1
|
Sharma R, Nath PC, Das P, Rustagi S, Sharma M, Sridhar N, Hazarika TK, Rana P, Nayak PK, Sridhar K. Essential oil-nanoemulsion based edible coating: Innovative sustainable preservation method for fresh/fresh-cut fruits and vegetables. Food Chem 2024; 460:140545. [PMID: 39047488 DOI: 10.1016/j.foodchem.2024.140545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Utilizing plant-based sources for the preservation of fresh and fresh-cut fruits and vegetables offers a natural and chemical-free method. However, the inherent instability of plant bioactive compounds underscores the necessity for encapsulation techniques. Essential oil-based nanoemulsions (EO-NEs) stand out among food additives due to their distinctive antibacterial and antioxidant properties. This review delves into recent advancements in the application of EO-NEs as edible coatings for fresh and fresh-cut produce. It examines the efficacy of EO-NEs in enhancing the preservation of fruits and vegetables by harnessing their bioactive compounds for antibacterial, antifungal, and antioxidant activities. Additionally, the review accentuates the efficacy of EO-NEs in inhibiting biofilm formation on fruits and vegetables. It reveals that coatings derived from plant-source nanoemulsions exhibit exceptional mechanical, optical, and microstructural qualities, as well as superior water barrier properties. In contrast to conventional emulsions, nanocoatings facilitate the gradual and controlled release of antimicrobial and antioxidant compounds during food storage. This feature enhances bioactivity, extends shelf life, and enhances the nutritional profile of products. By preserving and protecting shelf stability, EO-NEs contribute to the maintenance of vegetable freshness. Nonetheless, ensuring their commercial viability necessitates additional research into the toxicity of EO-based nanoemulsions.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Chinniyampalayam, 641062, Coimbatore, India
| | - Pinku Chandra Nath
- Food Science and Technology Division, Department of Applied Biology, University of Science and Technology Meghalaya, Baridua, 793101, India
| | - Puja Das
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Natarajan Sridhar
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Chinniyampalayam, 641062, Coimbatore, India
| | - Tridip Kumar Hazarika
- Department of Horticulture, Aromatic, and Medicinal Plants, Mizoram University, Mizoram 796004, India
| | - Priya Rana
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
2
|
Lorca G, Ballestero D, Langa E, Pino-Otín MR. Enhancing Antibiotic Efficacy with Natural Compounds: Synergistic Activity of Tannic Acid and Nerol with Commercial Antibiotics against Pathogenic Bacteria. PLANTS (BASEL, SWITZERLAND) 2024; 13:2717. [PMID: 39409586 PMCID: PMC11479191 DOI: 10.3390/plants13192717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024]
Abstract
The search for synergies between natural products and commercial antibiotics is a promising strategy against bacterial resistance. This study determined the antimicrobial capacity of Nerol (NE) and Tannic Acid (TA) against 14 pathogenic bacteria, including ESKAPE pathogens. TA exhibited the lowest Minimum Inhibitory Concentrations (MICs) at 162.5 µg/mL against Pasteurella aerogenes and 187.5 µg/mL against Acinetobacter baumannii (WHO priority 1). NE showed its lowest MIC of 500 µg/mL against both Pasteurella aerogenes and Salmonella enterica. A total of 35 combinations of NE and 13 of TA with eight commercial antibiotics were analyzed. For NE, combinations with Streptomycin and Gentamicin were effective against Salmonella enterica, Bacillus subtilis, and Streptococcus agalactiae, with antibiotic MIC reductions between 75.0 and 87.5%. TA showed six synergies with Chloramphenicol, Ampicillin, Erythromycin, and Streptomycin against Acinetobacter baumannii, Streptococcus agalactiae, and Pasteurella aerogenes, with MIC reductions between 75.0 and 93.7%. Additionally, 31 additive effects with antibiotics for NE and 8 for TA were found. Kinetic studies on these synergies showed complete inhibition of bacterial growth, suggesting that natural products enhance antibiotics by facilitating their access to targets or preventing resistance. Given their safety profiles recognized by the EPA and FDA, these natural products could be promising candidates as antibiotic enhancers.
Collapse
Affiliation(s)
| | | | | | - María Rosa Pino-Otín
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Spain; (G.L.); (D.B.); (E.L.)
| |
Collapse
|
3
|
Ismail S, Masi M, Gaglione R, Arciello A, Cimmino A. Antimicrobial and antibiofilm activity of specialized metabolites isolated from Centaurea hyalolepis. PeerJ 2024; 12:e16973. [PMID: 38560449 PMCID: PMC10979744 DOI: 10.7717/peerj.16973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
The discovery of plant-derived compounds that are able to combat antibiotic-resistant pathogens is an urgent demand. Over years, Centaurea hyalolepis attracted considerable attention because of its beneficial medical properties. Phytochemical analyses revealed that Centaurea plant species contain several metabolites, such as sesquiterpene lactones (STLs), essential oils, flavonoids, alkaloids, and lignans.The organic extract of C. hyalolepis plant, collected in Palestine, showed significant antimicrobial properties towards a panel of Gram-negative and Gram-positive bacterial strains when the Minimal Inhibitory Concentration (MIC) values were evaluated by broth microdilution assays. A bio-guided fractionation of the active extract via multiple steps of column and thin layer chromatography allowed us to obtain three main compounds. The isolated metabolites were identified as the STLs cnicin, 11β,13-dihydrosalonitenolide and salonitenolide by spectroscopic and spectrometric analyses. Cnicin conferred the strongest antimicrobial activity among the identified compounds. Moreover, the evaluation of its antibiofilm activity by biomass assays through crystal violet staining revealed almost 30% inhibition of biofilm formation in the case of A. baumannii ATCC 17878 strain. Furthermore, the quantification of carbohydrates and proteins present in the extracellular polymeric substance (EPS) revealed the ability of cnicin to significantly perturb biofilm structure. Based on these promising results, further investigations might open interesting perspectives to its applicability in biomedical field to counteract multidrug resistant infections.
Collapse
Affiliation(s)
- Shurooq Ismail
- University of Naples Federico II, Naples, Italy
- An-Najah National University, Nablus, Palestine
| | - Marco Masi
- University of Naples Federico II, Naples, Italy
| | - Rosa Gaglione
- University of Naples Federico II, Naples, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, Rome, Italy
| | - Angela Arciello
- University of Naples Federico II, Naples, Italy
- Istituto Nazionale di Biostrutture e Biosistemi, Rome, Italy
| | | |
Collapse
|
4
|
Manzoor A, Asif M, Khalid SH, Ullah Khan I, Asghar S. Nanosizing of Lavender, Basil, and Clove Essential Oils into Microemulsions for Enhanced Antioxidant Potential and Antibacterial and Antibiofilm Activities. ACS OMEGA 2023; 8:40600-40612. [PMID: 37929152 PMCID: PMC10621020 DOI: 10.1021/acsomega.3c05394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
Plant essential oils (EOs) possess significant bioactivities (antibacterial and antioxidant) and can be substituted for potentially harmful synthetic preservatives in the food industry. However, limited water solubility, bioavailability, volatility, and stability limit their use. Therefore, the goal of this research was nanosizing lavender essential oil (LEO), basil essential oil (BEO), and clove essential oil (CEO) in a microemulsion (ME) to improve their physicochemical attributes and bioefficacy. Tween 80 and Transcutol P were utilized for construction of pseudoternary phase diagrams. It was observed that the concentration of EOs had a great impact on the physicochemical and biological properties of MEs. A spherical droplet of MEs with a diameter of less than 20 nm with a narrower size distribution (polydispersity index (PDI) = 0.10-0.27) and a ζ potential of -0.27 to -9.03 was observed. ME formulations were also evaluated for viscosity, conductivity, and the refractive index. Moreover, the impact of delivery systems on the antibacterial property of EOs was assessed by determining the zone of inhibition and minimum inhibitory concentration against two distinct pathogen classes (S. aureus and E. coli). Crystal violet assay was used to measure the growth and development of biofilms. According to bioefficacy assays, ME demonstrated more efficient antibacterial activity against microorganisms at concentrations lower than pure EOs. CEO ME had superior activity againstS. aureus and E. coli. Similarly, dose-dependent antioxidant capacity was noted for MEs. Consequently, nanosized EO formulations with improved physicochemical properties and enhanced bioactivities can be employed in the food processing sector as a preservation agent.
Collapse
Affiliation(s)
- Aneela Manzoor
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- Faculty
of Pharmacy, Islamia University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
5
|
Wang W, Li T, Chen J, Ye Y. Inhibition of Salmonella Enteritidis by Essential Oil Components and the Effect of Storage on the Quality of Chicken. Foods 2023; 12:2560. [PMID: 37444298 PMCID: PMC10341335 DOI: 10.3390/foods12132560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
This research investigates the antibacterial potential of plant essential oil components including thymol, carvacrol, citral, cinnamaldehyde, limonene, and β-pinene against Salmonella Enteritidis (S. Enteritidis). Through the determination of minimum inhibitory concentration, three kinds of natural antibacterial agents with the best inhibitory effect on S. Enteritidis were determined, namely thymol (128 μg/mL), carvacrol (256 μg/mL), and cinnamaldehyde (128 μg/mL). Physical, chemical, microbial, and sensory characteristics were regularly monitored on days 0, 2, 4, and 6. The findings of this study reveal that both thymol at MIC of 128 μg/mL and carvacrol at MIC of 256 μg/mL not only maintained the sensory quality of chicken, but also decreased the pH, moisture content, and TVB-N value. Additionally, thymol, carvacrol and cinnamaldehyde successfully inhibited the formation of S. Enteritidis biofilm, thereby minimizing the number of S. Enteritidis and the total aerobic plate count in chicken. Hence, thymol, carvacrol, and cinnamaldehyde have more effective inhibitory activities against S. Enteritidis, which can effectively prevent the spoilage of chicken and reduce the loss of its functional components.
Collapse
Affiliation(s)
- Wu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.L.); (J.C.); (Y.Y.)
| | | | | | | |
Collapse
|
6
|
Antibiofilm Action of Plant Terpenes in Salmonella Strains: Potential Inhibitors of the Synthesis of Extracellular Polymeric Substances. Pathogens 2022; 12:pathogens12010035. [PMID: 36678383 PMCID: PMC9864247 DOI: 10.3390/pathogens12010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella can form biofilms that contribute to its resistance in food processing environments. Biofilms are a dense population of cells that adhere to the surface, creating a matrix composed of extracellular polymeric substances (EPS) consisting mainly of polysaccharides, proteins, and eDNA. Remarkably, the secreted substances, including cellulose, curli, and colanic acid, act as protective barriers for Salmonella and contribute to its resistance and persistence when exposed to disinfectants. Conventional treatments are mostly ineffective in controlling this problem; therefore, exploring anti-biofilm molecules that minimize and eradicate Salmonella biofilms is required. The evidence indicated that terpenes effectively reduce biofilms and affect their three-dimensional structure due to the decrease in the content of EPS. Specifically, in the case of Salmonella, cellulose is an essential component in their biofilms, and its control could be through the inhibition of glycosyltransferase, the enzyme that synthesizes this polymer. The inhibition of polymeric substances secreted by Salmonella during biofilm development could be considered a target to reduce its resistance to disinfectants, and terpenes can be regarded as inhibitors of this process. However, more studies are needed to evaluate the effectiveness of these compounds against Salmonella enzymes that produce extracellular polymeric substances.
Collapse
|
7
|
Inhibitory effects of clove and oregano essential oils on biofilm formation of Salmonella Derby isolated from beef processing plant. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Antifungal activity and mechanism of d-limonene against foodborne opportunistic pathogen Candida tropicalis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Hui X, Zhu BR, Wu LL, Gao WY, Li YM, Jia Q, Li H. Inhibitory Activity of Proanthocyanidins Against Escherichia coli 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
1-Deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is a key enzyme in the methylerythritol phosphate pathway for terpenoid biosynthesis. Furthermore, it is an ideal target for the screening of novel antibiotics because it is present in causative organisms, but absent from humans. To identify more lipophilic DXR inhibitors from natural resources, we tested the DXR inhibitory activity of five proanthocyanidins in this study. The results indicated that all these compounds specifically restrained the activity of DXR, with procyanid B2 exhibiting a relatively low effect against DXR (IC50 ∼ 305 μM) and procyanid C1 displaying moderate activity (IC50 75.1 μM). The other three compounds cinnamtannin A2, cinnamtannin B1, and cinnamtannin D1 (IC50 ∼ 89.3, 105.0, and 97.8 μM, respectively) showed DXR inhibitory effects that were slightly weaker than that of procyanid C1. In addition, based on the initial characterization, the structure–activity relationship of this series of compounds against DXR is discussed.
Collapse
Affiliation(s)
- Xian Hui
- Northwest University, Xi’an, China
- The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bo-Rong Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long-Long Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Yi-Ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Jia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Heng Li
- Northwest University, Xi’an, China
| |
Collapse
|
10
|
Sustained-release modeling of clove essential oil in brine to improve the shelf life of Iranian white cheese by bioactive electrospun zein. Int J Food Microbiol 2021; 355:109337. [PMID: 34340156 DOI: 10.1016/j.ijfoodmicro.2021.109337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/20/2021] [Accepted: 07/18/2021] [Indexed: 11/22/2022]
Abstract
In this study, the sustained-release of clove essential oil (CEO) loaded into the structure of electrospun zein was used as a biopreservative to extend the shelf life of Iranian white cheese. CEO was loaded at levels of 5, 7.5, and 10% w/w in the structure of electrospun nanofibers. In this study, a concentration of 35% w/v zein was used to produce electrospun fibers, and in the field emission scanning electron microscope (FESEM) it was observed that by increasing the loading of CEO from 5 to 10% w/w in the fiber structure, their diameter decreased from 517.96 ± 41.57 nm to 457.88 ± 32.45 nm. Although increasing the level of CEO reduced the diameter of the electrospun nanofibers, Young's modulus, tensile strength, and a higher level of CEO increased elongation at break of the films. The results of mechanical properties showed that by increasing the amount of CEO application in the structure of electrospun zein nanofibers from 5 to 10% w/w tensile strength from 8.18 ± 0.62 to 4.43 ± 0.86 MPa, and Young's modulus from 38.25 ± 2.81 to 27.25 ± 3.48 MPa decreased. Successful encapsulation of CEO in designed structures and the absence of adverse bonds between the encapsulant material (zein) and the core (CEO) were confirmed by the Fourier-transform infrared spectroscopy (FTIR) test. The in vitro sustained-release of the CEO in 8% w/v brine during 45 days of storage at 4 °C was modeled. The Fickian diffusion was the dominant release mechanism of the CEO and the Peppas-Sahlin model was the best model describing the essential oil release behavior. The electrospun films containing CEO were well able to suppress the growth of Listeria monocytogenes and Escherichia coli O157: H7 in samples of Iranian white cheese kept in 8% brine for 45 days at 4 °C. The samples treated with the electrospun film containing 7.5% w/w of CEO had the highest acceptability among different treatments.
Collapse
|
11
|
Maurya A, Prasad J, Das S, Dwivedy AK. Essential Oils and Their Application in Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.653420] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food industries are facing a great challenge due to contamination of food products with different microbes such as bacteria, fungi, viruses, parasites, etc. These microbes deteriorate food items by producing different toxins during pre- and postharvest processing. Mycotoxins are one of the most potent and well-studied toxic food contaminants of fungal origin, causing a severe health hazard to humans. The application of synthetic chemicals as food preservatives poses a real scourge in the present scenario due to their bio-incompatibility, non-biodegradability, and environmental non-sustainability. Therefore, plant-based antimicrobials, including essential oils, have developed cumulative interest as a potential alternative to synthetic preservatives because of their ecofriendly nature and generally recognized as safe status. However, the practical utilization of essential oils as an efficient antimicrobial in the food industry is challenging due to their volatile nature, less solubility, and high instability. The recent application of different delivery strategies viz. nanoencapsulation, active packaging, and polymer-based coating effectively addressed these challenges and improved the bioefficacy and controlled release of essential oils. This article provides an overview of essential oils for the preservation of stored foods against bacteria, fungi, and mycotoxins, along with the specialized mechanism of action and technological advancement by using different delivery systems for their effective application in food and agricultural industries smart green preservative.
Collapse
|
12
|
Effect of Zataria multiflora Boiss. Essential oil, time, and temperature on the expression of Listeria monocytogenes virulence genes in broth and minced rainbow trout. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Liang YF, Liu H, Li H, Gao WY. Determination of the Activity of 1-Deoxy-D-Xylulose 5-Phosphate Synthase by Pre-column Derivatization-HPLC Using 1,2-Diamino-4,5-Methylenedioxybenzene as a Derivatizing Reagent. Protein J 2019; 38:160-166. [PMID: 30707333 DOI: 10.1007/s10930-019-09816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
α-Ketoacids can be determined by HPLC through pre-column derivatization with 1,2-diamino-4,5-methylenedioxybenzene (DMB) as a derivatizing reagent. Using this method, the specific activity and the steady-state kinetic of 1-deoxy-D-xylulose-5-phosphate synthase (DXS) were measured. Firstly, DXS substrate pyruvate was derivatized with DMB in acidic solution; then the corresponding quinoxalinone was elucidated by LC-ESI-MS and quantified by HPLC-UV. The optimum derivatization conditions were as follows: aqueous medium at pH 1.0, reaction temperature 80 °C, reaction time 60 min, molar ratio of DMB to pyruvate 10:1. The HPLC was run with isocratic elution using the mixture of methanol and water (60:40, v/v) as a mobile phase. The detective limit and the linear correlation range of the method were 0.05 µM and 0.002-1.0 mM (R = 0.994), respectively. The relative standard deviation (RSD) of six determinations was 2.48%. The steady-state kinetic parameters of DXS for pyruvate determined with the method were identical to the reported data. The established method is a practical route for evaluation of DXS activity, especially in the research and development of DXS inhibitors.
Collapse
Affiliation(s)
- Yan-Fei Liang
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Hui Liu
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Heng Li
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems and College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
14
|
Inhibitory Activity of Plant Essential Oils against E. coli 1-Deoxy-d-xylulose-5-phosphate reductoisomerase. Molecules 2019; 24:molecules24142518. [PMID: 31295807 PMCID: PMC6681031 DOI: 10.3390/molecules24142518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022] Open
Abstract
The rate-limiting enzyme of the 2-methyl-d-erythritol-4-phosphate (MEP) terpenoid biosynthetic pathway, 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), provides the perfect target for screening new antibacterial substances. In this study, we tested the DXR inhibitory effect of 35 plant essential oils (EOs), which have long been recognized for their antimicrobial properties. The results show that the EOs of Zanbthoxylum bungeanum (ZB), Schizonepetae tenuifoliae (ST), Thymus quinquecostatus (TQ), Origanum vulgare (OV), and Eugenia caryophyllata (EC) displayed weak to medium inhibitory activity against DXR, with IC50 values of 78 μg/mL, 65 μg/mL, 59 μg/mL, 48 μg/mL, and 37 μg/mL, respectively. GC-MS analyses of the above oils and further DXR inhibitory activity tests of their major components revealed that eugenol (EC) and carvacrol (TQ and OV) possess medium inhibition against the protein (68.3% and 55.6%, respectively, at a concentration of 20 μg/mL), whereas thymol (ST, TQ, and OV), carveol (ZB), and linalool (ZB, ST, and OV) only exhibited weak inhibition against DXR, at 20 μg/mL (23%−26%). The results add more details to the antimicrobial mechanisms of plant EOs, which could be very helpful in the direction of the reasonable use of EOs in the food industry and in the control of phytopathogenic microbials.
Collapse
|
15
|
Lyu X, Lee J, Chen WN. Potential Natural Food Preservatives and Their Sustainable Production in Yeast: Terpenoids and Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4397-4417. [PMID: 30844263 DOI: 10.1021/acs.jafc.8b07141] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Terpenoids and polyphenols are high-valued plant secondary metabolites. Their high antimicrobial activities demonstrate their huge potential as natural preservatives in the food industry. With the rapid development of metabolic engineering, it has become possible to realize large-scale production of non-native terpenoids and polyphenols by using the generally recognized as safe (GRAS) strain, Saccharomyces cerevisiae, as a cell factory. This review will summarize the major terpenoid and polyphenol compounds with high antimicrobial properties, describe their native metabolic pathways as well as antimicrobial mechanisms, and highlight current progress on their heterologous biosynthesis in S. cerevisiae. Current challenges and perspectives for the sustainable production of terpenoid and polyphenol as natural food preservatives via S. cerevisiae will also be discussed.
Collapse
Affiliation(s)
- Xiaomei Lyu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Jaslyn Lee
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
16
|
Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018; 23:molecules23061399. [PMID: 29890713 PMCID: PMC6100501 DOI: 10.3390/molecules23061399] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 01/06/2023] Open
Abstract
Even though essential oils (EOs) have been used for therapeutic purposes, there is now a renewed interest in the antimicrobial properties of phytochemicals and EOs in particular. Their demonstrated low levels of induction of antimicrobial resistance make them interesting for bactericidal applications, though their complex composition makes it necessary to focus on the study of their main components to identify the most effective ones. Herein, the evaluation of the antimicrobial action of different molecules present in EOs against planktonic and biofilm-forming Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was assessed. The bactericidal mechanisms of the different molecules, as well as their cytocompatibility, were also studied. Carvacrol, cinnamaldehyde, and thymol exhibit the highest in vitro antimicrobial activities against E. coli and S. aureus, with membrane disruption the bactericidal mechanism identified. The addition of those compounds (≥0.5 mg/mL) hampers S. aureus biofilm formation and partially eliminates preformed biofilms. The subcytotoxic values of the tested EO molecules (0.015–0.090 mg/mL) are lower than the minimum inhibitory and bactericidal concentrations obtained for bacteria (0.2–0.5 mg/mL) but are higher than that obtained for chlorhexidine (0.004 mg/mL), indicating the reduced cytotoxicity of EOs. Therefore, carvacrol, cinnamaldehyde, and thymol are molecules contained in EOs that could be used against E. coli– and S. aureus–mediated infections without a potential induction of bactericidal resistance and with lower cell toxicity than the conventional widely used chlorhexidine.
Collapse
|
17
|
Lu HP, Jia YN, Peng YL, Yu Y, Sun SL, Yue MT, Pan MH, Zeng LS, Xu L. Oxyresveratrol, a Stilbene Compound from Morus alba L. Twig Extract Active Against Trichophyton rubrum. Phytother Res 2017; 31:1842-1848. [PMID: 29024160 DOI: 10.1002/ptr.5926] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 01/30/2023]
Abstract
Morus alba L. (mulberry) twig is known to have an inhibitory effect on pathogens in traditional Chinese medicine. In the present study, the dermophytic fungus, Trichophyton rubrum, was used to evaluate the inhibitory effect of total M. alba twig extract and extracts obtained using solvents with different polarities by the method of 96-well MTT colorimetry. The main active substance was isolated and identified by tracking its activity. In addition, the inhibitory effects of active extracts and a single active substance were investigated in combination with miconazole nitrate. Our data indicated that ethyl acetate extracts of mulberry twig (TEE) exhibited a desired inhibitory activity on T. rubrum with the minimum inhibitory concentration (MIC) of 1.000 mg/mL. With activity tracking, the main substance showing antimicrobial activity was oxyresveratrol (OXY), which was isolated from TEE. Its MIC for inhibiting the growth of T. rubrum was 0.500 mg/mL. The combined use of miconazole nitrate and OXY showed a synergistic inhibitory effect, as shown by a significant decrease in the MIC of both components. Based on the OXY content in TEE, the contribution rate of OXY to the inhibitory effect of TEE on T. rubrum was 80.52%, so it was determined to be the main antimicrobial substance in M. alba twig. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hai-Peng Lu
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ya-Nan Jia
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ya-Lin Peng
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Yan Yu
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Si-Long Sun
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Meng-Ting Yue
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Min-Hui Pan
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Ling-Shu Zeng
- Institute of Sericulture Science and Technology Research, Chongqing, 400700, China
| | - Li Xu
- College of Biotechnology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
18
|
Leishmanicidal Activity and Structure-Activity Relationships of Essential Oil Constituents. Molecules 2017; 22:molecules22050815. [PMID: 28509873 PMCID: PMC6154737 DOI: 10.3390/molecules22050815] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/04/2022] Open
Abstract
Several constituents of essential oils have been shown to be active against pathogens such as bacteria, fungi, and protozoa. This study demonstrated the in vitro action of ten compounds present in essential oils against Leishmania amazonensis promastigotes. With the exception of p-cymene, all evaluated compounds presented leishmanicidal activity, exhibiting IC50 between 25.4 and 568.1 μg mL−1. Compounds with the best leishmanicidal activity presented a phenolic moiety (IC50 between 25.4 and 82.9 μg mL−1). Alicyclic alcohols ((−)-menthol and isoborneol) and ketones ((−)-carvone) promoted similar activity against the parasite (IC50 between 190.2 and 198.9 μg mL−1). Most of the compounds showed low cytotoxicity in L929 fibroblasts. Analysis of the structure-activity relationship of these compounds showed the importance of the phenolic structure for the biological action against the promastigote forms of the parasite.
Collapse
|