1
|
Recognizing cisplatin as a potential radiation recall trigger: case report and focused systematic review. Strahlenther Onkol 2023:10.1007/s00066-023-02059-9. [PMID: 36920507 DOI: 10.1007/s00066-023-02059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/05/2023] [Indexed: 03/16/2023]
Abstract
We present a case of mild radiation recall dermatitis triggered by cisplatin chemotherapy given simultaneously to re-irradiation. The dermatitis area correlated to skin exposure of the previous radiation therapy, characterizing the reaction clearly as a recall. Cisplatin has not yet been recognized as a potential trigger for recall reactions. Although it was part of several reported multidrug trigger combinations, all review works referred to cisplatin as not suspicious, suggesting the combination partner as the effector. We performed a focused systematic literature review aiming to re-evaluate the real role of cisplatin as a (co-)triggering factor. In total, 30 reported cases were found, 90% triggered by multidrug combinations. The latter tended to cause more severe symptoms. Besides findings supporting the 20 Gy-threshold theory, no correlation between radiation dose and severity or prevalence was found. Recognition of cisplatin as a trigger of the recall phenomenon and its supportive management may prevent unnecessary cessation of systemic chemotherapy. Systematic reporting of recall events as a secondary endpoint of prospective clinical trials applying radiation therapy could support understanding the recall phenomenon.
Collapse
|
2
|
Jiang S, Awadasseid A, Narva S, Cao S, Tanaka Y, Wu Y, Fu W, Zhao X, Wei C, Zhang W. Anti-cancer activity of benzoxazinone derivatives via targeting c-Myc G-quadruplex structure. Life Sci 2020; 258:118252. [PMID: 32791149 DOI: 10.1016/j.lfs.2020.118252] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022]
Abstract
AIMS This study aimed to analyze the impact of four synthesized benzoxazinone derivatives as screening drugs on c-Myc-overexpressed cancer cells (H7402, HeLa, SK-RC-42, SGC7901, and A549) and to explore their interaction mechanisms in detail. MATERIALS AND METHODS Using morphological analysis, real-time cytotoxicity analysis, wound healing assay, reverse transcription PCR, electrophoretic mobility shift assay, and circular dichroism spectroscopy techniques. KEY FINDINGS Results revealed that these four compounds could inhibit proliferation of SK-RC-42, SGC7901, and A549 cells in five cancer cell lines to varying degrees and significantly hinder migration. More importantly, the RT-PCR assay showed that the compounds could surprisingly downregulate the expression of c-Myc mRNA in a dose-dependent manner in the five cancer cells, which may be one of the causes of cancer cell proliferation in vitro inhibition. Further EMSA assays demonstrated that at the molecular level of DNA, four compounds can induce the formation of G-quadruplexes (G4-DNAs) in the c-Myc gene promoter. In addition, the CD result of compound 1 clearly indicates that it specifically induces a c-Myc GC-rich 36mer double-stranded DNA in the c-Myc promoter to form a G-quadruplex hybrid configuration. In conclusion, the compounds studied could dose-dependently inhibit the growth and migration of the cancer cells being investigated. This is positively associated with the reduction of overexpression of the c-Myc gene, which may be significantly regulated by the association of compounds with the G-quadruplexes produced in the c-Myc gene promoter region. SIGNIFICANCE We conclude that three compounds merit further study, particularly against non-small-cell lung cancer, as leading compounds of anticancer drugs.
Collapse
Affiliation(s)
- Shikun Jiang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Song Cao
- College of Pharmacy, East China University of Science and Technology, Shanghai 021, China.
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wei Fu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuanhe Wei
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|