1
|
Yang R, Liu W, Zhou Y, Cheng B, Liu S, Wu R, Liu Y, Li J. Modulating HIF-1α/HIF-2α homeostasis with Shen-Qi-Huo-Xue formula alleviates tubular ferroptosis and epithelial-mesenchymal transition in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119478. [PMID: 39947365 DOI: 10.1016/j.jep.2025.119478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) is one of the main types of chronic kidney disease, which seriously affects the quality of life of patients. Shen-Qi-Huo-Xue formula (SQHXF), based on the Shen-Qi-Di-Huang decoction, is a traditional Chinese medicine formula for DKD. This study explored the mechanism of action of SQHXF on DKD through analysis of drug components, in vivo and in vitro experiments. AIM OF THE STUDY To elucidate the regulatory mechanisms of HIF-1α/HIF-2α homeostasis on ferroptosis and epithelial-mesenchymal transition (EMT) in renal tubular epithelial cells and the mechanism of action of SQHXF against DKD. METHODS The components of SQHXF were analyzed using UPLC-Q Exactive HF/MS. The effects of SQHXF on renal function, urinary proteins, glucose-lipid metabolism, hepatic function, renal tissue hypoxia, ferroptosis and EMT were analyzed following gavage of DKD model mice with different SQHXF doses. The effects of changes in HIF-1α and HIF-2α expression on ferroptosis and EMT, as well as the modulatory effects of SQHXF-containing serum, were assessed in vitro. The potential feedback mechanism of HIFs/ferroptosis/EMT was elucidated using HIF-1α knockdown and a ferroptosis inhibitor. RESULTS One-hundred and fifty compounds in SQHXF were tested for bloodstream entry. In vivo study showed that SQHXF was able to reduce creatinine, uric acid, fasting plasma glucose, 24-h urinary protein, low-density lipoprotein cholesterol, and aspartate aminotransferase levels, up-regulate HIF-1α, down-regulate HIF-2α, reduce ferroptosis, and alleviate renal fibrosis and EMT in tubular epithelial cells. HIF-1α/HIF-2α imbalance promoted ferroptosis and EMT in HK-2 cells, which was attenuated by SQHXF-containing serum. HIF-1α knockdown decreased HIF-2α expression and reduced ferroptosis and EMT. Inhibition of ferroptosis reduced EMT but failed to regulate HIF-1α and HIF-2α. CONCLUSIONS SQHXF alleviated ferroptosis and EMT, improved liver and kidney function, reduced proteinuria, and alleviated renal lesions by maintaining equilibrium between HIF-1α and HIF-2α.
Collapse
Affiliation(s)
- Ronglu Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Wu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Yi Zhou
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bin Cheng
- Outpatient Department, Anhui University of Traditional Chinese Medicine, Hefei, 230031, China.
| | - Shiyi Liu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ruiying Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Yongjun Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Jinhu Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
2
|
Sun A, Pollock CA, Huang C. Mitochondria-targeting therapeutic strategies for chronic kidney disease. Biochem Pharmacol 2025; 231:116669. [PMID: 39608501 DOI: 10.1016/j.bcp.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial health issue characterised by kidney impairment that has significant morbidity and mortality in the global population. Current treatments for CKD fail to prevent progression to end-stage kidney disease, where management is limited to renal replacement therapy or kidney transplantation. Mitochondrial dysfunction has been implicated in the pathogenesis of CKD and can be broadly categorised into abnormalities related to excessive oxidative stress, reduced mitochondrial biogenesis, excess mitochondrial fission and dysregulated mitophagy. Mitochondria-targeting therapeutic strategies target many of the outlined mechanisms of mitochondrial dysfunction, and an overview of recent evidence for mitochondria-targeting therapeutic strategies is explored in this review, including naturally derived compounds and novel approaches such as fusion proteins. Mitochondria-targeting therapeutic strategies using these approaches show the potential to stabilise or improve renal function, and clinical studies are needed to further confirm their safety and efficacy in human contexts.
Collapse
Affiliation(s)
- Annie Sun
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Chunling Huang
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| |
Collapse
|
3
|
Xue JL, Ji JL, Zhou Y, Zhang Y, Liu BC, Ma RX, Li ZL. The multifaceted effects of mitochondria in kidney diseases. Mitochondrion 2024; 79:101957. [PMID: 39270830 DOI: 10.1016/j.mito.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria serve as the primary site for aerobic respiration within cells, playing a crucial role in maintaining cellular homeostasis. To maintain homeostasis and meet the diverse demands of the cells, mitochondria have evolved intricate systems of quality control, mainly including mitochondrial dynamics, mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. The kidney, characterized by its high energy requirements, is particularly abundant in mitochondria. Interestingly, the mitochondria display complex behaviors and functions. When the kidney is suffered from obstructive, ischemic, hypoxic, oxidative, or metabolic insults, the dysfunctional mitochondrial derived from the defects in the mitochondrial quality control system contribute to cellular inflammation, cellular senescence, and cell death, posing a threat to the kidney. However, in addition to causing injury to the kidney in several cases, mitochondria also exhibit protective effect on the kidney. In recent years, accumulating evidence indicated that mitochondria play a crucial role in adaptive repair following kidney diseases caused by various etiologies. In this article, we comprehensively reviewed the current understanding about the multifaceted effects of mitochondria on kidney diseases and their therapeutic potential.
Collapse
Affiliation(s)
- Jia-Le Xue
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Yang T, Feng Q, Shao M, Pan M, Guo F, Song Y, Huang F, Linlin Z, Wang J, Wu L, Qin G, Zhao Y. The role of metabolic memory in diabetic kidney disease: identification of key genes and therapeutic targets. Front Pharmacol 2024; 15:1379821. [PMID: 39092227 PMCID: PMC11292736 DOI: 10.3389/fphar.2024.1379821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Diabetic kidney disease (DKD) is characterized by complex pathogenesis and poor prognosis; therefore, an exploration of novel etiological factors may be beneficial. Despite glycemic control, the persistence of transient hyperglycemia still induces vascular complications due to metabolic memory. However, its contribution to DKD remains unclear. Using single-cell RNA sequencing data from the Gene Expression Omnibus (GEO) database, we clustered 12 cell types and employed enrichment analysis and a cell‒cell communication network. Fibrosis, a characteristic of DKD, was found to be associated with metabolic memory. To further identify genes related to metabolic memory and fibrosis in DKD, we combined the above datasets from humans with a rat renal fibrosis model and mouse models of metabolic memory. After overlapping, NDRG1, NR4A1, KCNC4 and ZFP36 were selected. Pharmacology analysis and molecular docking revealed that pioglitazone and resveratrol were possible agents affecting these hub genes. Based on the ex vivo results, NDRG1 was selected for further study. Knockdown of NDRG1 reduced TGF-β expression in human kidney-2 cells (HK-2 cells). Compared to that in patients who had diabetes for more than 10 years but not DKD, NDRG1 expression in blood samples was upregulated in DKD patients. In summary, NDRG1 is a key gene involved in regulating fibrosis in DKD from a metabolic memory perspective. Bioinformatics analysis combined with experimental validation provided reliable evidence for identifying metabolic memory in DKD patients.
Collapse
Affiliation(s)
- Tongyue Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengxing Pan
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengjuan Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhao Linlin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Zhang XJ, Liu CC, Li ZL, Ding L, Zhou Y, Zhang DJ, Zhang Y, Hou ST, Ma RX. Sacubitril/valsartan ameliorates tubulointerstitial fibrosis by restoring mitochondrial homeostasis in diabetic kidney disease. Diabetol Metab Syndr 2024; 16:40. [PMID: 38341600 DOI: 10.1186/s13098-024-01284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Tubulointerstitial fibrosis plays an important role in the progression of diabetic kidney disease (DKD). Sacubitril/valsartan (Sac/Val) exerts a robust beneficial effect in DKD. However, the potential functional effect of Sac/Val on tubulointerstitial fibrosis in DKD is still largely unclear. METHODS Streptozotocin-induced diabetic mice were given Sac/Val or Val by intragastric administration once a day for 12 weeks. The renal function, the pathological changes of tubule injury and tubulointerstitial fibrosis, as well as mitochondrial morphology of renal tubules in mice, were evaluated. Genome-wide gene expression analysis was performed to identify the potential mechanisms. Meanwhile, human tubular epithelial cells (HK-2) were cultured in high glucose condition containing LBQ657/valsartan (LBQ/Val). Further, mitochondrial functions and Sirt1/PGC1α pathway of tubular epithelial cells were assessed by Western blot, Real-time-PCR, JC-1, MitoSOX or MitoTracker. Finally, the Sirt1 specific inhibitor, EX527, was used to explore the potential effects of Sirt1 signaling in vivo and in vitro. RESULTS We found that Sac/Val significantly ameliorated the decline of renal function and tubulointerstitial fibrosis in DKD mice. The enrichment analysis of gene expression indicated metabolism as an important modulator in DKD mice with Sac/Val administration, in which mitochondrial homeostasis plays a pivotal role. Then, the decreased expression of Tfam and Cox IV;, as well as changes of mitochondrial function and morphology, demonstrated the disruption of mitochondrial homeostasis under DKD conditions. Interestingly, Sac/Val administration was found to restore mitochondrial homeostasis in DKD mice and in vitro model of HK-2 cells. Further, we demonstrated that Sirt1/PGC1α, a crucial pathway in mitochondrial homeostasis, was activated by Sac/Val both in vivo and in vitro. Finally, the beneficial effects of Sac/Val on mitochondrial homeostasis and tubulointerstitial fibrosis was partially abolished in the presence of Sirt1 specific inhibitor. CONCLUSIONS Taken together, we demonstrate that Sac/Val ameliorates tubulointerstitial fibrosis by restoring Sirt1/PGC1α pathway-mediated mitochondrial homeostasis in DKD, providing a theoretical basis for delaying the progression of DKD in clinical practice.
Collapse
Affiliation(s)
- Xing-Jian Zhang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cong-Cong Liu
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| | - Lin Ding
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Enshi, Hubei, China
| | - Yan Zhou
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Dong-Jie Zhang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yao Zhang
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shu-Ting Hou
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Rui-Xia Ma
- Department of Nephrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|