1
|
Maldonado J, Oliva A, Guzmán L, Molinari A, Acevedo W. Synthesis, Anticancer Activity, and Docking Studies of Novel Hydroquinone-Chalcone-Pyrazoline Hybrid Derivatives. Int J Mol Sci 2024; 25:7281. [PMID: 39000394 PMCID: PMC11242894 DOI: 10.3390/ijms25137281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
A novel series of antitumor hybrids was synthesized using 1,4-benzohydroquinone and chalcone, furane, or pyrazoline scaffolds. This were achieved through isosteric substitution of the aryl group of the chalcone β-carbon with the furanyl moiety and structural modification of the α,β-unsaturated carbonyl system. The potential antitumor activity of these hybrids was evaluated in vivo on MCF-7 breast adenocarcinoma and HT-29 colorectal carcinoma cells, demonstrating cytotoxic activity with IC50 values ranging from 28.8 to 124.6 µM. The incorporation of furan and pyrazoline groups significantly enhanced antiproliferative properties compared to their analogues and precursors (VII-X), which were inactive against both neoplastic cell lines. Compounds 4, 5, and 6 exhibited enhanced cytotoxicity against both cell lines, whereas compound 8 showed higher cytotoxic activity against HT-29 cells. Molecular docking studies revealed superior free-energy values (ΔGbin) for carcinogenic pathway-involved kinase proteins, with our in silico data suggesting that these derivatives could be promising chemotherapeutic agents targeting kinase pathways. Among all the synthesized PIBHQ compounds, derivatives 7 and 8 exhibited the best drug-likeness properties, with values of 0.53 and 0.83, respectively. ADME results collectively suggest that most of these compounds hold promise as potential candidates for preclinical assays.
Collapse
Affiliation(s)
- Javier Maldonado
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| | - Alfonso Oliva
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| | - Leda Guzmán
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| | - Aurora Molinari
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 23732223, Chile
| |
Collapse
|
2
|
Yang YL, Zhou M, Yang L, Gressler M, Rassbach J, Wurlitzer JM, Zeng Y, Gao K, Hoffmeister D. A Mushroom P450-Monooxygenase Enables Regio- and Stereoselective Biocatalytic Synthesis of Epoxycyclohexenones. Angew Chem Int Ed Engl 2023; 62:e202313817. [PMID: 37852936 DOI: 10.1002/anie.202313817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
An epoxycyclohexenone (ECH) moiety occurs in natural products of both bacteria and ascomycete and basidiomycete fungi. While the enzymes for ECH formation in bacteria and ascomycetes have been identified and characterized, it remained obscure how this structure is biosynthesized in basidiomycetes. In this study, we i) identified a genetic locus responsible for panepoxydone biosynthesis in the basidiomycete mushroom Panus rudis and ii) biochemically characterized PanH, the cytochrome P450 enzyme catalyzing epoxide formation in this pathway. Using a PanH-producing yeast as a biocatalyst, we synthesized a small library of bioactive ECH compounds as a proof of concept. Furthermore, homology modeling, molecular dynamics simulation, and site directed mutation revealed the substrate specificity of PanH. Remarkably, PanH is unrelated to ECH-forming enzymes in bacteria and ascomycetes, suggesting that mushrooms evolved this biosynthetic capacity convergently and independently of other organisms.
Collapse
Affiliation(s)
- Yan-Long Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Man Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Lin Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Markus Gressler
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Johannes Rassbach
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Jacob M Wurlitzer
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Ying Zeng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Dirk Hoffmeister
- Department Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-Universität Jena, Beutenbergstr. 11a, 07745, Jena, Germany
| |
Collapse
|
3
|
Lambrinidis G, Tsantili-Kakoulidou A. Multi-objective optimization methods in novel drug design. Expert Opin Drug Discov 2020; 16:647-658. [PMID: 33353441 DOI: 10.1080/17460441.2021.1867095] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: In multi-objective drug design, optimization gains importance, being upgraded to a discipline that attracts its own research. Current strategies are broadly classified into single - objective optimization (SOO) and multi-objective optimization (MOO).Areas covered: Starting with SOO and the ways used to incorporate multiple criteria into it, the present review focuses on MOO techniques, their comparison, advantages, and restrictions. Pareto analysis and the concept of dominance stand in the core of MOO. The Pareto front, Pareto ranking, and limitations of Pareto-based methods, due to high dimensions and data uncertainty, are outlined. Desirability functions and the weighted sum approaches are described as stand-alone techniques to transform the MOO problem to SOO or in combination with pareto analysis and evolutionary algorithms. Representative applications in different drug research areas are also discussed.Expert opinion: Despite their limitations, the use of combined MOO techniques, as well as being complementary to SOO or in conjunction with artificial intelligence, contributes dramatically to efficient drug design, assisting decisions and increasing success probabilities. For multi-target drug design, optimization is supported by network approaches, while applicability of MOO to other fields like drug technology or biological complexity opens new perspectives in the interrelated fields of medicinal chemistry and molecular biology.
Collapse
Affiliation(s)
- George Lambrinidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Anna Tsantili-Kakoulidou
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| |
Collapse
|
4
|
Lambrinidis G, Tsantili-Kakoulidou A. Challenges with multi-objective QSAR in drug discovery. Expert Opin Drug Discov 2018; 13:851-859. [DOI: 10.1080/17460441.2018.1496079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- George Lambrinidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Athens, Greece
| | - Anna Tsantili-Kakoulidou
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Athens, Greece
| |
Collapse
|