2
|
Gao Y, Wang Y, Lei H, Xu Z, Li S, Yu H, Xie J, Zhang Z, Liu G, Zhang Y, Zheng J, Wang JZ. A novel transgenic mouse line with hippocampus-dominant and inducible expression of truncated human tau. Transl Neurodegener 2023; 12:51. [PMID: 37950283 PMCID: PMC10637005 DOI: 10.1186/s40035-023-00379-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Intraneuronal accumulation of hyperphosphorylated tau is a defining hallmark of Alzheimer's disease (AD). However, mouse models imitating AD-exclusive neuronal tau pathologies are lacking. METHODS We generated a new tet-on transgenic mouse model expressing truncated human tau N1-368 (termed hTau368), a tau fragment increased in the brains of AD patients and aged mouse brains. Doxycycline (dox) was administered in drinking water to induce hTau368 expression. Immunostaining and Western blotting were performed to measure the tau level. RNA sequencing was performed to evaluate gene expression, and several behavioral tests were conducted to evaluate mouse cognitive functions, emotion and locomotion. RESULTS Dox treatment for 1-2 months at a young age induced overt and reversible human tau accumulation in the brains of hTau368 transgenic mice, predominantly in the hippocampus. Meanwhile, the transgenic mice exhibited AD-like high level of tau phosphorylation, glial activation, loss of mature neurons, impaired hippocampal neurogenesis, synaptic degeneration and cognitive deficits. CONCLUSIONS This study developed a well-characterized and easy-to-use tool for the investigations and drug development for AD and other tauopathies.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yuying Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiyang Lei
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhendong Xu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shihong Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haitao Yu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhao Xie
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430030, China
| | - Gongping Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Zhang
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Endocrine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
5
|
Gao Y, Liu Y, Zhang Y, Wang Y, Zheng J, Xu Z, Yu H, Jin Z, Yin Y, He B, Sun F, Xiong R, Lei H, Jiang T, Liang Y, Ke D, Zhao S, Mo W, Li Y, Zhou Q, Wang X, Zheng C, Zhang H, Liu G, Yang Y, Wang JZ. Olfactory Threshold Test as a Quick Screening Tool for Cognitive Impairment: Analysis of Two Independent Cohorts. J Alzheimers Dis 2023; 93:169-178. [PMID: 36970911 DOI: 10.3233/jad-230023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Olfactory dysfunction appears prior to cognitive decline, and thus it has been suggested to be an early predictor of Alzheimer's disease. However, it is currently not known whether and how olfactory threshold test could serve as a quick screening tool for cognitive impairment. OBJECTIVE To define olfactory threshold test for screening cognitive impairment in two independent cohorts. METHODS The participants are comprised of two cohorts in China, 1,139 inpatients with type 2 diabetes mellitus (T2DM, Discovery cohort) and 1,236 community-dwelling elderly (Validation cohort). Olfactory and cognitive functions were evaluated by Connecticut Chemosensory Clinical Research Center test and Mini-Mental State Examination (MMSE), respectively. Regression analyses and receiver operating characteristic (ROC) analyses were carried out to determine the relation and discriminative performance of the olfactory threshold score (OTS) regarding identification of cognition impairment. RESULTS Regression analysis showed that olfactory deficit (reducing OTS) was correlated with cognitive impairment (reducing MMSE score) in two cohorts. ROC analysis revealed that the OTS could distinguish cognitive impairment from cognitively normal individuals, with mean area under the curve values of 0.71 (0.67, 0.74) and 0.63 (0.60, 0.66), respectively, but it failed to discriminate dementia from mild cognitive impairment. The cut-off point of 3 showed the highest validity for the screening, with the diagnostic accuracy of 73.3% and 69.5%. CONCLUSION Reducing OTS is associated with cognitive impairment in T2DM patients and the community-dwelling elderly. Therefore, olfactory threshold test may be used as a readily accessible screening tool for cognitive impairment.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Wuhan Brain Hospital, Wuhan, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- Li-Yuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuying Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Zhipeng Xu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haitao Yu
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zetao Jin
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Yin
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Benrong He
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Liang
- Department of Radiology, Wuhan Brain Hospital, Wuhan, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi Zhao
- Department of Endocrinology, the Central Hospital of Wuhan, Wuhan, China
| | - Wen Mo
- Health Service Center of Jianghan District, Wuhan, China
| | - Yanni Li
- Health Service Center of Jianghan District, Wuhan, China
| | - Qiuzhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenghong Zheng
- Department of Endocrinology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|