1
|
Czeleń P, Skotnicka A, Szefler B, Kabatc-Borcz J, Sutkowy P. Design and Synthesis of New 5-Methylisatin Derivatives as Potential CDK2 Inhibitors. Int J Mol Sci 2025; 26:2144. [PMID: 40076766 PMCID: PMC11900410 DOI: 10.3390/ijms26052144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains one of the leading causes of death globally, driving the need for effective therapies. Targeting cyclin-dependent kinase 2 (CDK2), a critical cell cycle regulator, is a promising approach for cancer treatment. This study developed a new group of 5-methylisatin derivatives with strong binding potential to CDK2. By combining the isatin core with various benzoylhydrazide substituents, the design process was guided by molecular docking, dynamic simulations, and ADMET analysis. Thirty-one derivatives were modelled, and a subset was synthesised and characterised for their physicochemical and spectroscopic properties. The analysis suggested that substitutions at R2 and R3 positions improved binding affinity, while modifications at R4 were less favourable. Hydrogen bonds with GLU81 and LEU83, along with hydrophobic interactions, were key to stabilising the complexes. A comparison with a reference molecule (RM) 3-((2,6-Dichlorobenzylidene)hydrazono)indolin-2-one, showing inhibitory activity similar to doxorubicin, revealed several advantages for the new derivatives. The multidimensional comparative analysis highlighted significant improvements in active site affinity, conformational stability, and fit. ADMET analysis confirmed comparable performance in most areas, with superior bioavailability observed in derivatives 1, 2a, 2b, 3h, 3b, and 3e. These results suggest that 5-methylisatin derivatives could be promising CDK2 inhibitors.
Collapse
Affiliation(s)
- Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland;
| | - Agnieszka Skotnicka
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland; (A.S.); (J.K.-B.)
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpinskiego 5, 85-096 Bydgoszcz, Poland;
| | - Janina Kabatc-Borcz
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland; (A.S.); (J.K.-B.)
| | - Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum, Nicolaus Copernicus University, Karłowicza 24, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Gavadia R, Rasgania J, Sahu N, Varma-Basil M, Chauhan V, Kumar S, Mor S, Singh D, Jakhar K. Design and Synthesis of Isatin-Tagged Isoniazid Conjugates with Cogent Antituberculosis and Radical Quenching Competence: In-vitro and In-silico Evaluations. Chem Biodivers 2024; 21:e202400765. [PMID: 39024129 DOI: 10.1002/cbdv.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
In pursuit of potential chemotherapeutic alternates to combat severe tuberculosis infections, novel heterocyclic templates derived from clinically approved anti-TB drug isoniazid and isatin have been synthesized that demonstrate potent inhibitory action against Mycobacterium tuberculosis, and compound 4i with nitrophenyl motif exhibited the highest anti-TB efficacy with a MIC value of 2.54 μM/ml. Notably, the same nitro analog 4i shows the best antioxidant efficacy among all the synthesized compounds with an IC50 value of 37.37 μg/ml, suggesting a synergistic influence of antioxidant proficiency on the anti-TB action. The titled compounds exhibit explicit binding affinity with the InhA receptor. The befitting biochemical reactivity and near-appropriate pharmacokinetic proficiency of the isoniazid conjugates is reflected in the density functional theory (DFT) studies and ADMET screening. The remarkable anti-TB action of the isoniazid cognates with marked radical quenching ability may serve as a base for developing multi-target medications to confront drug-resistant TB pathogens.
Collapse
Affiliation(s)
- Renu Gavadia
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Jyoti Rasgania
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Neetu Sahu
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Varsha Chauhan
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- Department of Microbiology, M. D. University, Rohtak, Haryana, 124001, India
| | - Sanjay Kumar
- Department of Microbiology, M. D. University, Rohtak, Haryana, 124001, India
| | - Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Devender Singh
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Komal Jakhar
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
3
|
Nimmo AJ, Kasten K, White G, Roeterdink J, McKay AP, Cordes DB, Smith AD. One-Pot Access to Functionalised Malamides via Organocatalytic Enantioselective Formation of Spirocyclic β-Lactone-Oxindoles and Double Ring-Opening. Molecules 2024; 29:3635. [PMID: 39125040 PMCID: PMC11313722 DOI: 10.3390/molecules29153635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Malamides (diamide derivatives of malic acid) are prevalent in nature and of significant biological interest, yet only limited synthetic methods to access functionalised enantiopure derivatives have been established to date. Herein, an effective synthetic method to generate this molecular class is developed through in situ formation of spirocyclic β-lactone-oxindoles (employing a known enantioselective isothiourea-catalysed formal [2+2] cycloaddition of C(1)-ammonium enolates and isatin derivatives) followed by a subsequent dual ring-opening protocol (of the β-lactone and oxindole) with amine nucleophiles. The application of this protocol is demonstrated across twelve examples to give densely functionalised malamide derivatives with high enantio- and diastereo-selectivity (up to >95:5 dr and >99:1 er).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrew David Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK; (A.J.N.); (K.K.); (G.W.); (J.R.); (A.P.M.)
| |
Collapse
|
4
|
Karakullukçu NT, Muğlu H, Yakan H, Yılmaz VM, Marah S, İnce İA. Kinetic Insights into the Antioxidant Effect of Isatin-Thiosemicarbazone in Biodiesel Blends. Antioxidants (Basel) 2024; 13:819. [PMID: 39061888 PMCID: PMC11273829 DOI: 10.3390/antiox13070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Biodiesel has several drawbacks, such as being prone to oxidation, having reduced stability, and having limited storage time. Antioxidants compatible with biodiesel are being used to address its drawbacks. Utilizing antioxidants effectively improves the quality of biodiesel. Enhancing the quality of biodiesel for use as a clean energy source benefits both the global economy and ecology. Therefore, we believe that our work will contribute to the advancement of the biodiesel industry worldwide. This study used blends consisting of 20% biodiesel and 80% diesel fuel. Isatin-thiosemicarbazones were tested as additives in blends at a concentration of 3000 parts per million (ppm) using an oxifast device and were compared with the chemical antioxidant Trolox. FT-IR, DSC, and TGA were used to characterize these samples. DSC measured sample crystallization temperatures (Tc). Samples with antioxidants showed decreased values compared to the non-antioxidant diesel sample D100. Several DSC tests were conducted to determine the antioxidant strengths of various samples. The results show that the FT-IR spectrum's antioxidant effect regions grow clearer with antioxidants. The extra antioxidant is effective. Biodiesel's oxidative stability improves with isatin-thiosemicarbazones at varying concentrations. The kinetics of thermal decomposition of isatin-thiosemicarbazones under non-isothermal conditions were determined using the Kissinger, Ozawa, and Boswell techniques. The activation energies of compounds 1 and 2 were calculated as 137-147 kJ mol-1 and 173-183 kJ mol-1, respectively.
Collapse
Affiliation(s)
- Nalan Türköz Karakullukçu
- Karadeniz Advanced Technology Research and Application Center, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey
| | - Halit Muğlu
- Department of Chemistry, Faculty Science, Kastamonu University, 37150 Kastamonu, Turkey;
| | - Hasan Yakan
- Department of Chemistry Education, Faculty of Education, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey;
| | | | - Sarmad Marah
- Department of Chemistry, Faculty of Science, Ondokuz Mayis University, Atakum, 55200 Samsun, Turkey;
| | - İkbal Agah İnce
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet, Ali Aydinlar University, Atasehir, 34752 İstanbul, Turkey;
| |
Collapse
|
5
|
Rasgania J, Gavadia R, Sahu N, Sharma P, Chauhan NS, Saharan V, Kapoor RK, Jakhar K. Design, synthesis and exploration of novel triazinoindoles as potent quorum-sensing inhibitors and radical quenchers. Future Med Chem 2024; 16:399-416. [PMID: 38375563 DOI: 10.4155/fmc-2023-0313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Background: Antimicrobial resistance has become a critical health concern, and quorum-sensing exacerbates the resistance by facilitating cell-to-cell communication within the microbial community, leading to severe pathogenic outbreaks. Methods & results: Novel 1-(2-((5H-[1,2,4]-triazino[5,6-b]indol-3-yl)thio)acetyl)indoline-2,3-diones were synthesized. The title compounds exhibit outstanding anti-quorum-sensing efficacy, and compound 7g demonstrated the maximum proficiency (IC50 = 0.0504 μg/ml). The hybrids displayed potent antioxidant action, and compound 7c showed the highest antioxidant ability (IC50 = 40.71 μg/ml). Molecular docking of the isatin hybrids against DNA gyrase and quorum-sensing receptor CviR validated the observed in vitro findings. The befitting pharmacokinetic profile of the synthesized drug candidates was ascertained through absorption, distribution, metabolism, excretion and toxicity screening. Conclusion: The remarkable biocompetence of the synthesized triazinoindoles may help to combat drug-resistant infections.
Collapse
Affiliation(s)
- Jyoti Rasgania
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Renu Gavadia
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Neetu Sahu
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Pinki Sharma
- Department of Biochemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Nar S Chauhan
- Department of Biochemistry, M. D. University, Rohtak, 124001, Haryana, India
| | - Vicky Saharan
- Department of Microbiology, M. D. University, Rohtak, 124001, Haryana, India
| | - Rajeev K Kapoor
- Department of Microbiology, M. D. University, Rohtak, 124001, Haryana, India
| | - Komal Jakhar
- Department of Chemistry, M. D. University, Rohtak, 124001, Haryana, India
| |
Collapse
|
6
|
Apaydın ÇB, Göktaş F, Naesens L, Karalı N. Novel 2-indolinone derivatives as promising agents against respiratory syncytial and yellow fever viruses. Future Med Chem 2024; 16:295-310. [PMID: 38288568 DOI: 10.4155/fmc-2023-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Background: A vaccine or antiviral drug for respiratory syncytial virus (RSV) infections and a specific antiviral drug for yellow fever virus (YFV) infections has not yet been developed. Method: In this study, 2-indolinone-based N-(4-sulfamoylphenyl)hydrazinecarbothioamides were synthesized. Along with these new compounds, previously synthesized 2-indolinone-based N-(3-sulfamoylphenyl)hydrazinecarbothioamides were evaluated against various DNA and RNA viruses. Results: Some 2-indolinone compounds exhibited nontoxic and selective antiviral activities against RSV and YFV. Halogen substitution at the indole ring increased the anti-RSV activities. Moreover, 1-benzyl and 5-halogen or nitro-substituted compounds were the most effective compounds against YFV. Conclusion: Generally, the 3-sulfonamide-substituted compounds were determined to be more effective than 4-sulfonamide-substituted compounds against RSV and YFV.
Collapse
Affiliation(s)
- Çağla Begüm Apaydın
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34126, Istanbul, Turkey
| | - Füsun Göktaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34126, Istanbul, Turkey
| | - Lieve Naesens
- Rega Institute, KU Leuven, Department of Microbiology, Immunology & Transplantation, B-3000, Leuven, Belgium
| | - Nilgün Karalı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34126, Istanbul, Turkey
| |
Collapse
|
7
|
ElNaggar MH, Elgazar AA, Gamal G, Hamed SM, Elsayed ZM, El-Ashrey MK, Abood A, El Hassab MA, Soliman AM, El-Domany RA, Badria FA, Supuran CT, Eldehna WM. Identification of sulphonamide-tethered N-((triazol-4-yl)methyl)isatin derivatives as inhibitors of SARS-CoV-2 main protease. J Enzyme Inhib Med Chem 2023; 38:2234665. [PMID: 37434404 PMCID: PMC10405867 DOI: 10.1080/14756366.2023.2234665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
SARS-CoV-2 pandemic in the end of 2019 led to profound consequences on global health and economy. Till producing successful vaccination strategies, the healthcare sectors suffered from the lack of effective therapeutic agents that could control the spread of infection. Thus, academia and the pharmaceutical sector prioritise SARS-CoV-2 antiviral drug discovery. Here, we exploited previous reports highlighting the anti-SARS-CoV-2 activities of isatin-based molecules to develop novel triazolo-isatins for inhibiting main protease (Mpro) of the virus, a crucial enzyme for its replication in the host cells. Particularly, sulphonamide 6b showed promising inhibitory activity with an IC50= 0.249 µM. Additionally, 6b inhibited viral cell proliferation with an IC50 of 4.33 µg/ml, and was non-toxic to VERO-E6 cells (CC50 = 564.74 µg/ml) displaying a selectivity index of 130.4. In silico analysis of 6b disclosed its ability to interact with key residues in the enzyme active site, supporting the obtained in vitro findings.
Collapse
Affiliation(s)
- Mai H. ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ghada Gamal
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Shimaa M. Hamed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M. Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed K. El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amira Abood
- Chemistry of Natural and microbial products, National Research center, Egypt
- Department of Bioscience, University of Kent, Canterbury, UK
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Egypt
| | - Ahmed M. Soliman
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Ramadan A. El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| |
Collapse
|
8
|
Ezz Eldin RR, Saleh MA, Alwarsh SA, Rushdi A, Althoqapy AA, El Saeed HS, Abo Elmaaty A. Design and Synthesis of Novel 5-((3-(Trifluoromethyl)piperidin-1-yl)sulfonyl)indoline-2,3-dione Derivatives as Promising Antiviral Agents: In Vitro, In Silico, and Structure-Activity Relationship Studies. Pharmaceuticals (Basel) 2023; 16:1247. [PMID: 37765055 PMCID: PMC10534365 DOI: 10.3390/ph16091247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, a series of new isatin derivatives was designed and synthesized (1-9) as broad-spectrum antiviral agents. Consequently, the antiviral activities of the synthesized compounds (1-9) were pursued against three viruses, namely influenza virus (H1N1), herpes simplex virus 1 (HSV-1), and coxsackievirus B3 (COX-B3). In particular, compounds 9, 5, and 4 displayed the highest antiviral activity against H1N1, HSV-1, and COX-B3 with IC50 values of 0.0027, 0.0022, and 0.0092 µM, respectively. Compound 7 was the safest, with a CC50 value of 315,578.68 µM. Moreover, a quantitative PCR (real-time PCR) assay was carried out for the most relevant compounds. The selected compounds exhibited a decrease in viral gene expression. Additionally, the conducted in silico studies emphasized the binding affinities of the synthesized compounds and their reliable pharmacokinetic properties as well. Finally, a structure-antiviral activity relationship study was conducted to anticipate the antiviral activity change upon future structural modification.
Collapse
Affiliation(s)
- Rogy R. Ezz Eldin
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (M.A.S.); (H.S.E.S.)
| | - Sefat A. Alwarsh
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia;
| | - Areej Rushdi
- Department of Medical Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt; (A.R.); (A.A.A.)
| | - Azza Ali Althoqapy
- Department of Medical Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt; (A.R.); (A.A.A.)
| | - Hoda S. El Saeed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (M.A.S.); (H.S.E.S.)
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
9
|
Citarella A, Dimasi A, Moi D, Passarella D, Scala A, Piperno A, Micale N. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Biomolecules 2023; 13:1339. [PMID: 37759739 PMCID: PMC10647625 DOI: 10.3390/biom13091339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.
Collapse
Affiliation(s)
- Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Alessandro Dimasi
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Davide Moi
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 CA, 09042 Cagliari, Italy;
| | - Daniele Passarella
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milano, Italy; (A.D.); (D.P.)
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (A.P.)
| |
Collapse
|
10
|
Kumar V, Lal K, Kumar R, Kumar A, Mathpati RS, Singh MB, Kumari K. Click synthesis, antimicrobial, DNA photocleavage and computational studies of oxindole-tethered 1 H-1,2,3-triazoles. Future Med Chem 2023; 15:1115-1131. [PMID: 37565342 DOI: 10.4155/fmc-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Aim: To obtain new hybrids derived from isatin and triazole. Materials & methods: A series of oxindole-1-H-1,2,3-triazole hybrids (4a-l) were synthesized from 3-sulfenylated N-propargylated oxindoles and organic azides employing Cu(I)-catalyzed azide-alkyne cycloaddition. These compounds were evaluated in vitro for antimicrobial activity by the standard serial dilution method and DNA photocleavage activity. Results: Antimicrobial assay revealed that compounds 4l and 4f exhibited promising efficacy against Candida albicans and Rhizopus oryzae, respectively, with a minimum inhibitory concentration value of 0.0008 μmol/mL. Compounds 4h and 4k completely degraded plasmid DNA. Further molecular docking of compounds with 1KZN (4j and 4k) and 5TZ1 (4h and 4l) revealed good binding interactions. Conclusion: Results of the current research can help in the development of new antimicrobial agents with high efficacy.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Ravinder Kumar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil Kumar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Ramling S Mathpati
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, 136119, India
| | - Madhur Babu Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, 110021, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
11
|
Ferdous N, Reza MN, Hossain MU, Mahmud S, Napis S, Chowdhury K, Mohiuddin AKM. Mpropred: A machine learning (ML) driven Web-App for bioactivity prediction of SARS-CoV-2 main protease (Mpro) antagonists. PLoS One 2023; 18:e0287179. [PMID: 37352252 PMCID: PMC10289339 DOI: 10.1371/journal.pone.0287179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged in 2019 and still requiring treatments with fast clinical translatability. Frequent occurrence of mutations in spike glycoprotein of SARS-CoV-2 led the consideration of an alternative therapeutic target to combat the ongoing pandemic. The main protease (Mpro) is such an attractive drug target due to its importance in maturating several polyproteins during the replication process. In the present study, we used a classification structure-activity relationship (CSAR) model to find substructures that leads to to anti-Mpro activities among 758 non-redundant compounds. A set of 12 fingerprints were used to describe Mpro inhibitors, and the random forest approach was used to build prediction models from 100 distinct data splits. The data set's modelability (MODI index) was found to be robust, with a value of 0.79 above the 0.65 threshold. The accuracy (89%), sensitivity (89%), specificity (73%), and Matthews correlation coefficient (79%) used to calculate the prediction performance, was also found to be statistically robust. An extensive analysis of the top significant descriptors unveiled the significance of methyl side chains, aromatic ring and halogen groups for Mpro inhibition. Finally, the predictive model is made publicly accessible as a web-app named Mpropred in order to allow users to predict the bioactivity of compounds against SARS-CoV-2 Mpro. Later, CMNPD, a marine compound database was screened by our app to predict bioactivity of all the compounds and results revealed significant correlation with their binding affinity to Mpro. Molecular dynamics (MD) simulation and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) analysis showed improved properties of the complexes. Thus, the knowledge and web-app shown herein can be used to develop more effective and specific inhibitors against the SARS-CoV-2 Mpro. The web-app can be accessed from https://share.streamlit.io/nadimfrds/mpropred/Mpropred_app.py.
Collapse
Affiliation(s)
- Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mohammad Uzzal Hossain
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Bioinformatics Division, National Institute of Biotechnology, Ashulia, Ganakbari, Savar, Dhaka, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Suhami Napis
- Department of Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor D.E., Malaysia
| | - Kamal Chowdhury
- Biology Department, Claflin University, Orangeburg, SC, United States of America
| | - A. K. M. Mohiuddin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| |
Collapse
|
12
|
Kaushik S, Paliwal SK, Iyer MR, Patil VM. Promising Schiff bases in antiviral drug design and discovery. Med Chem Res 2023; 32:1063-1076. [PMID: 37305208 PMCID: PMC10171175 DOI: 10.1007/s00044-023-03068-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
Emerging and re-emerging illnesses will probably present a new hazard of infectious diseases and have fostered the urge to research new antiviral agents. Most of the antiviral agents are analogs of nucleosides and only a few are non-nucleoside antiviral agents. There is quite a less percentage of marketed/clinically approved non-nucleoside antiviral medications. Schiff bases are organic compounds that possess a well-demonstrated profile against cancer, viruses, fungus, and bacteria, as well as in the management of diabetes, chemotherapy-resistant cases, and malarial infections. Schiff bases resemble aldehydes or ketones with an imine/azomethine group instead of a carbonyl ring. Schiff bases have a broad application profile not only in therapeutics/medicine but also in industrial applications. Researchers have synthesized and screened various Schiff base analogs for their antiviral potential. Some of the important heterocyclic compounds like istatin, thiosemicarbazide, quinazoline, quinoyl acetohydrazide, etc. have been used to derive novel Schiff base analogs. Keeping in view the outbreak of viral pandemics and epidemics, this manuscript compiles a review of Schiff base analogs concerning their antiviral properties and structural-activity relationship analysis.
Collapse
Affiliation(s)
- Shikha Kaushik
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
- Department of Pharmacy, Banasthali Vidyapith, Tonk, Rajasthan India
| | | | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, NIAAA/NIH, Rockville, MD USA
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh India
| |
Collapse
|
13
|
Saramago LC, Santana MV, Gomes BF, Dantas RF, Senger MR, Oliveira Borges PH, Ferreira VNDS, dos Santos Rosa A, Tucci AR, Dias Miranda M, Lukacik P, Strain-Damerell C, Owen CD, Walsh MA, Ferreira SB, Silva-Junior FP. AI-Driven Discovery of SARS-CoV-2 Main Protease Fragment-like Inhibitors with Antiviral Activity In Vitro. J Chem Inf Model 2023; 63:2866-2880. [PMID: 37058135 PMCID: PMC10124747 DOI: 10.1021/acs.jcim.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Indexed: 04/15/2023]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 μM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.
Collapse
Affiliation(s)
- Luiz Carlos Saramago
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Marcos V. Santana
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Bárbara Figueira Gomes
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Rafael Ferreira Dantas
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Mario R. Senger
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Pedro Henrique Oliveira Borges
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
- LaSOPB-Laboratório de Síntese
Orgânica e Prospecção Biológica, Instituto de Química,
Universidade Federal do Rio de Janeiro, 21040-900 Rio de
Janeiro, Brazil
| | - Vivian Neuza dos Santos Ferreira
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Alice dos Santos Rosa
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Amanda Resende Tucci
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Milene Dias Miranda
- LMMV-Laboratório de Morfologia e
Morfogênese Viral (LMMV), Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| | - Petra Lukacik
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Claire Strain-Damerell
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - C. David Owen
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Martin Austin Walsh
- Diamond Light Source, Harwell Science and
Innovation Campus, OX11 0DE Didcot, U.K.
- Research Complex at Harwell, Harwell
Science & Innovation Campus, OX11 0FA Didcot,
U.K.
| | - Sabrina Baptista Ferreira
- LaSOPB-Laboratório de Síntese
Orgânica e Prospecção Biológica, Instituto de Química,
Universidade Federal do Rio de Janeiro, 21040-900 Rio de
Janeiro, Brazil
| | - Floriano Paes Silva-Junior
- LaBECFar-Laboratório de Bioquímica
Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz,
Fundação Oswaldo Cruz, 21040-900 Rio de
Janeiro, Brazil
| |
Collapse
|
14
|
Dotsenko VV, Jassim NT, Temerdashev AZ, Abdul-Hussein ZR, Aksenov NA, Aksenova IV. New 6′-Amino-5′-cyano-2-oxo-1,2-dihydro-1′H-spiro[indole-3,4′-pyridine]-3′-carboxamides: Synthesis, Reactions, Molecular Docking Studies and Biological Activity. Molecules 2023; 28:molecules28073161. [PMID: 37049923 PMCID: PMC10096136 DOI: 10.3390/molecules28073161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The purpose of this work was to prepare new isatin- and monothiomalondiamide-based indole derivatives, as well as to study the properties of the new compounds. The four-component reaction of 5-R-isatins (R = H, CH3), malononitrile, monothiomalonamide (3-amino-3-thioxo- propanamide) and triethylamine in hot EtOH yields a mixture of isomeric triethylammonium 6′-amino-3′-(aminocarbonyl)-5′-cyano-2-oxo-1,2-dihydro-1′H- and 6′-amino-3′-(aminocarbonyl)- 5′-cyano-2-oxo-1,2-dihydro-3′H-spiro[indole-3,4′-pyridine]-2′-thiolates. The reactivity and structure of the products was studied. We found that oxidation of spiro[indole-3,4′-pyridine]-2′-thiolates with DMSO-HCl system produced only acidification products, diastereomeric 6′-amino-5′-cyano-5-methyl-2-oxo-2′-thioxo-1,2,2′,3′-tetrahydro-1′H-spiro-[indole-3,4′-pyridine]- 3′-carboxamides, instead of the expected isothiazolopyridines. The alkylation of the prepared spiro[indole-3,4′-pyridine]-2′-thiolates upon treatment with N-aryl α-chloroacetamides and α-bromoacetophenones proceeds in a regioselective way at the sulfur atom. In the case of α-bromoacetophenones, ring-chain tautomerism was observed for the S-alkylation products. According to NMR data, the compounds consist of a mixture of stereoisomers of 2′-amino-6′-[(2-aryl-2-oxoethyl)thio]-3′-cyano-2-oxo-1′H-spiro[indoline-3,4′-pyridine]-5′-carboxamides and 5′-amino-3′-aryl-6′-cyano-3′-hydroxy-2-oxo-2′,3′-dihydrospiro[indoline-3,7′-thiazolo[3,2-a]pyridine]-8′-carboxamides in various ratios. The structure of the synthesized compounds was confirmed by IR spectroscopy, HRMS, 1H and 13C DEPTQ NMR studies and the results of 2D NMR experiments (1H-13C HSQC, 1H-13C HMBC). Molecular docking studies were performed to investigate suitable binding modes of some new compounds with respect to the transcriptional regulator protein PqsR of Pseudomonas aeruginosa. The docking studies revealed that the compounds have affinity for the bacterial regulator protein PqsR of Pseudomonas aeruginosa with a binding energy in the range of −5.8 to −8.2 kcal/mol. In addition, one of the new compounds, 2′-amino-3′-cyano-5-methyl-2-oxo-6′-{[2-oxo-2-(p-tolylamino)ethyl]thio}-1′H-spiro-[indoline-3,4′-pyridine]-5′-carboxamide, showed in vitro moderate antibacterial effect against Pseudomonas aeruginosa and good antioxidant properties in a test with 1,1-diphenyl-2-picrylhydrazyl radical. Finally, three of the new compounds were recognized as moderately active herbicide safeners with respect to herbicide 2,4-D in the laboratory experiments on sunflower seedlings.
Collapse
Affiliation(s)
- Victor V. Dotsenko
- Department of Organic Chemistry and Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Nawras T. Jassim
- Department of Organic Chemistry and Technologies, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Azamat Z. Temerdashev
- Department of Analytical Chemistry, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia
| | - Zainab R. Abdul-Hussein
- Department of Pathological Analyses, College of Science, University of Basra, P.O. Box 49, Basrah 61004, Iraq
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| | - Inna V. Aksenova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia
| |
Collapse
|
15
|
Aisikaer A, Ma J, Li J, Li X. Hydroazidation of phenacylideneoxindoles: Synthesis of 3-substituted 3-azido-1,3-dihydro-2H-indol-2-ones via anti-electron addition. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Soylu-Eter Ö, Duran GN, Özbil M, Göktaş F, Cihan-Üstündağ G, Karalı N. Antiviral activity and molecular modeling studies on 1H-indole-2,3-diones carrying a naphthalene moiety. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
17
|
A Computational Study of the Immobilization of New 5-Nitroisatine Derivatives with the Use of C60-Based Functionalized Nanocarriers. Symmetry (Basel) 2023. [DOI: 10.3390/sym15010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Isatin-based compounds are a large group of drugs used as competitive inhibitors of ATP. The 5-nitroisatin derivatives studied in this work are inhibitors of the CDK2 enzyme, which can be used in the development of new anti-cancer therapies. One of the basic activities that often allows for an increase in biological activity while reducing the undesirable effects associated with the toxicity of medicinal substances is immobilization based on carriers. In this work, fifty nanocarriers derived from C60 fullerene, containing a bound phenyl ring on their surfaces, were used in the process of the immobilization of isatin derivatives. Based on flexible docking methods, the binding capacities of the drugs under consideration were determined using a wide range of nanocarriers containing symmetric and asymmetric modifications of the phenyl ring, providing various types of interactions. Based on the data collected for each of the tested drugs, including the binding affinity and the structure and stability of complexes, the best candidates were selected in terms of the type of substituent that modified the nanoparticle and its location. Among the systems with the highest affinity are the dominant complexes created by functionalized fullerenes containing substituents with a symmetrical location, such as R2-R6 and R3-R5. Based on the collected data, nanocarriers with a high potential for immobilization and use in the development of targeted therapies were selected for each of the tested drugs.
Collapse
|
18
|
Wang P, Zhang Z, Cao W, Zhang X. Development and evaluation of novel artemisinin-isatin hybrids with potential anti-leukemic cytotoxicity. Front Oncol 2023; 13:1112369. [PMID: 37124527 PMCID: PMC10140581 DOI: 10.3389/fonc.2023.1112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Twenty-one novel ester tethered artemisinin-isatin hybrids were designed, synthesized and screened against human myeloid leukemia cell lines (K562 and K562/ADR), human acute lymphoblastic leukemia cell line (CCRF-CEM) as well as normal human peripheral blood mononuclear cells (PBMCs) for their cytotoxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The structure-activity relationships (SARs) were also discussed to facilitate further rational design of more effective candidates. The preliminary results showed that most of the ester tethered artemisinin-isatin hybrids (IC50: 0.32-29.35 µM) exhibited promising activity against CCRF-CEM cells, and some of them (IC50: 1.23-49.84 µM) were also active against K562 and K562/ADR human myeloid leukemia cell lines. Among them, hybrid 7d (IC50: 0.32, 2.67 and 1.23 µM) not only possessed profound activity against the three tested leukemia cell lines and excellent safety and selectivity profiles, but also showed promising pharmacokinetic properties. Accordingly, hybrid 7d could be considered as a potential lead molecule for the development of novel anti-leukemic agents with minimal untoward events to normal human cells.
Collapse
Affiliation(s)
- Peng Wang
- Department of Critical Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Tumor Radiotherapy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Cao
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, Shandong, China
| | - Xuan Zhang
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- *Correspondence: Xuan Zhang,
| |
Collapse
|
19
|
Barakat A, Mostafa A, Ali M, Al-Majid AM, Domingo LR, Kutkat O, Moatasim Y, Zia K, Ul-Haq Z, Elshaier YAMM. Design, Synthesis and In Vitro Evaluation of Spirooxindole-Based Phenylsulfonyl Moiety as a Candidate Anti-SAR-CoV-2 and MERS-CoV-2 with the Implementation of Combination Studies. Int J Mol Sci 2022; 23:ijms231911861. [PMID: 36233160 PMCID: PMC9569468 DOI: 10.3390/ijms231911861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
The search for an effective anti-viral to inhibit COVID-19 is a challenge for the specialized scientific research community. This work investigated the anti-coronavirus activity for spirooxindole-based phenylsulfone cycloadducts in a single and combination protocols. The newly designed anti-SARS-CoV-2 therapeutics spirooxindoles synthesized by [3 + 2] cycloaddition reactions represent an efficient approach. One-pot multicomponent reactions between phenyl vinyl sulfone, substituted isatins, and amines afforded highly stereoselective anti-SARS-CoV-2 therapeutics spirooxindoles with three stereogenic centers. Herein, the newly synthesized spirooxindoles were assessed individually against the highly pathogenic human coronaviruses and proved to be highly potent and safer. Interestingly, the synergistic effect by combining the potent, tested spirooxindoles resulted in an improved antiviral activity as well as better host-cell safety. Compounds 4i and 4d represented the most potent activity against MERS-CoV with IC50 values of 11 and 23 µM, respectively. Both compounds 4c and 4e showed equipotent activity with the best IC50 against SARS-CoV-2 with values of 17 and 18 µM, respectively, then compounds 4d and 4k with IC50 values of 24 and 27 µM, respectively. Then, our attention oriented to perform a combination protocol as anti-SARS-CoV-2 for the best compounds with a different binding mode and accompanied with different pharmacophores. Combination of compound 4k with 4c and combination of compounds 4k with 4i proved to be more active and safer. Compounds 4k with 4i displayed IC50 = 3.275 µM and half maximal cytotoxic-concentration CC50 = 11832 µM. MD simulation of the most potential compounds as well as in silico ADMET properties were investigated. This study highlights the potential drug-like properties of spirooxindoles as a cocktail anti-coronavirus protocol.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (A.B.); (Y.A.M.M.E.); Tel.: +966-11467-5901 (A.B.); Fax: +966-11467-5992 (A.B.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32958, Egypt
- Correspondence: (A.B.); (Y.A.M.M.E.); Tel.: +966-11467-5901 (A.B.); Fax: +966-11467-5992 (A.B.)
| |
Collapse
|