1
|
Dubkara H, Lal J, Saxena D, Akhir A, Maitra R, Chopra S, Reddy DN. Discovery of a potent ornithine-modified gramicidin S analogue against drug-resistant Staphylococcus aureus and Enterococcus faecalis with minimal red blood cell toxicity. Eur J Med Chem 2025; 292:117654. [PMID: 40288118 DOI: 10.1016/j.ejmech.2025.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The high haemolytic toxicity of Gramicidin S restricts its therapeutic use to topical applications. Given the growing need for new antibiotics and drawing inspiration from the cyclic structure and druggable characteristics of Gramicidin S, we have synthesized 15 ornithine (Orn) modified analogous peptides systematically and investigated their antimicrobial activity and cytotoxicity. Results revealed that mono- ornithine residue replaced with tryptophan (11) and arginine (12) peptides showed improved activity against multidrug resistant bacterial strains of Staphylococcus aureus and Enterococcus faecalis (MIC 4-8 μg/mL) compared with comparators vancomycin (MIC >64 μg/mL), levofloxacin (MIC 32-64 μg/mL) and meropenem (MIC 8-64 μg/mL). Cytotoxicity data demonstrated that peptide 11 (HC50 = 112.1 μg/mL) and 12 (HC50 = 186 μg/mL) exhibited greatly reduced haemolytic activity, as compared with Gramicidin S (HC50 = 35.13 μg/mL). The concentration-dependent time-kill kinetic assay resulted the active peptide 12 represents better bactericidal effect compared with 11 and vancomycin. Scanning electron microscope analysis shows that GS and the modified peptide 12 disrupt the bacterial cell surface, causing damage and leading to bacterial cell death. 2D NOESY data of 12 showed that the arginine residue side-chain guanidinium ion and tryptophan indole form a cation-π interaction. This interaction between arginine and tryptophan stabilizes the β-sheet conformation, selectively targets bacterial membranes, hence exhibiting reduced red blood cell toxicity. The overall study suggests that the peptide 12 may be further developed as an antibiotic for systematic use against infections caused due to S. aureus.
Collapse
Affiliation(s)
- Harshita Dubkara
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rahul Maitra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
2
|
Horváth L, Biri-Kovács B, Baranyai Z, Stipsicz B, Méhes E, Jezsó B, Krátký M, Vinšová J, Bősze S. New Salicylanilide Derivatives and Their Peptide Conjugates as Anticancer Compounds: Synthesis, Characterization, and In Vitro Effect on Glioblastoma. ACS OMEGA 2024; 9:16927-16948. [PMID: 38645331 PMCID: PMC11024950 DOI: 10.1021/acsomega.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.
Collapse
Affiliation(s)
- Lilla Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Beáta Biri-Kovács
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Zsuzsa Baranyai
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Bence Stipsicz
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
- Institute
of Biology, Doctoral School of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Előd Méhes
- Institute
of Physics, Department of Biological Physics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Bálint Jezsó
- Research
Centre for Natural Sciences, Institute of
Enzymology, Budapest 1053, Hungary
- ELTE-MTA
“Momentum” Motor Enzymology Research Group, Department
of Biochemistry, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Martin Krátký
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| |
Collapse
|
3
|
Faleye OS, Boya BR, Lee JH, Choi I, Lee J. Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacol Rev 2023; 76:90-141. [PMID: 37845080 DOI: 10.1124/pharmrev.123.000863] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
4
|
Lal J, Kaul G, Akhir A, Saxena D, Dubkara H, Shekhar S, Chopra S, Reddy DN. β-Turn editing in Gramicidin S: Activity impact on replacing proline α-carbon with stereodynamic nitrogen. Bioorg Chem 2023; 138:106641. [PMID: 37300963 DOI: 10.1016/j.bioorg.2023.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Gramicidin S, natural antimicrobial peptide is used commercially in medicinal lozenges for sore throat and Gram-negative and Gram-positive bacterial infections. However, its clinical potential is limited to topical applications because of its high red blood cells (RBC) cytotoxicity. Given the importance of developing potential antibiotics and inspired by the cyclic structure and druggable features of Gramicidin S, we edited proline α-carbon with stereodynamic nitrogen to examine the direct impact on biological activity and cytotoxicity with respect to prolyl counterpart. Natural Gramicidin S (12), proline-edited peptides 13-16 and wild-type d-Phe-d-Pro β-turn mimetics (17 and 18) were synthesized using solid phase peptide synthesis and investigated their activity against clinically relevant bacterial pathogens. Interestingly, mono-proline edited analogous peptide 13 showed moderate improvement in antimicrobial activity against E. coli ATCC 25922 and K.pneumoniae BAA 1705 as compared to Gramicidin S. Furthermore, proline edited peptide 13 exhibited equipotent antimicrobial effect against MDR S. aureus and Enterococcus spp. Analysis of cytotoxicity against VERO cells and RBC, reveals that proline edited peptides showed two-fivefold lesser cytotoxicity than the counterpart Gramicidin S. Our study suggests that introducing single azPro/Pro mutation in Gramicidin S marginally improved the activity and lessens the cytotoxicity as compared with the parent peptide.
Collapse
Affiliation(s)
- Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Abdul Akhir
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Harshita Dubkara
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Shashank Shekhar
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
5
|
Szepe CK, Kafle A, Bhattarai S, Handy ST, Farone MB. Evaluation of the Antibacterial Effect of Aurone-Derived Triazoles on Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1370. [PMID: 37760667 PMCID: PMC10525585 DOI: 10.3390/antibiotics12091370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Infections caused by antibiotic-resistant bacteria continue to pose a significant public health threat despite their overall decreasing numbers in the last two decades. One group of compounds fundamental to the search for new agents is low-cost natural products. In this study, we explored a group of newly synthesized novel aurone-derived triazole compounds to identify those with pharmaceutical potential as inhibitors of antibiotic-resistant Staphylococcus aureus. Using the broth microdilution method, antibacterial activities against methicillin-resistant S. aureus ATCC 43300 (MRSA) and methicillin-sensitive S. aureus ATCC 29213 (MSSA) were identified for four aurone-derived triazole compounds, AT106, AT116, AT125, and AT137, using the half-maximal inhibitory concentrations for the bacteria (IC50) and mammalian cell lines (CC50). Compounds AT125 and AT137 were identified to have pharmaceutical potential as the IC50 values against MRSA were 5.412 µM and 3.870 µM, whereas the CC50 values measured on HepG2 cells were 50.57 µM and 39.81 µM, respectively, resulting in selectivity indexes (SI) > 10. Compounds AT106 and AT116 were also selected for further study. IC50 values for these compounds were 5.439 µM and 3.178 µM, and the CC50 values were 60.33 µM and 50.87 µM, respectively; however, SI values > 10 were for MSSA only. Furthermore, none of the selected compounds showed significant hemolytic activity for human erythrocytes. We also tested the four compounds against S. aureus biofilms. Although AT116 and AT125 successfully disrupted MSSA biofilms, there was no measurable potency against MRSA biofilms. Checkerboard antibiotic assays to identify inhibitory mechanisms for these compounds indicated activity against bacterial cell membranes and cell walls, supporting the pharmaceutical potential for aurone-derived triazoles against antibiotic-resistant bacteria. Examining structure-activity relationships between the four compounds in this study and other aurone-derived triazoles in our library suggest that substitution with a halogen on either the salicyl ring or triazole aryl group along with triazoles having nitrile groups improves anti-Staphylococcal activity with the location of the functionality being very important.
Collapse
Affiliation(s)
- Csilla Klara Szepe
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Arjun Kafle
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA (S.T.H.)
| | - Shrijana Bhattarai
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA (S.T.H.)
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA (S.T.H.)
| | - Mary B. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| |
Collapse
|
6
|
Alazemi AM, Dawood KM, Al-Matar HM, Tohamy WM. Microwave-assisted chemoselective synthesis and photophysical properties of 2-arylazo-biphenyl-4-carboxamides from hydrazonals. RSC Adv 2023; 13:25054-25068. [PMID: 37614785 PMCID: PMC10442861 DOI: 10.1039/d3ra04558g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
The reaction of 3-oxo-2-arylhydrazonopropanals with acetoacetanilide in an equimolar ratio, under DBU/1,4-dioxane/microwave irradiation reaction conditions, resulted in chemoselective formation of 4-arylazo-5-hydroxy-benzamide derivatives. The structures of the obtained biphenyl-4-carboxamides were characterized by several spectroscopic techniques including IR, 1H- and 13C-NMR, MS and HRMS, and X-ray single crystals of three examples. The photophysical properties of the new products were also evaluated, with a particular focus on their absorption and emission spectra, which provided valuable information regarding their optical properties. The new compounds emitted 513-549 nm green fluorescence in acetone solution under UV irradiation.
Collapse
Affiliation(s)
- Abdulrahman M Alazemi
- Chemistry Department, Faculty of Science, University of Kuwait P.O. Box 5969 Safat 13060 Kuwait +965 24816482
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556
| | - Hamad M Al-Matar
- Chemistry Department, Faculty of Science, University of Kuwait P.O. Box 5969 Safat 13060 Kuwait +965 24816482
| | - Wael M Tohamy
- Chemistry Department, Faculty of Science, University of Kuwait P.O. Box 5969 Safat 13060 Kuwait +965 24816482
- Organometallic and Organometalloid Chemistry Department, National Research Centre Cairo Egypt
| |
Collapse
|
7
|
Kesternich V, Pérez-Fehrmann M, Quezada V, Castroagudín M, Nelson R, Martínez R. A simple and efficient synthesis of N-[3-chloro-4-(4-chlorophenoxy)-phenyl]-2-hydroxy-3,5-diiodobenzamide, rafoxanide. CHEMICKE ZVESTI 2023; 77:1-5. [PMID: 37362790 PMCID: PMC10176281 DOI: 10.1007/s11696-023-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
A method for the synthesis of rafoxanide 6, a halogenated salicylanilide used as an efficient anthelmintic in sheep and cattle, is presented. Rafoxanide 6 was synthesized in only three steps from readily available 4-chlorophenol with 74% overall yield. The synthesis has two key stages: the first was salicylic acid iodination, adding iodine in the presence of hydrogen peroxide, which allowed obtaining a 95% yield. The second key stage was the reaction of 3,5-diiodosalicylic acid 5 with aminoether 4, where salicylic acid chloride was formed in situ with PCl3 achieving 82% yield. Chemical characterization of both intermediates and final product was achieved through physical and spectroscopic (IR, NMR and MS) techniques. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-023-02846-9.
Collapse
Affiliation(s)
- Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Mariña Castroagudín
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Rolando Martínez
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| |
Collapse
|
8
|
Lal J, Ramalingam K, Meena R, Ansari SB, Saxena D, Chopra S, Goyal N, Reddy DN. Design and synthesis of novel halogen rich salicylanilides as potential antileishmanial agents. Eur J Med Chem 2023; 246:114996. [PMID: 36565533 DOI: 10.1016/j.ejmech.2022.114996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The available therapeutic treatment for leishmaniasis is inadequate and toxic due to side effects, expensive and emergence of drug resistance. Affordable and safe antileishmanial agents are urgently needed and toward this objective, we synthesized a series of 32 novel halogen rich salicylanilides including niclosamide and oxyclozanide and investigated their antileishmanial activity against amastigotes of Leishmania donovani. In vitro data showed fifteen compounds inhibited intracellular amastigotes with an IC50 of below 5 μM and selectivity index above 10. Among 15 active compounds, 14 and 24 demonstrated better activity with an IC50 of 2.89 μM and 2.09 μM respectively and selectivity index is 18. Compound 24 exhibited significant in vivo antileishmanial efficacy and reduced 65% of the splenic parasite load on day 28th post-treatment in the experimental visceral leishmaniasis golden hamster model. The data suggest that 24 can be a promising lead candidate possessing potential to be developed into a leishmanial drug candidate.
Collapse
Affiliation(s)
- Jhajan Lal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rachana Meena
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Shabina B Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Deepanshi Saxena
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Damodara N Reddy
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Antibacterial Activity of Squaric Amide Derivative SA2 against Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2022; 11:antibiotics11111497. [DOI: 10.3390/antibiotics11111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA)-caused infection is difficult to treat because of its resistance to commonly used antibiotic, and poses a significant threat to public health. To develop new anti-bacterial agents to combat MRSA-induced infections, we synthesized novel squaric amide derivatives and evaluated their anti-bacterial activity by determining the minimum inhibitory concentration (MIC). Additionally, inhibitory activity of squaric amide 2 (SA2) was measured using the growth curve assay, time-kill assay, and an MRSA-induced skin infection animal model. A scanning electron microscope and transmission electron microscope were utilized to observe the effect of SA2 on the morphologies of MRSA. Transcriptome analysis and real-time PCR were used to test the possible anti-bacterial mechanism of SA2. The results showed that SA2 exerted bactericidal activity against a number of MRSA strains with an MIC at 4–8 µg/mL. It also inhibited the bacterial growth curve of MRSA strains in a dose-dependent manner, and reduced the colony formation unit in 4× MIC within 4–8 h. The infective lesion size and the bacterial number in the MRSA-induced infection tissue of mice were reduced significantly within 7 days after SA2 treatment. Moreover, SA2 disrupted the bacterial membrane and alanine dehydrogenase-dependent NAD+/NADH homeostasis. Our data indicates that SA2 is a possible lead compound for the development of new anti-bacterial agents against MRSA infection.
Collapse
|