1
|
Gerrand C, Amary F, Anwar HA, Brennan B, Dileo P, Kalkat MS, McCabe MG, McCullough AL, Parry MC, Patel A, Seddon BM, Sherriff JM, Tirabosco R, Strauss SJ. UK guidelines for the management of bone sarcomas. Br J Cancer 2025; 132:32-48. [PMID: 39550489 PMCID: PMC11723950 DOI: 10.1038/s41416-024-02868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 11/18/2024] Open
Abstract
This document is an update of the British Sarcoma Group guidelines (2016) and provides a reference standard for the clinical care of UK patients with primary malignant bone tumours (PMBT) and giant cell tumours (GCTB) of bone. The guidelines recommend treatments that are effective and should be available in the UK, and support decisions about management and service delivery. The document represents a consensus amongst British Sarcoma Group members in 2024. Key recommendations are that bone pain, or a palpable mass should always lead to further investigation and that patients with clinical or radiological findings suggestive of a primary bone tumour at any anatomic site should be referred to a specialist centre and managed by an accredited bone sarcoma multidisciplinary team. Treatment recommendations are provided for the major tumour types and for localised, metastatic and recurrent disease. Follow-up schedules are suggested.
Collapse
Affiliation(s)
- Craig Gerrand
- Bone and Soft Tissue Tumour Service, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK.
| | - Fernanda Amary
- Bone and Soft Tissue Tumour Service, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | - Hanny A Anwar
- Bone and Soft Tissue Tumour Service, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | | | - Palma Dileo
- Department of Oncology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| | | | | | | | - Michael C Parry
- Royal Orthopaedic Hospital, Bristol Road South, Birmingham, B31 2AP, UK
| | - Anish Patel
- Royal Orthopaedic Hospital, Bristol Road South, Birmingham, B31 2AP, UK
| | - Beatrice M Seddon
- Department of Oncology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| | | | - Roberto Tirabosco
- Bone and Soft Tissue Tumour Service, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
| | - Sandra J Strauss
- Department of Oncology, University College London Hospital NHS Foundation Trust, London, NW1 2BU, UK
| |
Collapse
|
2
|
Rodrigues ACLF, Tos SM, Shaaban A, Mantziaris G, Trifiletti DM, Sheehan J. Proton beam and carbon ion radiotherapy in skull base chordoma: a systematic review, meta-analysis and meta-regression with trial sequential analysis. Neurosurg Rev 2024; 47:893. [PMID: 39644344 PMCID: PMC11625079 DOI: 10.1007/s10143-024-03117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/10/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Chordomas are rare, locally aggressive tumors that have a high rate of recurrence, especially at the skull base. This systematic review and meta-analysis aimed to analyze the efficacy and safety of proton beam therapy (PBT) and carbon ion radiotherapy (CIRT) for skull base chordoma. We conducted a systematic search of MEDLINE, EMBASE, CENTRAL, Web of Science, and Ovid up to November 26, 2023, following the PRISMA statement. Studies involving more than 10 patients with skull base chordoma treated with PBT or CIRT were included. The outcomes analyzed were local control, overall survival, progression-free survival, and toxicities. Meta-analysis was performed using the Mantel-Haenszel method and the inverse variance method. Fourteen studies met the inclusion criteria, encompassing 1,145 patients (671 treated with PBT and 474 with CIRT). No significant difference was found between PBT and CIRT for 5-year local control (LC) and overall survival (OS). The only timepoint with a difference in local control was at 3 years, when PBT showed an advantage in local control (90% vs. 83% for CIRT; p = 0.05) and progression-free survival was similar (94% for PBT vs. 83% for CIRT; p = 0.09). Sensitivity analysis and meta-regression revealed no significant influence of predefined parameters on outcomes. Publication bias was suggested by asymmetrical funnel plots. Both PBT and CIRT are effective treatments for skull base chordoma, with comparable long-term efficacy. This meta-analysis underscores the need for individualized treatment approaches and further research to refine these therapies in clinical practice.
Collapse
Affiliation(s)
| | - Salem M Tos
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Ahmed Shaaban
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Georgios Mantziaris
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Miladinovic V, Klaver YLB, Krol ADG, Kroesen M, Verbist BM, Habraken SJM, van Furth WR, Coremans IEM. Robust IMPT and follow-up toxicity in skull base chordoma and chondrosarcoma-a single-institution clinical experience. Strahlenther Onkol 2024; 200:1066-1073. [PMID: 39207463 PMCID: PMC11588961 DOI: 10.1007/s00066-024-02280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chordomas and chondrosarcomas of the skull base are rare, slowly growing malignant bone neoplasms. Despite their radioresistant properties, proton therapy has been successfully used as an adjunct to resection or as a definitive treatment. Herewith, we present our experience with robustly optimized intensity-modulated proton therapy (IMPT) and related toxicities in skull base chordoma and chondrosarcoma patients treated at HollandPTC, Delft, the Netherlands. METHODS Clinical data, treatment plans, and acute toxicities of patients treated between July 2019 and August 2021 were reviewed. CT and 3.0T MRI scans for treatment planning were performed in supine position in a thermoplastic mold. In total, 21 dose optimization and 28 dose evaluation scenarios were simulated. Acute toxicity was scored weekly before and during the treatment according to the CTCAE v4.0. Median follow-up was 35 months (range 12-36 months). RESULTS Overall, 9 chordoma and 3 chondrosarcoma patients with 1-3 resections prior to IMPT were included; 4 patients had titanium implants. Brainstem core and surface and spinal cord core and surface were used for nominal plan robust optimization in 11, 10, 8, and 7 patients, respectively. Middle ear inflammation, dry mouth, radiation dermatitis, taste disorder, and/or alopecia of grades 1-3 were noted at the end of treatment among 6 patients without similar complaints at inclusion; symptoms disappeared 3 months following the treatment. CONCLUSION Robustly optimized IMPT is clinically feasible as a postoperative treatment for skull base chordoma and chondrosarcoma patients. We observed acceptable early toxicities (grade 1-3) that disappeared within the first 3 months after irradiation.
Collapse
Affiliation(s)
- Vesna Miladinovic
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- HollandPTC, Delft, The Netherlands.
| | - Yvonne L B Klaver
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| | - Augustinus D G Krol
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| | | | - Berit M Verbist
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| | - Steven J M Habraken
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
- Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wouter R van Furth
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ida E M Coremans
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| |
Collapse
|
4
|
Eekers DBP, Zegers CML, Ahmed KA, Amelio D, Gupta T, Harrabi SB, Kazda T, Scartoni D, Seidel C, Shih HA, Minniti G. Controversies in neuro-oncology: Focal proton versus photon radiation therapy for adult brain tumors. Neurooncol Pract 2024; 11:369-382. [PMID: 39006517 PMCID: PMC11241386 DOI: 10.1093/nop/npae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Radiation therapy (RT) plays a fundamental role in the treatment of malignant and benign brain tumors. Current state-of-the-art photon- and proton-based RT combines more conformal dose distribution of target volumes and accurate dose delivery while limiting the adverse radiation effects. PubMed was systematically searched from from 2000 to October 2023 to identify studies reporting outcomes related to treatment of central nervous system (CNS)/skull base tumors with PT in adults. Several studies have demonstrated that proton therapy (PT) provides a reduced dose to healthy brain parenchyma compared with photon-based (xRT) radiation techniques. However, whether dosimetric advantages translate into superior clinical outcomes for different adult brain tumors remains an open question. This review aims at critically reviewing the recent studies on PT in adult patients with brain tumors, including glioma, meningiomas, and chordomas, to explore its potential benefits compared with xRT.
Collapse
Affiliation(s)
- Danielle B P Eekers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW-School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW-School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Kamran A Ahmed
- Departments of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Dante Amelio
- Trento Proton Therapy Center, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Tejpal Gupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg Ion Beam Therapy Center (HIT), University Hospital Heidelberg, Heidelberg, Germany
| | - Tomas Kazda
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University and Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Daniele Scartoni
- Trento Proton Therapy Center, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Clemens Seidel
- Comprehensive Cancer Center Central Germany, Leipzig, Germany
- Department of Radiation Oncology, University of Leipzig Medical Center, Leipzig, Germany
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- IRCCS Neuromed, Pozzilli IS, Italy
| |
Collapse
|
5
|
Saito T, Mizumoto M, Oshiro Y, Shimizu S, Li Y, Nakamura M, Hosaka S, Nakai K, Iizumi T, Inaba M, Fukushima H, Suzuki R, Maruo K, Sakurai H. Systematic Review and Meta-Analysis of Particle Beam Therapy versus Photon Radiotherapy for Skull Base Chordoma: TRP-Chordoma 2024. Cancers (Basel) 2024; 16:2569. [PMID: 39061207 PMCID: PMC11274426 DOI: 10.3390/cancers16142569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
[Objective] The aim of this study was to compare the efficacy of particle beam therapy (PT) with photon radiotherapy (RT) for treatment of skull base chordoma. [Methods] A systematic review was conducted for skull base chordoma treated with PT or photon RT reported from 1990 to 2022. Data were extracted for overall survival (OS) and progression-free survival (PFS), late adverse events, age, gender, gross total resection (GTR) rates, tumor volume, total irradiation dose, and treatment modality. Random-effects meta-regression analysis with the treatment modality as an explanatory variable was performed for each outcome to compare the modalities. [Results] A meta-analysis of 30 selected articles found 3- and 5-year OS rates for PT vs. photon RT or combined photon RT/proton beam therapy (PBT) of 90.8% (95% CI: 87.4-93.3%) vs. 89.5% (95% CI: 83.0-93.6%), p = 0.6543; 80.0% (95% CI: 75.7-83.6%) vs. 89.5% (95% CI: 83.0-93.6%), p = 0.6787. The 5-year PFS rates for PT vs. photon RT or photon RT/PBT were 67.8% (95% CI: 56.5-76.7%) vs. 40.2% (95% CI: 31.6-48.7%), p = 0.0004. A random-effects model revealed that the treatment modality (PT vs. photon RT or photon RT/PBT) was not a significant factor for 3-year OS (p = 0.42) and 5-year OS (p = 0.11), but was a significant factor for 5-year PFS (p < 0.0001). The rates of brain necrosis were 8-50% after PT and 0-4% after photon RT or photon RT/PBT. [Conclusion] This study shows that PT results in higher PFS compared to photon RT for skull base chordoma, but that there is a tendency for a higher incidence of brain necrosis with PT. Publication and analysis of further studies is needed to validate these findings.
Collapse
Affiliation(s)
- Takashi Saito
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan; (T.S.); (Y.L.); (M.N.); (K.N.); (T.I.); (H.S.)
| | - Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan; (T.S.); (Y.L.); (M.N.); (K.N.); (T.I.); (H.S.)
| | - Yoshiko Oshiro
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba 305-8558, Ibaraki, Japan;
| | - Shosei Shimizu
- Department of Pediatric Radiation Therapy Center/Pediatric Proton Beam Therapy Center, Hebei Yizhou Cancer Hospital, Zhuozhou 072750, China;
| | - Yinuo Li
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan; (T.S.); (Y.L.); (M.N.); (K.N.); (T.I.); (H.S.)
| | - Masatoshi Nakamura
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan; (T.S.); (Y.L.); (M.N.); (K.N.); (T.I.); (H.S.)
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8575, Ibaraki, Japan; (S.H.); (M.I.); (H.F.); (R.S.)
| | - Kei Nakai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan; (T.S.); (Y.L.); (M.N.); (K.N.); (T.I.); (H.S.)
| | - Takashi Iizumi
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan; (T.S.); (Y.L.); (M.N.); (K.N.); (T.I.); (H.S.)
| | - Masako Inaba
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8575, Ibaraki, Japan; (S.H.); (M.I.); (H.F.); (R.S.)
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8575, Ibaraki, Japan; (S.H.); (M.I.); (H.F.); (R.S.)
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Ryoko Suzuki
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba 305-8575, Ibaraki, Japan; (S.H.); (M.I.); (H.F.); (R.S.)
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan;
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan; (T.S.); (Y.L.); (M.N.); (K.N.); (T.I.); (H.S.)
| |
Collapse
|
6
|
Deng MY, Maas SLN, Hinz F, Karger CP, Sievers P, Eichkorn T, Meixner E, Hoegen-Sassmannshausen P, Hörner-Rieber J, Lischalk JW, Seidensaal K, Bernhardt D, Jungk C, Unterberg A, Wick A, Wick W, von Deimling A, Sahm F, Combs S, Herfarth K, Debus J, König L. Efficacy and toxicity of bimodal radiotherapy in WHO grade 2 meningiomas following subtotal resection with carbon ion boost: Prospective phase 2 MARCIE trial. Neuro Oncol 2024; 26:701-712. [PMID: 38079455 PMCID: PMC10995516 DOI: 10.1093/neuonc/noad244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5). METHODS A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. RESULTS With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. CONCLUSIONS Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.
Collapse
Affiliation(s)
- Maximilian Y Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Felix Hinz
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Philipp Sievers
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Philipp Hoegen-Sassmannshausen
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Jonathan W Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Health at Long Island, New York, New York, USA
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Christine Jungk
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Antje Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Kotecha R, La Rosa A, Mehta MP. How proton therapy fits into the management of adult intracranial tumors. Neuro Oncol 2024; 26:S26-S45. [PMID: 38437667 PMCID: PMC10911801 DOI: 10.1093/neuonc/noad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Intracranial tumors include a challenging array of primary and secondary parenchymal and extra-axial tumors which cause neurologic morbidity consequential to location, disease extent, and proximity to critical neurologic structures. Radiotherapy can be used in the definitive, adjuvant, or salvage setting either with curative or palliative intent. Proton therapy (PT) is a promising advance due to dosimetric advantages compared to conventional photon radiotherapy with regards to normal tissue sparing, as well as distinct physical properties, which yield radiobiologic benefits. In this review, the principles of efficacy and safety of PT for a variety of intracranial tumors are discussed, drawing upon case series, retrospective and prospective cohort studies, and randomized clinical trials. This manuscript explores the potential advantages of PT, including reduced acute and late treatment-related side effects and improved quality of life. The objective is to provide a comprehensive review of the current evidence and clinical outcomes of PT. Given the lack of consensus and directives for its utilization in patients with intracranial tumors, we aim to provide a guide for its judicious use in clinical practice.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Translational Medicine, Hebert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
8
|
Mattke M, Ohlinger M, Bougatf N, Wolf R, Welzel T, Roeder F, Gerum S, Fussl C, Annon-Eberharter N, Ellerbrock M, Jäkel O, Haberer T, Herfarth K, Uhl M, Debus J, Seidensaal K, Harrabi S. Patterns of Temporal Lobe Reaction and Radiation Necrosis after Particle Radiotherapy in Patients with Skull Base Chordoma and Chondrosarcoma-A Single-Center Experience. Cancers (Basel) 2024; 16:718. [PMID: 38398109 PMCID: PMC10886807 DOI: 10.3390/cancers16040718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The current study aims to evaluate the occurrence of temporal lobe reactions and identify possible risk factors for patients who underwent particle therapy of the skull base. METHODS 244 patients treated for skull base chordoma (n = 144) or chondrosarcoma (n = 100) at the Heidelberg Ion Beam Therapy Center (HIT) using a raster scan technique, were analyzed. Follow-up MRI-scans were matched with the initial planning images. Radiogenic reactions were contoured and analyzed based on volume and dose of treatment. RESULTS 51 patients with chordoma (35.4%) and 30 patients (30%) with chondrosarcoma experienced at least one temporal lobe reaction within the follow-up period (median 49 months for chondrosarcoma, 62 months for chordoma). Age, irradiated volume, and dose values were significant risk factors for the development of temporal lobe reactions with the highest significance for the value of DMax-7 being defined as the dose maximum in the temporal lobe minus the 7cc with the highest dose (p = 0.000000000019; OR 1.087). CONCLUSION Temporal lobe reactions are a common side effect after particle therapy of the skull base. We were able to develop a multivariate model, which predicted radiation reactions with a specificity of 99% and a sensitivity of 52.2%.
Collapse
Affiliation(s)
- Matthias Mattke
- Department of Radiation Oncology, Paracelsus Medical University, Salzburger Landesklinikum (SALK), 5020 Salzburg, Austria; (F.R.); (S.G.); (C.F.)
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
| | - Matteo Ohlinger
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
| | - Nina Bougatf
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Robert Wolf
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
| | - Thomas Welzel
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
| | - Falk Roeder
- Department of Radiation Oncology, Paracelsus Medical University, Salzburger Landesklinikum (SALK), 5020 Salzburg, Austria; (F.R.); (S.G.); (C.F.)
- Institute of Research and Development of Advanced Radiation Technologies (radART), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sabine Gerum
- Department of Radiation Oncology, Paracelsus Medical University, Salzburger Landesklinikum (SALK), 5020 Salzburg, Austria; (F.R.); (S.G.); (C.F.)
| | - Christoph Fussl
- Department of Radiation Oncology, Paracelsus Medical University, Salzburger Landesklinikum (SALK), 5020 Salzburg, Austria; (F.R.); (S.G.); (C.F.)
| | - Natalee Annon-Eberharter
- Department of Radiation Oncology, Paracelsus Medical University, Salzburger Landesklinikum (SALK), 5020 Salzburg, Austria; (F.R.); (S.G.); (C.F.)
| | - Malte Ellerbrock
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Oliver Jäkel
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Division for Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Matthias Uhl
- Department of Radiation Oncology, Ludwigshafen Hospital, 67063 Ludwigshafen, Germany;
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany (N.B.); (R.W.); (T.W.); (O.J.); (K.H.); (J.D.); (S.H.)
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany; (M.E.); (T.H.)
| |
Collapse
|
9
|
Jang JY, Kim K, Chen M, Akimoto T, Wang MLC, Kim M, Kim K, Lee TH, Yoo GS, Park HC. A meta-analysis comparing efficacy and safety between proton beam therapy versus carbon ion radiotherapy. Cancer Med 2024; 13:e7023. [PMID: 38396380 PMCID: PMC10891363 DOI: 10.1002/cam4.7023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND This study aimed to compare the outcomes of proton beam therapy (PBT) and carbon ion radiotherapy (CIRT) by a systematic review and meta-analysis of the existing clinical evidence. METHODS A systematic literature search was performed to identify studies comparing the clinical outcomes of PBT and CIRT. The included studies were required to report oncological outcomes (local control [LC], progression-free survival [PFS], or overall survival [OS]) or adverse events. RESULTS Eighteen articles comprising 1857 patients (947 treated with PBT and 910 treated with CIRT) were included in the analysis. The pooled analysis conducted for the overall population yielded average hazard ratios of 0.690 (95% confidence interval (CI), 0.493-0.967, p = 0.031) for LC, 0.952 (95% CI, 0.604-1.500, p = 0.590) for PFS, and 1.183 (0.872-1.607, p = 0.281) for OS with reference to CIRT. The subgroup analyses included patients treated in the head and neck, areas other than the head and neck, and patients with chordomas and chondrosarcomas. These analyses revealed no significant differences in most outcomes, except for LC in the subgroup of patients treated in areas other than the head and neck. Adverse event rates were comparable in both groups, with an odds ratio (OR) of 1.097 (95% CI, 0.744-1.616, p = 0.641). Meta-regression analysis for possible heterogeneity did not demonstrate a significant association between treatment outcomes and the ratio of biologically effective doses between modalities. CONCLUSION This study highlighted the comparability of PBT and CIRT in terms of oncological outcomes and adverse events.
Collapse
Affiliation(s)
- Jeong Yun Jang
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Kangpyo Kim
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Miao‐Fen Chen
- Department of Radiation OncologyChang Gung Memorial HospitalTaoyuanTaiwan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle TherapyNational Cancer Center Hospital EastChibaJapan
- Department of Radiation OncologyNational Cancer Center Hospital EastChibaJapan
| | | | - Min‐Ji Kim
- Biomedical Statistics Center, Research Institute for Future MedicineSamsung Medical CenterSeoulRepublic of Korea
| | - Kyunga Kim
- Biomedical Statistics Center, Research Institute for Future MedicineSamsung Medical CenterSeoulRepublic of Korea
| | - Tae Hoon Lee
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
- Department of Radiation OncologyChungbuk National University HospitalCheongjuRepublic of Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| |
Collapse
|
10
|
Endo M. Creation, evolution, and future challenges of ion beam therapy from a medical physicist's viewpoint (Part 3): Chapter 3. Clinical research, Chapter 4. Future challenges, Chapter 5. Discussion, and Conclusion. Radiol Phys Technol 2023; 16:443-470. [PMID: 37882992 DOI: 10.1007/s12194-023-00748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Clinical studies of ion beam therapy have been performed at the Lawrence Berkeley Laboratory (LBL), National Institute of Radiological Sciences (NIRS), Gesellschaft für Schwerionenforschung (GSI), and Deutsches Krebsforschungszentrum (DKFZ), in addition to the development of equipment, biophysical models, and treatment planning systems. Although cancers, including brain tumors and pancreatic cancer, have been treated with the Bevalac's neon-ion beam at the LBL (where the first clinical research was conducted), insufficient results were obtained owing to the limited availability of neon-ion beams and immaturity of related technologies. However, the 184-Inch Cyclotron's helium-ion beam yielded promising results for chordomas and chondrosarcomas at the base of the skull. Using carbon-ion beams, NIRS has conducted clinical trials for the treatment of common cancers for which radiotherapy is indicated. Because better results than X-ray therapy results have been obtained for lung, liver, pancreas, and prostate cancers, as well as pelvic recurrences of rectal cancer, the Japanese government recently approved the use of public medical insurance for carbon-ion radiotherapy, except for lung cancer. GSI obtained better results than LBL for bone and soft tissue tumors, owing to dose enhancement enabled by scanning irradiation. In addition, DKFZ compared treatment results of proton and carbon-ion radiotherapy for these tumors. This article summarizes a series of articles (Parts 1-3) and describes future issues of immune ion beam therapy and linear energy transfer optimization.
Collapse
Affiliation(s)
- Masahiro Endo
- Association for Nuclear Technology in Medicine, Nikkei Bldg., 7-16 Nihombashi-Kodemmacho, Chuo-ku, Tokyo, 103-0001, Japan.
| |
Collapse
|
11
|
Takahashi M, Mizumoto M, Oshiro Y, Kino H, Akutsu H, Nakai K, Sumiya T, Ishikawa E, Maruo K, Sakurai H. Risk Factors for Radiation Necrosis and Local Recurrence after Proton Beam Therapy for Skull Base Chordoma or Chondrosarcoma. Cancers (Basel) 2023; 15:5687. [PMID: 38067389 PMCID: PMC10705337 DOI: 10.3390/cancers15235687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 03/20/2025] Open
Abstract
[Proposal] Here, we retrospectively evaluate risk factors for radiation necrosis and local recurrence after PBT for skull base chordoma or chondrosarcoma. [Patients and Methods] We analyzed 101 patients who received PBT for skull base chordomas and chondrosarcomas from January 1989 to February 2021. Multivariable logistic regression models were applied for local recurrence, temporal lobe radiation necrosis rates, and temporal lobe radiation necrosis. [Results] In multivariate analysis, chordoma and large tumor size were independent significant factors for local recurrence. The 1-, 2-, 3-, 4- and 5-year local recurrence rates were 3.9%, 16.9%, 20.3%, 28.5% and 44.0% for chordoma and 0%, 0%, 0%, 0% and 7.1% for chondrosarcoma, respectively. The local recurrence rates of small tumors (<30 mm) were 4.3%, 14.7%, 17.7%, 17.7% and 25.9%, and those for large tumors were 3.6%, 15.1%, 19.2%, 32.7% and 59.6%, respectively. In multivariate analysis, BED Gy10 and total dose were risk factors for radiation necrosis. [Conclusions] For skull base chordoma and chondrosarcoma, the risk factors of local recurrence were chordoma and large tumor size, and those of radiation necrosis were BED Gy10 and total dose, respectively. DVH analysis is needed to investigate the risk factors for brain necrosis in more detail.
Collapse
Affiliation(s)
- Mizuki Takahashi
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yoshiko Oshiro
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba 305-8558, Ibaraki, Japan;
| | - Hiroyoshi Kino
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (H.K.); (E.I.)
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Dokkyo Medical University, Mibu 321-0293, Tochigi, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Taisuke Sumiya
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan; (H.K.); (E.I.)
| | - Kazushi Maruo
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Tsukuba 305-8576, Ibaraki, Japan;
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
12
|
Lemaeva A, Gulidov I. Radiation Therapy for Chordomas and Chondrosarcomas of the Skull Base: Evaluation of the Effectiveness of Treatment Methods (Review). Sovrem Tekhnologii Med 2023; 15:44-52. [PMID: 39967912 PMCID: PMC11832067 DOI: 10.17691/stm2023.15.5.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 02/20/2025] Open
Abstract
Chordomas and chondrosarcomas of the skull base are rare tumors. They are located in close proximity to critical structures, which poses a serious problem in the treatment of these tumors. Despite advances in surgery, radical resection is often not possible. Radiation therapy for chordomas and chondrosarcomas of the skull base is able to improve overall survival and local control. The aim of this review is to analyze the literature data and evaluate the efficacy of radiation therapy techniques for chordomas and chondrosarcomas of the skull base. The most promising methods of radiation therapy for chordomas and chondrosarcomas of the skull base have been shown to be pencil-beam scanning proton therapy with intensity modulation and carbon ion therapy. These techniques have demonstrated high local control and overall survival with a low incidence of severe radiation-induced toxicity, which confirms their clinical benefits. It has also been found that stereotactic radiosurgery can be effectively used for small tumors (less than 7 cm3).
Collapse
Affiliation(s)
- A.A. Lemaeva
- Resident; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| | - I.A. Gulidov
- MD, DSc, Professor, Head of the Radiotherapy Department; A. Tsyb Medical Radiological Research Centre — Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, 249036, Russia
| |
Collapse
|
13
|
Orlandi E, Barcellini A, Vischioni B, Fiore MR, Vitolo V, Iannalfi A, Bonora M, Chalaszczyk A, Ingargiola R, Riva G, Ronchi S, Valvo F, Fossati P, Ciocca M, Mirandola A, Molinelli S, Pella A, Baroni G, Pullia MG, Facoetti A, Orecchia R, Licitra L, Vago G, Rossi S. The Role of Carbon Ion Therapy in the Changing Oncology Landscape-A Narrative Review of the Literature and the Decade of Carbon Ion Experience at the Italian National Center for Oncological Hadrontherapy. Cancers (Basel) 2023; 15:5068. [PMID: 37894434 PMCID: PMC10605728 DOI: 10.3390/cancers15205068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Currently, 13 Asian and European facilities deliver carbon ion radiotherapy (CIRT) for preclinical and clinical activity, and, to date, 55 clinical studies including CIRT for adult and paediatric solid neoplasms have been registered. The National Center for Oncological Hadrontherapy (CNAO) is the only Italian facility able to accelerate both protons and carbon ions for oncological treatment and research. METHODS To summarise and critically evaluate state-of-the-art knowledge on the application of carbon ion radiotherapy in oncological settings, the authors conducted a literature search till December 2022 in the following electronic databases: PubMed, Web of Science, MEDLINE, Google Scholar, and Cochrane. The results of 68 studies are reported using a narrative approach, highlighting CNAO's clinical activity over the last 10 years of CIRT. RESULTS The ballistic and radiobiological hallmarks of CIRT make it an effective option in several rare, radioresistant, and difficult-to-treat tumours. CNAO has made a significant contribution to the advancement of knowledge on CIRT delivery in selected tumour types. CONCLUSIONS After an initial ramp-up period, CNAO has progressively honed its clinical, technical, and dosimetric skills. Growing engagement with national and international networks and research groups for complex cancers has led to increasingly targeted patient selection for CIRT and lowered barriers to facility access.
Collapse
Affiliation(s)
- Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Alberto Iannalfi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Maria Bonora
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Agnieszka Chalaszczyk
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Rossana Ingargiola
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Giulia Riva
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Sara Ronchi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Francesca Valvo
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Piero Fossati
- Department of Radiation Oncology, MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria
- Department for Basic and Translational Oncology and Haematology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Mario Ciocca
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Silvia Molinelli
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Andrea Pella
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Guido Baroni
- Bioengineering Unit, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Marco Giuseppe Pullia
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Angelica Facoetti
- Radiobiology Unit, Research and Development Department, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO-European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Lisa Licitra
- Scientific Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- Department of Head & Neck Medical Oncology 3, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Department of Oncology & Haemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Gianluca Vago
- Presidency, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
- School of Pathology, University of Milan, 20122 Milan, Italy
| | - Sandro Rossi
- General Directorate, CNAO National Center for Oncological Hadrontherapy, 27100 Pavia, Italy
| |
Collapse
|
14
|
Holtzman AL, Seidensaal K, Iannalfi A, Kim KH, Koto M, Yang WC, Shiau CY, Mahajan A, Ahmed SK, Trifiletti DM, Peterson JL, Koffler DM, Vallow LA, Hoppe BS, Rutenberg MS. Carbon Ion Radiotherapy: An Evidence-Based Review and Summary Recommendations of Clinical Outcomes for Skull-Base Chordomas and Chondrosarcomas. Cancers (Basel) 2023; 15:5021. [PMID: 37894388 PMCID: PMC10605639 DOI: 10.3390/cancers15205021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Skull-base chordoma and chondrosarcoma are rare radioresistant tumors treated with surgical resection and/or radiotherapy. Because of the established dosimetric and biological benefits of heavy particle therapy, we performed a systematic and evidence-based review of the clinical outcomes of patients with skull-base chordoma and chondrosarcoma treated with carbon ion radiotherapy (CIRT). A literature review was performed using a MEDLINE search of all articles to date. We identified 227 studies as appropriate for review, and 24 were ultimately included. The published data illustrate that CIRT provides benchmark disease control outcomes for skull-base chordoma and chondrosarcoma, respectively, with acceptable toxicity. CIRT is an advanced treatment technique that may provide not only dosimetric benefits over conventional photon therapy but also biologic intensification to overcome mechanisms of radioresistance. Ongoing research is needed to define the magnitude of benefit, patient selection, and cost-effectiveness of CIRT compared to other forms of radiotherapy.
Collapse
Affiliation(s)
- Adam L. Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Katharina Seidensaal
- Department of Radiation Oncology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Alberto Iannalfi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Wan-Chin Yang
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei City 11217, Taiwan
| | - Cheng-Ying Shiau
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei City 11217, Taiwan
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Safia K. Ahmed
- Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | | | | | - Daniel M. Koffler
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Laura A. Vallow
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bradford S. Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | |
Collapse
|
15
|
Dong M, Liu R, Zhang Q, Wang D, Luo H, Wang Y, Chen J, Ou Y, Wang X. Efficacy and safety of carbon ion radiotherapy for chordomas: a systematic review and meta-analysis. Radiat Oncol 2023; 18:152. [PMID: 37705083 PMCID: PMC10500892 DOI: 10.1186/s13014-023-02337-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
OBJECTIVE Carbon ion radiotherapy (C-ion RT) for chordomas has been gradually performed in several research centres. This study aimed to systematically review the results of clinical reports from these institutions and to evaluate the safety and efficacy of C-ion RT. METHODS In accordance with the PRISMA guidelines and set search strategies, we searched four databases for articles from their inception to February 11, 2023. These articles were screened, and data were extracted independently by two researchers. STATA 14.0 was used for statistical analysis of survival results. RESULTS A total of 942 related articles were retrieved, 11 of which were included. Regarding lesion location, 57% (n = 552) originated in the sacral region, 41% (n = 398) in the skull base, and 2% (n = 19) in the spine (upper cervical). The local control (LC) rates at 1, 2, 3, 5, 9, and 10 years in these studies were 96%, 93%, 83%, 76%, 71%, and 54%, respectively. The overall survival (OS) rates at 1, 2, 3, 5, 9, and 10 years in these studies were 99%, 100%, 93%, 85%, 76%, and 69%, respectively. Acute and late toxicities were acceptable, acute toxicities were mainly grade 1 to grade 2 and late toxicities were mainly grade 1 to grade 3. CONCLUSION C-ion RT has attractive clinical application prospects and is an important local treatment strategy for chordomas. Encouraging results were observed in terms of LC and OS. Meanwhile, the acute and late toxicities were acceptable. PROSPERO registration number: CRD42023398792.
Collapse
Affiliation(s)
- Meng Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Ruifeng Liu
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China.
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.
| | - Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Hongtao Luo
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China
| | - Yuhang Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Junru Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Yuhong Ou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Institute of Modern Physics, Chinese Academy of Sciences, No.1, Yanxia Road, Chenguan District, Lanzhou, 730030, People's Republic of China.
- Department of Postgraduate, University of Chinese Academy of Sciences, Beijing, China.
- Heavy Ion Therapy Center, Lanzhou Heavy Ions Hospital, Lanzhou, China.
| |
Collapse
|
16
|
Kobayashi K, Hanai N, Yoshimoto S, Saito Y, Homma A. Current topics and management of head and neck sarcomas. Jpn J Clin Oncol 2023; 53:743-756. [PMID: 37309253 PMCID: PMC10533342 DOI: 10.1093/jjco/hyad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
Given the low incidence, variety of histological types, and heterogeneous biological features of head and neck sarcomas, there is limited high-quality evidence available to head and neck oncologists. For resectable sarcomas, surgical resection followed by radiotherapy is the principle of local treatment, and perioperative chemotherapy is considered for chemotherapy-sensitive sarcomas. They often originate in anatomical border areas such as the skull base and mediastinum, and they require a multidisciplinary treatment approach considering functional and cosmetic impairment. Moreover, head and neck sarcomas may exhibit different behaviour and characteristics than sarcomas of other areas. In recent years, the molecular biological features of sarcomas have been used for the pathological diagnosis and development of novel agents. This review describes the historical background and recent topics that head and neck oncologists should know about this rare tumour from the following five perspectives: (i) epidemiology and general characteristics of head and neck sarcomas; (ii) changes in histopathological diagnosis in the genomic era; (iii) current standard treatment by histological type and clinical questions specific to head and neck; (iv) new drugs for advanced and metastatic soft tissue sarcomas; and (v) proton and carbon ion radiotherapy for head and neck sarcomas.
Collapse
Affiliation(s)
- Kenya Kobayashi
- Department of Otolaryngology–Head and Neck Surgery, University of Tokyo, Tokyo
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo
| | - Yuki Saito
- Department of Otolaryngology–Head and Neck Surgery, University of Tokyo, Tokyo
| | - Akihiro Homma
- Department of Otolaryngology–Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Iannalfi A, Riva G, Ciccone L, Orlandi E. The role of particle radiotherapy in the treatment of skull base tumors. Front Oncol 2023; 13:1161752. [PMID: 37350949 PMCID: PMC10283010 DOI: 10.3389/fonc.2023.1161752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
The skull base is an anatomically and functionally critical area surrounded by vital structures such as the brainstem, the spinal cord, blood vessels, and cranial nerves. Due to this complexity, management of skull base tumors requires a multidisciplinary approach involving a team of specialists such as neurosurgeons, otorhinolaryngologists, radiation oncologists, endocrinologists, and medical oncologists. In the case of pediatric patients, cancer management should be performed by a team of pediatric-trained specialists. Radiation therapy may be used alone or in combination with surgery to treat skull base tumors. There are two main types of radiation therapy: photon therapy and particle therapy. Particle radiotherapy uses charged particles (protons or carbon ions) that, due to their peculiar physical properties, permit precise targeting of the tumor with minimal healthy tissue exposure. These characteristics allow for minimizing the potential long-term effects of radiation exposure in terms of neurocognitive impairments, preserving quality of life, and reducing the risk of radio-induced cancer. For these reasons, in children, adolescents, and young adults, proton therapy should be an elective option when available. In radioresistant tumors such as chordomas and sarcomas and previously irradiated recurrent tumors, particle therapy permits the delivery of high biologically effective doses with low, or however acceptable, toxicity. Carbon ion therapy has peculiar and favorable radiobiological characteristics to overcome radioresistance features. In low-grade tumors, proton therapy should be considered in challenging cases due to tumor volume and involvement of critical neural structures. However, particle radiotherapy is still relatively new, and more research is needed to fully understand its effects. Additionally, the availability of particle therapy is limited as it requires specialized equipment and expertise. The purpose of this manuscript is to review the available literature regarding the role of particle radiotherapy in the treatment of skull base tumors.
Collapse
|
18
|
Rutenberg MS, Beltran C. Future Perspective: Carbon Ion Radiotherapy for Head and Neck and Skull Base Malignancies. Oral Maxillofac Surg Clin North Am 2023:S1042-3699(23)00024-9. [PMID: 37117091 DOI: 10.1016/j.coms.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Head and neck and base of skull malignancies are challenging for surgical and radiotherapy treatment due to the density of sensitive tissues. Carbon ion radiotherapy (CIRT) is a form of heavy particle therapy that uses accelerated carbon ions to treat malignancies that may be radioresistant or in challenging anatomic locations. CIRT has an increased biological effectiveness (ie, increased cell killing) at the end of the range of the carbon beam (ie, within the target tissue) but not in the entrance dose. This increased biological effectiveness can overcome the effects of radioresistant tumors, tissue hypoxia, and the need for radiotherapy fractionation.
Collapse
Affiliation(s)
- Michael S Rutenberg
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|