1
|
Faal H, Meier LR, Canlas IJ, Murman K, Wallace M, Carrillo D, Cooperband MF. Volatiles from male honeydew excretions attract conspecific male spotted lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae). FRONTIERS IN INSECT SCIENCE 2022; 2:982965. [PMID: 38468787 PMCID: PMC10926466 DOI: 10.3389/finsc.2022.982965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 03/13/2024]
Abstract
The spotted lanternfly (SLF), Lycorma delicatula (Hemiptera: Fulgoridae), is a generalist phloem feeder that produces copious amounts of honeydew, which in turn coats the understory. These insects form large aggregations covering the trunks of some trees, while similar trees nearby mysteriously seem unattractive. We investigated whether volatiles from SLF honeydew are attractive to conspecifics by collecting honeydew from the field and testing it for SLF attraction in a two-choice olfactometer. We found that honeydew excreted by adult male SLF was significantly attractive to male SLF, but not female SLF. Although the honeydew excreted by adult female SLF did not significantly attract male or female SLF, both sexes showed a positive trend towards attraction in response to female honeydew in the olfactometer. Analysis of the headspace volatiles of honeydew was conducted, and numerous semiochemicals were identified. Five of which, 2-heptanone, 2-octanone, 2-nonanone, benzyl acetate, and 1-nonanol, were tested in two-choice behavioral assays against a blank control. Benzyl acetate and 2-octanone were attractive to both sexes, whereas 2-heptanone was only attractive to males, and 2-nonanone only to females. The remaining compound, 1-nonanol, repelled females, but not males. Although honeydew has been reported as a source of kairomones for some natural enemies, this may be the first report of sex-specific attractants for conspecific insects found in the honeydew volatiles of a planthopper.
Collapse
Affiliation(s)
- Hajar Faal
- Forest Pest Methods Laboratory, USDA‐APHIS‐PPQ‐S&T, Buzzards Bay, MA, United States
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Linnea R. Meier
- Forest Pest Methods Laboratory, USDA‐APHIS‐PPQ‐S&T, Buzzards Bay, MA, United States
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Isaiah J. Canlas
- Forest Pest Methods Laboratory, USDA‐APHIS‐PPQ‐S&T, Buzzards Bay, MA, United States
| | - Kelly Murman
- Forest Pest Methods Laboratory, USDA‐APHIS‐PPQ‐S&T, Buzzards Bay, MA, United States
| | - Matthew Wallace
- Biology Department, East Stroudsburg University, East Stroudsburg, PA, United States
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Miriam F. Cooperband
- Forest Pest Methods Laboratory, USDA‐APHIS‐PPQ‐S&T, Buzzards Bay, MA, United States
| |
Collapse
|
2
|
Olaide OY, Tchouassi DP, Yusuf AA, Pirk CW, Masiga DK, Saini RK, Torto B. Effect of zebra skin-derived compounds on field catches of the human African trypanosomiasis vector Glossina fuscipes fuscipes. Acta Trop 2021; 213:105745. [PMID: 33160957 DOI: 10.1016/j.actatropica.2020.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
The riverine tsetse fly Glossina fuscipes fuscipes is a major vector of trypanosome pathogens causing African trypanosomiasis. This fly species uses a combination of olfactory and visual cues to locate its hosts. Previously, traps and targets baited with visual cues have been used in vector control, but the development of olfactory-based tools has been challenging. Recently, repellents have shown promise as olfactory-based tools in tsetse vector control. Here, we evaluated a three-component blend comprising 6-methyl-5-hepten-2-one, acetophenone and geranyl acetone (blend K), previously identified as a repellent for savannah tsetse flies in zebra skin odor, on G. f. fuscipes populations. Using a series of 6 × 6 randomized Latin square-designed experiments, G. f. fuscipes catches in biconical traps were monitored on four islands of Lake Victoria in western Kenya between July and September 2019, after the long rainy season. Traps were baited with blend K and individual components of this blend. The known tsetse repellent blend WRC (waterbuck repellent compounds) and trap alone were included as controls. Daily catch data in thirty-six replicate trials were analyzed using generalized linear model with negative binomial error structure using the package "MASS" in R. Treatment, day and site were set as predictor variables. Our results showed that, blend K significantly reduced G. f. fuscipes catches by 25.6% (P < 0.01) compared to the control trap alone but was not significantly different from WRC which reduced catches by 20.7% (P < 0.05). Of the individual compounds, geranyl acetone solely significantly reduced catches by 29.1% (P < 0.01) which did not differ from blend K or WRC. We conclude that geranyl acetone accounts for the repellent effect of blend K on the riverine tsetse fly, G. f. fuscipes, demonstrating the ecological importance of animal skin odors in the host-seeking behavior of medically-important tsetse fly vectors.
Collapse
|