1
|
Allison JR, Chary K, Ottley C, Vuong QC, German MJ, Durham J, Thelwall P. The effect of magnetic resonance imaging on mercury release from dental amalgam at 3T and 7T. J Dent 2022; 127:104322. [PMID: 36228805 DOI: 10.1016/j.jdent.2022.104322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES To measure mercury release from standardised hydroxyapatite/amalgam constructs during MRI scanning and investigate the impact of static field strength and radiofrequency (RF) power on mercury release. METHODS Amalgam was placed into 140 hydroxyapatite disks and matured for 14-days in artificial saliva. The solution was replaced, and samples split into five groups of 28 immediately prior to MRI. One group had no exposure, and the remainder were exposed to either a 3T or 7T MRI scanner, each at high and low RF power. Mercury concentration was measured by inductively coupled plasma mass spectrometry. Groups were compared using one-way ANOVA, and two-way ANOVA for main effects/ interaction of field strength/ RF power. RESULTS Mercury concentration was increased in the 7T groups (high/ low: 15.43/ 11.33 ng mL-1) and 3T high group (3.59) compared to control (2.44). MRI field strength significantly increased mercury release (p < .001) as did RF power (p = .030). At 3T, mercury release was 20.3 times lower than during maturation of dental amalgam, and for the average person an estimated 1.50 ng kg-1 of mercury might be released during one 3T investigation; this is substantially lower than the tolerable weekly intake of 4,000 ng kg-1. CONCLUSION Mercury release from amalgam shows a measurable increase following MRI, and the magnitude changes with magnetic field strength and RF power. The amount of mercury released is small compared to release during amalgam maturation. Amalgam mercury release during MRI is unlikely to be clinically meaningful and highly likely to remain below safe levels.
Collapse
Affiliation(s)
- James R Allison
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, UK; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK.
| | - Karthik Chary
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; Centre for In Vivo Imaging, Newcastle University, Newcastle upon Tyne, UK
| | - Chris Ottley
- Department of Earth Sciences, Durham University, UK
| | - Quoc C Vuong
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Matthew J German
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK
| | - Justin Durham
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, UK; Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Peter Thelwall
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, UK; Centre for In Vivo Imaging, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Zhang Y, Lv Y, You H, Dou W, Hou B, Shi L, Zuo Z, Mao W, Feng F. Study of the hippocampal internal architecture in temporal lobe epilepsy using 7 T and 3 T MRI. Seizure 2019; 71:116-123. [DOI: 10.1016/j.seizure.2019.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022] Open
|
3
|
Wijtenburg SA, Rowland LM, Oeltzschner G, Barker PB, Workman CI, Smith GS. Reproducibility of brain MRS in older healthy adults at 7T. NMR IN BIOMEDICINE 2019; 32:e4040. [PMID: 30489668 PMCID: PMC6324949 DOI: 10.1002/nbm.4040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 10/01/2018] [Accepted: 10/26/2018] [Indexed: 05/21/2023]
Abstract
To date, the majority of MRS reproducibility studies have been conducted in healthy younger adults, with only a few conducted in older adults at 3 T. With the growing interest in applying MRS methods to study the longitudinal course and effects of treatments in neurodegenerative disease, it is important to establish reproducibility in age-matched controls, especially in older individuals. In this study, spectroscopic data were acquired using a stimulated echo acquisition mode (STEAM) localization technique in two regions (anterior and posterior cingulate cortices-ACC, PCC, respectively) in 10 healthy, cognitively normal older adults (64 ± 8.1 years). Reproducibility was assessed via mean coefficients of variation (CVs) and relative differences (RDs) calculated across two visits performed 2-3 months apart. Metabolites with high signal-to-noise ratio (SNR) such as NAA, tCho, and Glu had mean CVs of 10% or less and mean RDs of 15% or less across both regions. Metabolites with lower SNR such as GABA and Gln had slightly higher mean CVs of 22% or less and mean RDs of 27% or less across both regions. These results demonstrate the feasibility of acquiring MRS data at 7 T in older subjects, and establish that the spectroscopic data are reproducible in both the ACC and PCC in older, healthy subjects to the same extent as in previous studies in young subjects.
Collapse
Affiliation(s)
- S. Andrea Wijtenburg
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M. Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Psychology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
- F.M. Kirby Research Center for Functional Brain Imaging, The Kennedy Krieger Institute, Baltimore, MD
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
- F.M. Kirby Research Center for Functional Brain Imaging, The Kennedy Krieger Institute, Baltimore, MD
| | - Clifford I. Workman
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gwenn S. Smith
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
4
|
Wilke M, Groeschel S, Lorenzen A, Rona S, Schuhmann MU, Ernemann U, Krägeloh‐Mann I. Clinical application of advanced MR methods in children: points to consider. Ann Clin Transl Neurol 2018; 5:1434-1455. [PMID: 30480038 PMCID: PMC6243383 DOI: 10.1002/acn3.658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
The application of both functional MRI and diffusion MR tractography prior to a neurosurgical operation is well established in adults, but less so in children, for several reasons. For this review, we have identified several aspects (task design, subject preparation, actual scanning session, data processing, interpretation of results, and decision-making) where pediatric peculiarities should be taken into account. Further, we not only systematically identify common issues, but also provide solutions, based on our experience as well as a review of the pertinent literature. The aim is to provide the clinician as well as the imaging scientist with information that helps to plan, conduct, and interpret such a clinically-indicated exam in a way that maximizes benefit for, and minimizes the burden on the individual child.
Collapse
Affiliation(s)
- Marko Wilke
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
- Children's Hospital and Department of NeuroradiologyExperimental Pediatric NeuroimagingTuebingenGermany
| | - Samuel Groeschel
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
- Children's Hospital and Department of NeuroradiologyExperimental Pediatric NeuroimagingTuebingenGermany
| | - Anna Lorenzen
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
- Children's Hospital and Department of NeuroradiologyExperimental Pediatric NeuroimagingTuebingenGermany
| | - Sabine Rona
- Department of NeurosurgeryUniversity HospitalTuebingenGermany
| | | | - Ulrike Ernemann
- Department of Diagnostic and Interventional NeuroradiologyUniversity HospitalUniversity of TübingenTuebingenGermany
| | - Ingeborg Krägeloh‐Mann
- Department of Pediatric Neurology and Developmental MedicineChildren's HospitalTuebingenGermany
| |
Collapse
|
5
|
Keuken MC, Isaacs BR, Trampel R, van der Zwaag W, Forstmann BU. Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging. Brain Topogr 2018; 31:513-545. [PMID: 29497874 PMCID: PMC5999196 DOI: 10.1007/s10548-018-0638-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
Abstract
With the recent increased availability of ultra-high field (UHF) magnetic resonance imaging (MRI), substantial progress has been made in visualizing the human brain, which can now be done in extraordinary detail. This review provides an extensive overview of the use of UHF MRI in visualizing the human subcortex for both healthy and patient populations. The high inter-subject variability in size and location of subcortical structures limits the usability of atlases in the midbrain. Fortunately, the combined results of this review indicate that a large number of subcortical areas can be visualized in individual space using UHF MRI. Current limitations and potential solutions of UHF MRI for visualizing the subcortex are also discussed.
Collapse
Affiliation(s)
- M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands.
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.
| | - B R Isaacs
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - R Trampel
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Postbus 15926, 1001NK, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
7
|
De Cocker LJ, Lindenholz A, Zwanenburg JJ, van der Kolk AG, Zwartbol M, Luijten PR, Hendrikse J. Clinical vascular imaging in the brain at 7T. Neuroimage 2018; 168:452-458. [PMID: 27867089 PMCID: PMC5862656 DOI: 10.1016/j.neuroimage.2016.11.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/30/2016] [Accepted: 11/16/2016] [Indexed: 01/23/2023] Open
Abstract
Stroke and related cerebrovascular diseases are a major cause of mortality and disability. Even at standard-field-strengths (1.5T), MRI is by far the most sensitive imaging technique to detect acute brain infarctions and to characterize incidental cerebrovascular lesions, such as white matter hyperintensities, lacunes and microbleeds. Arterial time-of-flight (TOF) MR angiography (MRA) can depict luminal narrowing or occlusion of the major brain feeding arteries, and this without the need for contrast administration. Compared to 1.5T MRA, the use of high-field strength (3T) and even more so ultra-high-field strengths (7T), enables the visualization of the lumen of much smaller intracranial vessels, while adding a contrast agent to TOF MRA at 7T may enable the visualization of even more distal arteries in addition to veins and venules. Moreover, with 3T and 7T, the arterial vessel walls beyond the circle of Willis become visible with high-resolution vessel wall imaging. In addition, with 7T MRI, the brain parenchyma can now be visualized on a submillimeter scale. As a result, high-resolution imaging studies of the brain and its blood supply at 7T have generated new concepts of different cerebrovascular diseases. In the current article, we will discuss emerging clinical applications and future directions of vascular imaging in the brain at 7T MRI.
Collapse
Affiliation(s)
- Laurens Jl De Cocker
- Department of Radiology, University Medical Center Utrecht, The Netherlands; Department of Radiology, Kliniek Sint-Jan, Brussels, Belgium.
| | - Arjen Lindenholz
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Jaco Jm Zwanenburg
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | | | - Maarten Zwartbol
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Peter R Luijten
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
8
|
Abstract
Despite the fact that MRI has evolved to become the standard method for diagnosis and monitoring of patients with brain tumours, conventional MRI sequences have two key limitations: the inability to show the full extent of the tumour and the inability to differentiate neoplastic tissue from nonspecific, treatment-related changes after surgery, radiotherapy, chemotherapy or immunotherapy. In the past decade, PET involving the use of radiolabelled amino acids has developed into an important diagnostic tool to overcome some of the shortcomings of conventional MRI. The Response Assessment in Neuro-Oncology working group - an international effort to develop new standardized response criteria for clinical trials in brain tumours - has recommended the additional use of amino acid PET imaging for brain tumour management. Concurrently, a number of advanced MRI techniques such as magnetic resonance spectroscopic imaging and perfusion weighted imaging are under clinical evaluation to target the same diagnostic problems. This Review summarizes the clinical role of amino acid PET in relation to advanced MRI techniques for differential diagnosis of brain tumours; delineation of tumour extent for treatment planning and biopsy guidance; post-treatment differentiation between tumour progression or recurrence versus treatment-related changes; and monitoring response to therapy. An outlook for future developments in PET and MRI techniques is also presented.
Collapse
Affiliation(s)
- Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4) Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4) Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.,Department of Neurology, University of Cologne, Kerpener Strasse 62, D-50937 Cologne, Germany.,Center for Integrated Oncology, Josef-Stelzmann-Strasse 9, D-50937 Cologne, Germany
| | - Elke Hattingen
- Department of Neuroradiology and Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine (INM-3, INM-4) Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.,Departments of Nuclear Medicine and Neurology, RWTH Aachen University Clinic, Pauwelsstrasse 30, D-52074 Aachen, Germany.,Monash Institute of Medical Engineering, Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton Campus, Wellington Road, Melbourne, Victoria 3800, Australia
| |
Collapse
|
9
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|
10
|
Abstract
The revolution in cancer genomics has uncovered a variety of clinically relevant mutations in primary brain tumours, creating an urgent need to develop non-invasive imaging biomarkers to assess and integrate this genetic information into the clinical management of patients. Metabolic reprogramming is a central hallmark of cancer, including brain tumours; indeed, many of the molecular pathways implicated in the pathogenesis of brain tumours result in reprogramming of metabolism. This relationship provides the opportunity to devise in vivo metabolic imaging modalities to improve diagnosis, patient stratification, and monitoring of treatment response. Metabolic phenomena, such as the Warburg effect and altered mitochondrial metabolism, can be leveraged to image brain tumours using techniques including PET and MRI. Moreover, genetic alterations, such as mutations affecting isocitrate dehydrogenase, are associated with unique metabolic signatures that can be detected using magnetic resonance spectroscopy. The need to translate our understanding of the molecular features of brain tumours into imaging modalities with clinical utility is growing; metabolic imaging provides a unique platform to achieve this objective. In this Review, we examine the molecular basis for metabolic reprogramming in brain tumours, and examine current non-invasive metabolic imaging strategies that can be used to interrogate these molecular characteristics with the ultimate goal of guiding and improving patient care.
Collapse
|