1
|
Dhokchawle BV, Mishra PS, Daniel RJ. Phytophenols as Promoieties for Prodrug Design. Curr Drug Discov Technol 2025; 22:e300524230532. [PMID: 38818921 DOI: 10.2174/0115701638282895240523091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024]
Abstract
One lucrative method for overcoming challenges in drug discovery or for enhancing undesirable properties of already-approved medications is prodrug design. The goal of this review is to present researchers with a profile of naturally occurring Phytophenols as carriers that would be used for prodrug synthesis as well as their advantages. Phytophenols offer several advantages when used as promoieties as they also possess antioxidant and analgesic properties, they are obtained naturally and their safety profile is well established. Several phytophenols like menthol, thymol, eugenol, guaiacol, sesamol, vanillin, and umbelliferone are some of the phytophenols having several beneficial properties and are extensively employed in the field of food processing and medicine. In the current review, we have listed all types of promoieties that are used for prodrug synthesis and phytophenols are reviewed, which may help researchers to select phytophenols based on their need and suitability for drug candidates.
Collapse
Affiliation(s)
- Bharat V Dhokchawle
- Department of Pharmaceutical Chemistry, St John Institute of Pharmacy and Research, Vevoor, Manor Road, Palghar (E), Dist-Palghar, 401404, Maharashtra, India
| | - Punit S Mishra
- Department of Pharmaceutical Chemistry, St John Institute of Pharmacy and Research, Vevoor, Manor Road, Palghar (E), Dist-Palghar, 401404, Maharashtra, India
| | - Renny J Daniel
- Department of Pharmaceutical Chemistry, St John Institute of Pharmacy and Research, Vevoor, Manor Road, Palghar (E), Dist-Palghar, 401404, Maharashtra, India
| |
Collapse
|
2
|
Yadav S, Pandey A, Mali SN. From lab to nature: Recent advancements in the journey of gastroprotective agents from medicinal chemistry to phytotherapy. Eur J Med Chem 2024; 272:116436. [PMID: 38704935 DOI: 10.1016/j.ejmech.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Peptic ulcer, affecting 10 % of the global population, results from imbalances in gastric juice pH and diminished mucosal defences. Key underlying factors are non-steroidal anti-inflammatory drugs (NSAIDs) and Helicobacter pylori infection, undermining mucosal resistance. Traditional treatments like proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists exhibit drawbacks such as adverse effects, relapses, and drug interactions. This review extensively explores the ethnomedicinal, synthetic and pharmacological facets of various potential peptic ulcer treatments. Rigorous methodologies involving electronic databases, and chemical structure verification via 'PubChem' and 'SciFinder' enhance the review's credibility. The provided information, spanning medicinal insights to intricate pharmacological mechanisms, establishes a robust groundwork for future research and the development of plant-derived or synthetic molecules for peptic ulcers, offering a promising alternative to conventional therapies.
Collapse
Affiliation(s)
- Susmita Yadav
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Anima Pandey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Suraj N Mali
- School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai, 400706, India.
| |
Collapse
|
3
|
Goyal R, Gupta S, Sharma P, Sharma M. Insights into Prospects of Novel NSAID Prodrugs in the Management of Gastrointestinal Toxicity: A Perspective Review. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:2-10. [PMID: 38275026 DOI: 10.2174/0127722708278736231205055035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) have a long history in the healthcare system due to their therapeutic potential. These NSAIDs cause ulcerogenicity, stomach pains, gastrointestinal hemorrhage, mucosa bleeding, and pancreatitis when used moderately and consistently. With researchers, managing the aforementioned adverse effects therapeutically is getting increasingly difficult. One method for creating NSAID moieties with low penetration as well as ulcerogenic properties is the prodrug technique. During the oral consumption of NSAID-prodrugs, ulcerations, intestinal hemorrhage, and mucosa hemorrhage have significantly decreased. Considering this background, this review focussed on NSAID prodrugs as well as their justifications, the pathogenesis of NSAIDs inducing gastrointestinal toxicity, and the role of different antioxidants and spacer groups. Prodrug moieties have more advantages over parent medicines concerning both solubility and lipophilicity. In general, NSAID-class prodrugs can successfully treat both acute and long-term inflammation and aches without causing ulcerotoxicity and related gastrointestinal side effects, which reduces their burden from the pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sumeet Gupta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Prabodh Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Government of NCT of Delhi, New Delhi, 110017, India
| | - Manu Sharma
- Department of Pharmaceutical Sciences, National Forensic Science Laboratory, New Delhi, India
| |
Collapse
|
4
|
Synthesis of a Nanoparticle of Selenious Acid Acyl Diaquercetin for Skin Care Products. ChemistrySelect 2022. [DOI: 10.1002/slct.202203493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Yajun M, Xiangmin S, Yangjie L, Ruimei C, Yali F, Guangyu Z. Research Progress on the Synthesis of Quercetin Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Alizadeh SR, Ebrahimzadeh MA. Quercetin derivatives: Drug design, development, and biological activities, a review. Eur J Med Chem 2021; 229:114068. [PMID: 34971873 DOI: 10.1016/j.ejmech.2021.114068] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
More studies are needed to develop new drugs for problems associated with drug resistance and unfavorable side effects. The natural flavonoid of quercetin revealed a wide range of biological activities by the modulation of various targets and signaling pathways. However, quercetin's low solubility and poor bioavailability have restricted its applicability; as a result, researchers have attempted to design and synthesize numerous novel quercetin derivatives using various methodologies in order to modify quercetin's constraints; the physico-chemical properties of quercetin's molecular scaffold make it appealing for drug development; low molecular mass and chemical groups are two of these characteristics. Therefore, the biological activities of quercetin derivatives, as well as the relationship between activity and chemical structure and their mechanism of action, were investigated. These quercetin-based molecules could be valuable in the creation and discovery of medications for a number of diseases.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
7
|
Sehajpal S, Prasad DN, Singh RK. Novel ketoprofen–antioxidants mutual codrugs as safer nonsteroidal anti‐inflammatory drugs: Synthesis, kinetic and pharmacological evaluation. Arch Pharm (Weinheim) 2019; 352:e1800339. [DOI: 10.1002/ardp.201800339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/31/2023]
Affiliation(s)
- Shikha Sehajpal
- Department of Pharmaceutical ChemistryGujranwala Guru Nanak Khalsa College of Pharmacy, Civil LinesLudhiana Punjab India
| | - Deo Nandan Prasad
- Department of Pharmaceutical ChemistryShivalik College of PharmacyRupnagar Punjab India
| | - Rajesh K. Singh
- Department of Pharmaceutical ChemistryShivalik College of PharmacyRupnagar Punjab India
| |
Collapse
|
8
|
Rajaram P, Jiang Z, Chen G, Rivera A, Phasakda A, Zhang Q, Zheng S, Wang G, Chen QH. Nitrogen-containing derivatives of O-tetramethylquercetin: Synthesis and biological profiles in prostate cancer cell models. Bioorg Chem 2019; 87:227-239. [PMID: 30904813 DOI: 10.1016/j.bioorg.2019.03.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 02/03/2019] [Accepted: 03/15/2019] [Indexed: 01/06/2023]
Abstract
Forty-eight nitrogen-containing quercetin derivatives were synthesized from readily available rutin or quercetin for the in vitro evaluation of their biological profiles. The WST-1 cell proliferation assay data indicate that thirty-nine out of the forty-eight derivatives possess significantly improved antiproliferative potency as compared with quercetin and fisetin, as well as the parent 3,3',4',7-O-tetramethylquercetin toward both androgen-sensitive (LNCaP) and androgen-insensitive (PC-3 and DU145) human prostate cancer cell lines. 5-O-Aminoalkyl-3,3',4',7-O-tetramethylquercetins were established as a better scaffold for further development as anti-prostate cancer agents. Among them, 5-O-(N,N-dibutylamino)propyl-3,3',4',7-O-tetramethylquercetin (44) was identified as the optimal derivative with IC50 values of 0.55-2.82 µM, being over 35-182 times more potent than quercetin. The flow cytometry-based assays further demonstrate that 44 effectively activates PC-3 cell apoptosis.
Collapse
Affiliation(s)
- Pravien Rajaram
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Ziran Jiang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Alyssa Rivera
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Alison Phasakda
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Shilong Zheng
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
9
|
Rasheed A, Yalavarthi PR, Cheramparambil H, Peesa JP, Abdul Khareem A. Synthesis and Pharmacological Evaluation of Acrylate-Based Gastrosparing NSAID Prodrugs. Arch Pharm (Weinheim) 2017; 350. [PMID: 28244144 DOI: 10.1002/ardp.201600325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/12/2022]
Abstract
Dexibuprofen and aceclofenac are well-known NSAID molecules, their oral use leads to gastrointestinal (GI) toxicity. To circumvent that GI toxicity, the prodrug approach is a better alternative. Hence, this research was undertaken to synthesize prodrugs of dexibuprofen and aceclofenac using acrylic polymers with degradable ester bonds. Dexibuprofen was linked to 2-hydroxypropyl methacrylate by an activated ester technique. The resulting material was copolymerized with 2-hydroxyethyl methacrylate and methyl methacrylate (in 1:3 mole ratios) by the free radical polymerization method, utilizing azoisobutyronitrile at 65-70°C. Similarly aceclofenac was also processed. The resulting prodrugs were characterized by IR, NMR, and elemental analysis. The synthesized prodrugs possess optimal physicochemical characteristics such as the intended molecular weight, lipophilicity, partition coefficient, and protein binding. The drug release on hydrolysis was studied in various fluids such as SGF (pH 1.2), SIF (pH 7.4), and SCF (pH 6.8), to establish the drug release kinetics. Pharmacological evaluation exhibited anti-inflammatory activity with remarkable reduction in ulcerogenicity compared to the parent drug. Under the conditions used, the prodrugs showed no antigenicity in Wistar rats. Thus, it was concluded that acrylic-based prodrugs were efficient in drug localization in the stomach, without gastric problems.
Collapse
Affiliation(s)
- Arun Rasheed
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Poonthavanam, Malappuram, India
| | | | - Haseena Cheramparambil
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Poonthavanam, Malappuram, India
| | - Jaya Preethi Peesa
- Department of Pharmaceutical Chemistry, Sree Vidyanikethan College of Pharmacy, Tirupati, India
| | - Azeem Abdul Khareem
- Department of Pharmaceutical Chemistry, Al-Shifa College of Pharmacy, Poonthavanam, Malappuram, India
| |
Collapse
|