1
|
Yang H, An Y, Meng J, Lv X. Fabrication of nano-ceria encapsulated with oleic acid to attenuate gestational diabetes mellitus in streptozotocin-induced diabetic pregnant mice model. J Microencapsul 2025:1-18. [PMID: 40230075 DOI: 10.1080/02652048.2024.2423629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/28/2024] [Indexed: 04/16/2025]
Abstract
AIM The study aims to fabricate and evaluate Nano-ceria encapsulated oleic acid (CeO2 NPs-OA) to treat gestational diabetes mellitus (GDM). METHODS The CeO2 NPs was synthesised by thermal decomposition. TEM, XRD, and FTIR confirms particles. In vitro studies on STZ-induced NIH 3T3 assessed antioxidant, anticancer, antidiabetic, and anti-inflammatory properties. In vivo studies were performed on pregnant mice induced with STZ, examined antidiabetic activity, oxidative stress, and dyslipidemia. RESULTS The CeO2 NPs-OA had a spherical structure and uniform distribution. A PDI of 0.5 with a zeta-potential of - 44 ± 2 mV. The DPPH and ABTS exhibit 40% and 39.21% antioxidant activity. The CeO2 NPs-OA inhibits diabetes at 500 μg/mL. The in vivo studies confirmed the reduction in oxidative stress by reducing MDA (p < 0.05). The histopathological analysis of the STZ-induced model shows capillary, which CeO2 NPs-OA reduced. CONCLUSION CeO2 NPs-OA shows promise for treating GDM and improving maternal and foetal health.
Collapse
Affiliation(s)
- Huili Yang
- Obstetrics Department, Central Hospital affiliated to Shandong First Medical University, Jinan City, PR China
| | - Yujun An
- Obstetrics Department, Central Hospital affiliated to Shandong First Medical University, Jinan City, PR China
| | - Juan Meng
- Obstetrics Department, Central Hospital affiliated to Shandong First Medical University, Jinan City, PR China
| | - Xiaomei Lv
- Obstetrics Department, Central Hospital affiliated to Shandong First Medical University, Jinan City, PR China
| |
Collapse
|
2
|
Anh Nga NT, Fathima H A, Alahmadi TA. Assessment of possible biomedical applications of green synthesized TiO 2NPs-an in-vitro approach. ENVIRONMENTAL RESEARCH 2024; 248:118278. [PMID: 38246297 DOI: 10.1016/j.envres.2024.118278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Biomedical applications for various types of nanoparticles are emerging on a daily basis. Hence this research was performed to evaluate the antifungal (Aspergillus sp., Alternaria sp., Trichophyton sp., Candida sp., and Penicillium sp.), cytotoxicity (MCF10A cell lines), and antioxidant (DPPH) potential of Coleus aromaticus mediated and pre-characterized TiO2NPs were studied with respective standard methodology. Interestingly, the TiO2NPs exhibited significant antifungal activity on pathogenic fungal strains like Alternaria sp., Aspergillus sp. (31 ± 1.4), Penicillium sp. (31 ± 1.9) Trichophyton sp. (27 ± 2.1), and Candida sp. (26 ± 2.3) at high concentration (250 μg mL-1). However, the considerable levels of zone of inhibitions on fungal pathogens were recorded at 100 μg mL-1 of TiO2NPs as well as it was considerably greater than positive control. It also demonstrated dose based anti-inflammatory and antidiabetic activities. The plant-mediated TiO2NPs demonstrated a maximum DPPH scavenging efficiency of 91% at a dosage of 250 μg mL-1, comparable to the positive control's 94%. Furthermore, TiO2NPs at 100 μg mL-1 concentration did not cause cytotoxicity in MCF10A cell lines. At higher concentrations (250 μg mL-1), the nanoparticles showed the lowest cytotoxicity (17%). These findings suggest that C. aromaticus-mediated TiO2NPs have significant biomedical applications. However, in-vivo studies are needed to learn more about their (C. aromaticus-mediated TiO2NPs) potential biomedical applications.
Collapse
Affiliation(s)
- Nguyen Thi Anh Nga
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Aafreen Fathima H
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
3
|
Lin Q, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Tian Y, Jin Z. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Crit Rev Food Sci Nutr 2023; 63:12126-12135. [PMID: 35822304 DOI: 10.1080/10408398.2022.2098687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes is caused by persistently high blood sugar levels, which leads to metabolic dysregulation and an increase in the risk of chronic diseases such as diabetes and obesity. High levels of rapidly digestible starches within foods may contribute to high blood sugar levels. Amylase inhibitors can reduce amylase activity, thereby inhibiting starch hydrolysis, and reducing blood sugar levels. Currently, amylase inhibitors are usually chemically synthesized substances, which can have undesirable side effects on the human body. The development of amylase inhibitors from food-grade ingredients that can be incorporated into the human diet is therefore of great interest. Several classes of phytochemicals, including polyphenols and flavonoids, have been shown to inhibit amylase, including certain types of food-grade nanoparticles. In this review, we summarize the main functions and characteristics of amylases within the human body, as well as their interactions with amylase inhibitors. A strong focus is given to the utilization of nanoparticles as amylase inhibitors. The information covered in this article may be useful for the design of functional foods that can better control blood glucose levels, which may help reduce the risk of diabetes and other diet-related diseases.
Collapse
Affiliation(s)
- Qianzhu Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Alaizeri ZM, Alhadlaq HA, Aldawood S, Akhtar MJ, Aziz AA, Ahamed M. Photocatalytic Degradation of Methylene Blue and Anticancer Response of In 2O 3/RGO Nanocomposites Prepared by a Microwave-Assisted Hydrothermal Synthesis Process. Molecules 2023; 28:5153. [PMID: 37446815 DOI: 10.3390/molecules28135153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The incorporation of graphene with metal oxide has been widely explored in various fields, including energy storage devices, optical applications, biomedical applications, and water remediation. This research aimed to assess the impact of reduced graphene oxide (RGO) doping on the photocatalytic and anticancer properties of In2O3 nanoparticles. Pure and In2O3/RGO nanocomposites were effectively synthesized using the single-step microwave hydrothermal process. XRD, TEM, SEM, EDX, XPS, Raman, UV-Vis, and PL spectroscopy were carefully utilized to characterize the prepared samples. XRD data showed that synthesized In2O3 nanoparticles had high crystallinity with a decreased crystal size after RGO doping. TEM and SEM images revealed that the In2O3 NPs were spherical and uniformly embedded onto the surface of RGO sheets. Elemental analysis of In2O3/RGO NC confirmed the presence of In, O, and C without impurities. Raman analysis indicated the successful fabrication of In2O3 onto the RGO surface. Uv-Vis analysis showed that the band gap energy was changed with RGO addition. Raman spectra confirmed that In2O3 nanoparticles were successfully anchored onto the RGO sheet. PL results indicated that the prepared In2O3/RGO NCs can be applied to enhance photocatalytic activity and biomedical applications. In the degradation experiment, In2O3/RGO NCs exhibited superior photocatalytic activity compared to that of pure In2O3. The degradation efficiency of In2O3/RGO NCs for MB dye was up to 90%. Biological data revealed that the cytotoxicity effect of In2O3/RGO NCs was higher than In2O3 NPs in human colorectal (HCT116) and liver (HepG2) cancer cells. Importantly, the In2O3/RGO NCs exhibited better biocompatibility against human normal peripheral blood mononuclear cells (PBMCs). All the results suggest that RGO addition improves the photocatalytic and anticancer activity of In2O3 NPs. This study highlights the potential of In2O3/RGO NCs as an efficient photocatalyst and therapeutic material for water remediation and biomedicine.
Collapse
Affiliation(s)
- ZabnAllah M Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Javed Akhtar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aziz A Aziz
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
6
|
Naik J, David M. Phytofabrication of silver and zinc oxide nanoparticles using the fruit extract of Phyllanthus emblica and its potential anti-diabetic and anti-cancer activity. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2141668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jarnain Naik
- Enivronmental Biology and Molecular Toxicology Laboratory, Department of Zoology, Karnatak University, Dharwad, India
| | - M. David
- Enivronmental Biology and Molecular Toxicology Laboratory, Department of Zoology, Karnatak University, Dharwad, India
| |
Collapse
|
7
|
Ramos-Soriano J, Ghirardello M, Galan MC. Recent advances in multivalent carbon nanoform-based glycoconjugates. Curr Med Chem 2021; 29:1232-1257. [PMID: 34269658 DOI: 10.2174/0929867328666210714160954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022]
Abstract
Multivalent carbohydrate-mediated interactions are fundamental to many biological processes, including disease mechanisms. To study these significant glycan-mediated interactions at a molecular level, carbon nanoforms such as fullerenes, carbon nanotubes, or graphene and their derivatives have been identified as promising biocompatible scaffolds that can mimic the multivalent presentation of biologically relevant glycans. In this minireview, we will summarize the most relevant examples of the last few years in the context of their applications.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
8
|
Robkhob P, Ghosh S, Bellare J, Jamdade D, Tang IM, Thongmee S. Effect of silver doping on antidiabetic and antioxidant potential of ZnO nanorods. J Trace Elem Med Biol 2020; 58:126448. [PMID: 31901726 DOI: 10.1016/j.jtemb.2019.126448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Increasing resistance to available drugs and their associated side-effects have drawn wide attention towards designing alternative therapeutic strategies for control of hyperglycemia and oxidative stress. The roles of the sizes and shapes of the nanomaterials used in the treatment and management of Type 2 Diabetes Mellitus (T2DM) in preventing chronic hyperglycaemia and oxidative stress are investigated. We report specifically on the effects of doping silver (Ag) into the ZnO nanorods (ZnO:Ag NR's) as a rational drug designing strategy. METHODS Inhibition of porcine pancreatic α-amylase, murine pancreatic amylase, α-glucosidase, murine intestinal glucosidase and amyloglucosidase are checked for evaluation of antidiabetic potential. In addition, the radical scavenging activities of ZnO:Ag NR's against nitric oxide, DDPH and superoxide radicals are evaluated. RESULTS Quantitative radical scavenging and metabolic enzyme inhibition activities of ZnO:Ag NR's at a concentration of 100 μg/mL were found to depend on the amount of Ag doped in up to a threshold level (3-4 %). Circular dichroism analysis revealed that the interaction of the NR's with the enzymes altered their secondary conformation. This alteration is the underlying mechanism for the potent enzyme inhibition. CONCLUSIONS Enhanced inhibition of enzymes and scavenging of free radicals primarily responsible for reactive oxygen species (ROS) mediated damage, provide a strong scientific rationale for considering ZnO:Ag NR's as a candidate nanomedicine for controlling postprandial hyperglycaemia and the associated oxidative stress.
Collapse
Affiliation(s)
- Prissana Robkhob
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, Gujarat 360020, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Dhiraj Jamdade
- Department of Microbiology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune 411016, India
| | - I-Ming Tang
- Computional & Applied Science for Innovation Cluster (CLASSIC), Department of Mathematics, Faculty of Science, King Mongkut's University of Technology, Thonburi, Bangkok 10140, Thailand
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
9
|
Meena SN, kumar U, Naik MM, Ghadi SC, Tilve SG. α-Glucosidase inhibition activity and in silico study of 2-(benzo[d][1,3]dioxol-5-yl)-4H-chromen-4-one, a synthetic derivative of flavone. Bioorg Med Chem 2019; 27:2340-2344. [DOI: 10.1016/j.bmc.2018.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
|
10
|
Trinh TMN, Holler M, Schneider JP, García-Moreno MI, García Fernández JM, Bodlenner A, Compain P, Ortiz Mellet C, Nierengarten JF. Construction of giant glycosidase inhibitors from iminosugar-substituted fullerene macromonomers. J Mater Chem B 2017; 5:6546-6556. [PMID: 32264416 DOI: 10.1039/c7tb01052d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An ultra-fast synthetic procedure based on grafting of twelve fullerene macromonomers onto a fullerene hexa-adduct core was used for the preparation of a giant molecule with 120 peripheral iminosugar residues. The inhibition profile of this giant iminosugar ball was evaluated against various glycosidases. In the particular case of the Jack bean α-mannosidase, a dramatic enhancement of the glycosidase inhibitory effect was observed for the giant molecule with 120 peripheral subunits as compared to that of the corresponding mono- and dodecavalent model compounds.
Collapse
Affiliation(s)
- Thi Minh Nguyet Trinh
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | | | | | | | | | | | | | | | | |
Collapse
|