membrane remodeling, as well as passive and active examples of protein-driven membrane remodeling. As the field advances towards the modeling of key aspects of organelles and whole cells - an increasingly accessible regime of study - we summarize here recent successes and offer comments on future trends.
Collapse
Affiliation(s)
- Jeriann Beiter
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Orlikowska-Rzeznik H, Versluis J, Bakker HJ, Piatkowski L. Cholesterol Changes Interfacial Water Alignment in Model Cell Membranes. J Am Chem Soc 2024; 146:13151-13162. [PMID: 38687869 PMCID: PMC11099968 DOI: 10.1021/jacs.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The nanoscopic layer of water that directly hydrates biological membranes plays a critical role in maintaining the cell structure, regulating biochemical processes, and managing intermolecular interactions at the membrane interface. Therefore, comprehending the membrane structure, including its hydration, is essential for understanding the chemistry of life. While cholesterol is a fundamental lipid molecule in mammalian cells, influencing both the structure and dynamics of cell membranes, its impact on the structure of interfacial water has remained unknown. We used surface-specific vibrational sum-frequency generation spectroscopy to study the effect of cholesterol on the structure and hydration of monolayers of the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and egg sphingomyelin (SM). We found that for the unsaturated lipid DOPC, cholesterol intercalates in the membrane without significantly changing the orientation of the lipid tails and the orientation of the water molecules hydrating the headgroups of DOPC. In contrast, for the saturated lipids DPPC and SM, the addition of cholesterol leads to clearly enhanced packing and ordering of the hydrophobic tails. It is also observed that the orientation of the water hydrating the lipid headgroups is enhanced upon the addition of cholesterol. These results are important because the orientation of interfacial water molecules influences the cell membranes' dipole potential and the strength and specificity of interactions between cell membranes and peripheral proteins and other biomolecules. The lipid nature-dependent role of cholesterol in altering the arrangement of interfacial water molecules offers a fresh perspective on domain-selective cellular processes, such as protein binding.
Collapse
Affiliation(s)
- Hanna Orlikowska-Rzeznik
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| | - Jan Versluis
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Huib J. Bakker
- AMOLF,
Ultrafast Spectroscopy, 1098 XG Amsterdam, The Netherlands
| | - Lukasz Piatkowski
- Faculty
of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
16
|
Wölk M, Fedorova M. The lipid droplet lipidome. FEBS Lett 2024; 598:1215-1225. [PMID: 38604996 DOI: 10.1002/1873-3468.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Lipid droplets (LDs) are intracellular organelles with a hydrophobic core formed by neutral lipids surrounded by a phospholipid monolayer harboring a variety of regulatory and enzymatically active proteins. Over the last few decades, our understanding of LD biology has evolved significantly. Nowadays, LDs are appreciated not just as passive energy storage units, but rather as active players in the regulation of lipid metabolism and quality control machineries. To fulfill their functions in controlling cellular metabolic states, LDs need to be highly dynamic and responsive organelles. A large body of evidence supports a dynamic nature of the LD proteome and its contact sites with other organelles. However, much less is known about the lipidome of LDs. Numerous examples clearly indicate the intrinsic link between LD lipids and proteins, calling for a deeper characterization of the LD lipidome in various physiological and pathological settings. Here, we reviewed the current state of knowledge in the field of the LD lipidome, providing a brief overview of the lipid classes and their molecular species present within the neutral core and phospholipid monolayer.
Collapse
Affiliation(s)
- Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| |
Collapse
|
17
|
D’Elia JA, Weinrauch LA. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines 2024; 12:978. [PMID: 38790940 PMCID: PMC11118768 DOI: 10.3390/biomedicines12050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/26/2024] Open
Abstract
Recent studies of Cardiovascular-Kidney-Metabolic Syndrome (CKMS) indicate that elevated concentrations of derivatives of phospholipids (ceramide, sphingosine), oxidized LDL, and lipoproteins (a, b) are toxic to kidney and heart function. Energy production for renal proximal tubule resorption of critical fuels and electrolytes is required for homeostasis. Cardiac energy for ventricular contraction/relaxation is preferentially supplied by long chain fatty acids. Metabolism of long chain fatty acids is accomplished within the cardiomyocyte cytoplasm and mitochondria by means of the glycolytic, tricarboxylic acid, and electron transport cycles. Toxic lipids and excessive lipid concentrations may inhibit cardiac function. Cardiac contraction requires calcium movement from the sarcoplasmic reticulum from a high to a low concentration at relatively low energy cost. Cardiac relaxation involves calcium return to the sarcoplasmic reticulum from a lower to a higher concentration and requires more energy consumption. Diastolic cardiac dysfunction occurs when cardiomyocyte energy conversion is inadequate. Diastolic dysfunction from diminished ATP availability occurs in the presence of inadequate blood pressure, glycemia, or lipid control and may lead to heart failure. Similar disruption of renal proximal tubular resorption of fuels/electrolytes has been found to be associated with phospholipid (sphingolipid) accumulation. Elevated concentrations of tissue oxidized low-density lipoprotein cholesterols are associated with loss of filtration efficiency at the level of the renal glomerular podocyte. Macroscopically excessive deposits of epicardial and intra-nephric adipose are associated with vascular pathology, fibrosis, and inhibition of essential functions in both heart and kidney. Chronic triglyceride accumulation is associated with fibrosis of the liver, cardiac and renal structures. Successful liver, kidney, or cardiac allograft of these vital organs does not eliminate the risk of lipid toxicity. Lipid lowering therapy may assist in protecting vital organ function before and after allograft transplantation.
Collapse
Affiliation(s)
| | - Larry A. Weinrauch
- Kidney and Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
18
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
19
|
Bender K, Wang Y, Zhai CY, Saenz Z, Wang A, Neumann EK. Sample Preparation Method for MALDI Mass Spectrometry Imaging of Fresh-Frozen Spines. Anal Chem 2023; 95:17337-17346. [PMID: 37886878 PMCID: PMC10688227 DOI: 10.1021/acs.analchem.3c03672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Technologies assessing the lipidomics, genomics, epigenomics, transcriptomics, and proteomics of tissue samples at single-cell resolution have deepened our understanding of physiology and pathophysiology at an unprecedented level of detail. However, the study of single-cell spatial metabolomics in undecalcified bones faces several significant challenges, such as the fragility of bone, which often requires decalcification or fixation leading to the degradation or removal of lipids and other molecules. As such, we describe a method for performing mass spectrometry imaging on undecalcified spine that is compatible with other spatial omics measurements. In brief, we use fresh-frozen rat spines and a system of carboxyl methylcellulose embedding, cryofilm, and polytetrafluoroethylene rollers to maintain tissue integrity while avoiding signal loss from variations in laser focus and artifacts from traditional tissue processing. This reveals various tissue types and lipidomic profiles of spinal regions at 10 μm spatial resolutions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We expect this method to be adapted and applied to the analysis of the spinal cord, shedding light on the mechanistic aspects of cellular heterogeneity, development, and disease pathogenesis underlying different bone-related conditions and diseases. This study furthers the methodology for high spatial metabolomics of spines and adds to the collective efforts to achieve a holistic understanding of diseases via single-cell spatial multiomics.
Collapse
Affiliation(s)
- Kayle
J. Bender
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Yongheng Wang
- Department
of Biomedical Engineering, University of
California, Davis, Davis, California 95616, United States
| | - Chuo Ying Zhai
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Zoe Saenz
- Department
of Surgery, School of Medicine, University
of California, Davis, Sacramento, California 95817, United States
| | - Aijun Wang
- Center
for Surgical Bioengineering, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, United States
- Institute
for Pediatric Regenerative Medicine, Shriners
Hospital for Children Northern California, UC Davis School of Medicine, Sacramento, California 96817, United States
| | - Elizabeth K. Neumann
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
20
|
Bender KJ, Wang Y, Zhai CY, Saenz Z, Wang A, Neumann EK. Spatial lipidomics of fresh-frozen spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554488. [PMID: 37662353 PMCID: PMC10473750 DOI: 10.1101/2023.08.23.554488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Technologies assessing the lipidomics, genomics, epigenomics, transcriptomics, and proteomics of tissue samples at single-cell resolution have deepened our understanding of physiology and pathophysiology at an unprecedented level of detail. However, the study of single-cell spatial metabolomics in undecalcified bones faces several significant challenges, such as the fragility of bone which often requires decalcification or fixation leading to the degradation or removal of lipids and other molecules and. As such, we describe a method for performing mass spectrometry imaging on undecalcified spine that is compatible with other spatial omics measurements. In brief, we use fresh-freeze rat spines and a system of carboxyl methylcellulose embedding, cryofilm, and polytetrafluoroethylene rollers to maintain tissue integrity, while avoiding signal loss from variations in laser focus and artifacts from traditional tissue processing. This reveals various tissue types and lipidomic profiles of spinal regions at 10 μm spatial resolutions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We expect this method to be adapted and applied to the analysis of spinal cord, shedding light on the mechanistic aspects of cellular heterogeneity, development, and disease pathogenesis underlying different bone-related conditions and diseases. This study furthers the methodology for high spatial metabolomics of spines, as well as adds to the collective efforts to achieve a holistic understanding of diseases via single-cell spatial multi-omics.
Collapse
Affiliation(s)
- Kayle J. Bender
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Yongheng Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States
| | - Chuo Ying Zhai
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Zoe Saenz
- Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA 95817, United States
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States
- Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, UC Davis School of Medicine, Sacramento, CA 96817, United States
| | - Elizabeth K. Neumann
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|