1
|
Wang S, Wang S, Wang Z, Dong J, Zhang M, Wang Y, Wang J, Jia B, Luo Y, Yin Y. The changing of α5-GABAA receptors expression and distribution participate in sevoflurane-induced learning and memory impairment in young mice. CNS Neurosci Ther 2024; 30:e14716. [PMID: 38698533 PMCID: PMC11066188 DOI: 10.1111/cns.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.
Collapse
Affiliation(s)
- Shengran Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Sixuan Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Zhun Wang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Jinpeng Dong
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Mengxue Zhang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Jianyu Wang
- Department of Pharmaceutics, School of PharmacyShenyang Pharmaceutical UniversityBenxiChina
| | - Beichen Jia
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijingChina
| | - Yiqing Yin
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjinChina
- Tianjin's Clinical Research Center for CancerTianjinChina
| |
Collapse
|
2
|
Flinspach AN, Raimann FJ, Kaiser P, Pfaff M, Zacharowski K, Neef V, Adam EH. Volatile versus propofol sedation after cardiac valve surgery: a single-center prospective randomized controlled trial. Crit Care 2024; 28:111. [PMID: 38581030 PMCID: PMC10996161 DOI: 10.1186/s13054-024-04899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Optimal intensive care of patients undergoing valve surgery is a complex balancing act between sedation for monitoring and timely postoperative awakening. It remains unclear, if these requirements can be fulfilled by volatile sedations in intensive care medicine in an efficient manner. Therefore, this study aimed to assess the time to extubation and secondary the workload required. METHODS We conducted a prospective randomized single-center trial at a tertiary university hospital to evaluate the postoperative management of open valve surgery patients. The study was randomized with regard to the use of volatile sedation compared to propofol sedation. Sedation was discontinued 60 min after admission for critical postoperative monitoring. RESULTS We observed a significantly earlier extubation (91 ± 39 min vs. 167 ± 77 min; p < 0.001), eye-opening (86 ± 28 min vs. 151 ± 71 min; p < 0.001) and command compliance (93 ± 38 min vs. 164 ± 75 min; p < 0.001) using volatile sedation, which in turn was associated with a significantly increased workload of a median of 9:56 min (± 4:16 min) set-up time. We did not observe any differences in complications. Cardiopulmonary bypass time did not differ between the groups 101 (IQR 81; 113) versus 112 (IQR 79; 136) minutes p = 0.36. CONCLUSIONS Using volatile sedation is associated with few minutes additional workload in assembling and enables a significantly accelerated evaluation of vulnerable patient groups. Volatile sedation has considerable advantages and emerges as a safe sedation technique in our vulnerable study population. TRIAL REGISTRATION Clinical trials registration (NCT04958668) was completed on 1 July 2021.
Collapse
Affiliation(s)
- Armin Niklas Flinspach
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany.
| | - Florian Jürgen Raimann
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Philipp Kaiser
- Department of Cardiothoracic Surgery, University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Michaela Pfaff
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Vanessa Neef
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Elisabeth Hannah Adam
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Zhong Y, Zhang C, Wang Y, Tang C, Ren J, Wang M, Liu D, Zhu Z. Multiple exposures to sevoflurane across postnatal development may cause cognitive deficits in older age. Pediatr Res 2023; 93:838-844. [PMID: 35804157 DOI: 10.1038/s41390-022-01943-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND The aim of the study was to determine the effects of repeated anesthesia exposure across postnatal development. METHODS Seventy-two newborn Sprague-Dawley rats were randomly divided into Sev group and Con-aged group. Sev groups were exposed to 2.6% sevoflurane for 2 h on postnatal day (P) 7, P14, and P21; the Con groups only received carrier gas for 2 h. Learning and memory were evaluated using the MWM test at P31 (juvenile), P91 (adult), and 18 months postnatally (aged). The relative expression of APP and Mapt mRNA was detected by RT-PCR, while Aβ, tau, and P-tau protein levels were analyzed by immunohistochemistry. RESULTS After repeated inhalation of sevoflurane, MWM test performance was significantly decreased in the Sev-aged group compared to the Con-aged group (P > 0.05). The relative expression of APP and Mapt mRNA was not significantly different between groups in each growth period (P > 0.05). The tau expression in the juvenile hippocampal CA1, CA3, and dentate gyrus regions increased markedly in the Sev group, while P-tau only increased in the hippocampal CA3 region in the Sev-adult group. The expression of tau, P-tau, and Aβ in the hippocampal regions was upregulated in the Sev-aged group. CONCLUSIONS Multiple exposures to sevoflurane across postnatal development can induce or aggravate cognitive impairment in old age. IMPACT Whether multiple sevoflurane exposures across postnatal development cause cognitive impairment in childhood, adulthood, or old age, as well as the relationship between sevoflurane and the hippocampal Aβ, tau, and P-tau proteins, remains unknown. This study's results demonstrate that multiple exposures to sevoflurane across postnatal development do not appear to affect cognitive function in childhood and adulthood; however, multiple exposures may lead to a cognitive function deficit in old age. The underlying mechanism may involve overexpression of the tau, P-tau, and Aβ proteins in the hippocampus.
Collapse
Affiliation(s)
- Yuanping Zhong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Chao Zhang
- Guizhou Key Laboratory of Basic Research of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Yi Wang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Chunchun Tang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Juanjuan Ren
- Affiliated Hospital of Jining Medical University, Jining, 272000, Shan Dong, PR China
| | - Mengmeng Wang
- Women and Children's Hospital, Qingdao University, Qing Dao, 266000, Shan Dong, PR China
| | - Dexing Liu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Zhaoqiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
- Guizhou Key Laboratory of Basic Research of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| |
Collapse
|
4
|
Brévaut-Malaty V, Resseguier N, Garbi A, Tosello B, Thomachot L, Vialet R, Gire C. Long Term Neurodevelopmental Outcomes after Sevoflurane Neonatal Exposure of Extremely Preterm Children: A Cross-Sectional Observationnal Study. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040548. [PMID: 35455592 PMCID: PMC9028040 DOI: 10.3390/children9040548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022]
Abstract
Sevoflurane, a volatile anesthetic, is used when extremely preterm neonates (EPT) undergo painful procedures. Currently, no existing studies analyze sevoflurane’s long-term effects during the EPT’s immediate neonatal period. Our primary objective was to compare the EPT’s neurocognitive development regardless of any sevoflurane exposure prior to 45 weeks corrected gestational age (GA). We analyzed those live discharges, less than 28 weeks GA, who were either exposed, unexposed, and/or multiply exposed to sevoflurane before 45 weeks GA. All data were obtained from a cross-sectional multicenter study (GPQoL study, NCT01675726). Children, both exposed and non-exposed to sevoflurane, were sampled using a propensity-guided approach. Neurological examinations (Touwen), cognitive and executive functions (WISC IV, NEPSY, Rey figure), and assessments when the children were between 7 and 10 years old, were correlated to their neonatal sevoflurane exposure. There were 139 children in the study. The mean gestational age was 26.2 weeks (±0.8) GA and the mean birth weight was 898 g (±173). The mean age of their evaluation was 8.47 years old (±0.70). Exposure to sevoflurane to the mean corrected age 27.10 (3.37) weeks GA had a significant correlation with cerebral palsy (adjusted odds ratio (aOR): 6.70 (CI 95%: 1.84–32.11)) and other major disorders (cerebral palsy and/or severe cognitive retardation) (aOR: 2.81 [95% CI: 1.13–7.35]). Our results demonstrate the possibility of long-term effects on EPT infants who had a sevoflurane exposure before 45 weeks corrected GA. However, these results will require further confirmation by randomized controlled trials.
Collapse
Affiliation(s)
- Véronique Brévaut-Malaty
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (V.B.-M.); (A.G.); (L.T.); (R.V.); (C.G.)
| | - Noémie Resseguier
- CEReSS—Health Service Research and Quality of Life Center, Faculty of Medicine, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France;
| | - Aurélie Garbi
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (V.B.-M.); (A.G.); (L.T.); (R.V.); (C.G.)
| | - Barthélémy Tosello
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (V.B.-M.); (A.G.); (L.T.); (R.V.); (C.G.)
- CNRS, EFS, ADES, Aix Marseille University, 13915 Marseille, France
- Correspondence: ; Tel.: +33-(0)-491964822
| | - Laurent Thomachot
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (V.B.-M.); (A.G.); (L.T.); (R.V.); (C.G.)
| | - Renaud Vialet
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (V.B.-M.); (A.G.); (L.T.); (R.V.); (C.G.)
| | - Catherine Gire
- Department of Neonatology, North Hospital, University Hospital of Marseille, Chemin des Bourrelys, CEDEX 20, 13915 Marseille, France; (V.B.-M.); (A.G.); (L.T.); (R.V.); (C.G.)
- CEReSS—Health Service Research and Quality of Life Center, Faculty of Medicine, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France;
| |
Collapse
|
5
|
Platholi J, Hemmings HC. Effects of general anesthetics on synaptic transmission and plasticity. Curr Neuropharmacol 2021; 20:27-54. [PMID: 34344292 PMCID: PMC9199550 DOI: 10.2174/1570159x19666210803105232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
General anesthetics depress excitatory and/or enhance inhibitory synaptic transmission principally by modulating the function of glutamatergic or GABAergic synapses, respectively, with relative anesthetic agent-specific mechanisms. Synaptic signaling proteins, including ligand- and voltage-gated ion channels, are targeted by general anesthetics to modulate various synaptic mechanisms, including presynaptic neurotransmitter release, postsynaptic receptor signaling, and dendritic spine dynamics to produce their characteristic acute neurophysiological effects. As synaptic structure and plasticity mediate higher-order functions such as learning and memory, long-term synaptic dysfunction following anesthesia may lead to undesirable neurocognitive consequences depending on the specific anesthetic agent and the vulnerability of the population. Here we review the cellular and molecular mechanisms of transient and persistent general anesthetic alterations of synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jimcy Platholi
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| | - Hugh C Hemmings
- Cornell University Joan and Sanford I Weill Medical College Ringgold standard institution - Anesthesiology New York, New York. United States
| |
Collapse
|
6
|
Ririe DG, Eisenach JC, Martin TJ. A Painful Beginning: Early Life Surgery Produces Long-Term Behavioral Disruption in the Rat. Front Behav Neurosci 2021; 15:630889. [PMID: 34025368 PMCID: PMC8131510 DOI: 10.3389/fnbeh.2021.630889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Early life surgery produces peripheral nociceptive activation, inflammation, and stress. Early life nociceptive input and inflammation have been shown to produce long-term processing changes that are not restricted to the dermatome of injury. Additionally stress has shown long-term effects on anxiety, depression, learning, and maladaptive behaviors including substance abuse disorder and we hypothesized that early life surgery would have long-term effects on theses complex behaviors in later life. In this study surgery in the rat hindpaw was performed to determine if there are long-term effects on anxiety, depression, audiovisual attention, and opioid reward behaviors. Male animals received paw incision surgery and anesthesia or anesthesia alone (sham) at postnatal day 6. At 10 weeks after surgery, open field center zone entries were decreased, a measure of anxiety (n = 20) (P = 0.03) (effect size, Cohen's d = 0.80). No difference was found in the tail suspension test as a measure of depression. At 16-20 weeks, attentional performance in an operant task was similar between groups at baseline and decreased with audiovisual distraction in both groups (P < 0.001) (effect size, η2 = 0.25), but distraction revealed a persistent impairment in performance in the surgery group (n = 8) (P = 0.04) (effect size, η2 = 0.13). Opioid reward was measured using heroin self-administration at 16-24 weeks. Heroin intake increased over time in both groups during 24-h free access (P < 0.001), but was greater in the surgery group (P = 0.045), with a significant interaction between time and treatment (P < 0.001) (effect size, Cohen f 2 = 0.36). These results demonstrate long-term disruptions in complex behaviors from surgical incision under anesthesia. Future studies to explore sex differences in early life surgery and the attendant peripheral neuronal input, stress, and inflammation will be valuable to understand emerging learning deficits, anxiety, attentional dysfunction, and opioid reward and their mechanisms. This will be valuable to develop optimal approaches to mitigate the long-term effects of surgery in early life.
Collapse
Affiliation(s)
- Douglas G Ririe
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James C Eisenach
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas J Martin
- Pain Mechanisms Lab, Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
7
|
Zhu Y, Lv C, Liu J, Shang S, Jing W. Effects of sevoflurane general anesthesia during early pregnancy on AIM2 expression in the hippocampus and parietal cortex of Sprague-Dawley offspring rats. Exp Ther Med 2021; 21:469. [PMID: 33767764 PMCID: PMC7976445 DOI: 10.3892/etm.2021.9900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/10/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to investigate the effect of exposure to sevoflurane general anesthesia during early pregnancy on interferon-inducible protein AIM2 (AIM2) expression in the hippocampus and parietal cortex of the offspring Sprague-Dawley (SD) rats. A total of 18 SD rats at a gestational age of 5-7 days were randomly divided into three groups: i) A control group (control); ii) 2-h sevoflurane general anesthesia, group 1 (S1); and iii) 4-h sevoflurane general anesthesia, group 2 (S2). The six offspring rats in each group were maintained for 30 days and assessed by Morris water maze testing. Brain specimens were collected from offspring rats 30 days after birth. Changes in the structural morphology of neurons in the hippocampus and parietal cortex were observed using hematoxylin and eosin staining. Nissl bodies in the hippocampus and parietal cortex were observed by Nissl staining. The expression of glial fibrillary acidic protein (GFAP), AIM2, CD45 and IL-1β was detected by immunohistochemistry and the protein levels of CD45, IL-1β, pro-caspase-1 and caspase-1 p10 were detected by western blotting. Compared with the control group, offspring rats in the S1 and S2 groups exhibited poor long-term learning and memory ability and experienced different degrees of damage to both the hippocampus and parietal cortex. The expression levels of GFAP, AIM2, CD45, IL-1β, caspase-1 and caspase-1 p10 in the offspring of both the S1 and the S2 groups were significantly increased (P<0.05) compared with offspring of the control group. Moreover, compared with the offspring of the S1 group, hippocampal and parietal cortex injury in the offspring of the S2 group was further aggravated, and the expression of GFAP, AIM2, CD45, IL-1β, pro-caspase-1 and cleaved-caspase-1 was significantly increased (P<0.05). In conclusion, sevoflurane general anesthesia in SD rat early pregnancy promoted the expression of AIM2 and the inflammatory response in the hippocampus and parietal cortex of offspring rats.
Collapse
Affiliation(s)
- Yulin Zhu
- Department of Anesthesiology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Chao Lv
- Department of Anesthesiology, People's Hospital of Laixi, Laixi, Shandong 266600, P.R. China
| | - Jingying Liu
- Department of Obstetrics, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Shujun Shang
- Department of Anesthesiology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Wei Jing
- Department of Anesthesiology, Taian City Central Hospital, Taishan, Taian, Shandong 271000, P.R. China
| |
Collapse
|
8
|
Apai C, Shah R, Tran K, Pandya Shah S. Anesthesia and the Developing Brain: A Review of Sevoflurane-induced Neurotoxicity in Pediatric Populations. Clin Ther 2021; 43:762-778. [PMID: 33674065 DOI: 10.1016/j.clinthera.2021.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE For over 150 years of anesthetic practice, it was believed that the effects of general anesthetics were temporary and not adverse. A growing number of studies over the past 2 decades, however, have identified structural and cognitive abnormalities, especially in the developing brain. Despite the growing evidence of anesthetic-induced neurotoxicity in animal studies, the evidence to date in humans has been inconsistent and unclear. Sevoflurane, a commonly used inhalational agent in pediatric anesthesia, is an agent of choice for inhalational induction due to its rapid activity and low blood-gas solubility. With evaluation of the current literature, improved considerations can be made regarding the widespread use of sevoflurane as an anesthetic. METHODS PubMed database was searched for article published between 1969 through 2020. The reference lists of identified articles were searched manually for additional papers eligible for inclusion. This review addressed the tolerability of sevoflurane in specific populations, particularly pediatrics, and is divided into 3 parts: (1) the history of sevoflurane use in anesthetic practice and the pharmacokinetic properties that make it advantageous in pediatric populations; (2) proposed mechanisms of anesthesia-induced neurotoxicity; and (3) considerations due to potential adverse effects of sevoflurane in both short and long procedures. FINDINGS There is reason for concern regarding the neurotoxic effects of sevoflurane in both the pediatric and elderly populations, as spatial memory loss, developmental deficits, and an enhanced risk for Alzheimer disease have been linked with the use of this popular inhalational agent. IMPLICATIONS The duration and dose of sevoflurane may need to be altered, especially in longer procedures in pediatric populations. This may change how sevoflurane is administered, thus indicating a greater demand for an understanding of its limitations as an anesthetic agent.
Collapse
Affiliation(s)
- Carol Apai
- Department of Anesthesiology, New Jersey Medical School, Division of Biomedical and Health Sciences, Rutgers University, Newark, NJ, USA
| | - Rohan Shah
- Department of Anesthesiology, New Jersey Medical School, Division of Biomedical and Health Sciences, Rutgers University, Newark, NJ, USA
| | - Khoa Tran
- Department of Anesthesiology, Keck Hospital, Keck Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Shridevi Pandya Shah
- Department of Anesthesiology, New Jersey Medical School, Division of Biomedical and Health Sciences, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
9
|
Song J, Li H, Wang Y, Niu C. Does Exposure to General Anesthesia Increase Risk of ADHD for Children Before Age of Three? Front Psychiatry 2021; 12:717093. [PMID: 34899413 PMCID: PMC8652283 DOI: 10.3389/fpsyt.2021.717093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The objective of the study was to evaluate the relationship between frequency of exposure to general anesthesia before the age of 3 and subsequent risk of diagnosis for attention-deficit hyperactivity disorder (ADHD). Method: We searched PubMed, Embase, Web of Science, and Cochrane Library database for eligible inclusion in the meta-analysis. The indicated outcomes were extracted from the included studies, and the combined effects were calculated using the RevMan software 5.3. Results: Compared with no exposure to general anesthesia, single exposure to general anesthesia did not increase the risk of ADHD for children before the age of 3 [hazard ratio (HR): 1.14, 95%; confidence intervals (CI): 0.97-1.35; p = 0.11; I 2 = 0%], while multiple exposures to general anesthesia did increase the risk of ADHD (HR: 1.83; 95% CIs: 1.00-3.32; p = 0.05; I 2 = 81%). Conclusion: Multiple, but not single, exposures to general anesthesia in children before age of 3 increased the risk of ADHD.
Collapse
Affiliation(s)
- Junjie Song
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Huifang Li
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ying Wang
- Department of Medical Hospital, Henan University, Henan Medical Hospital, Henan University, Kaifeng, China
| | - Chenguang Niu
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, China.,The Key Laboratory of Clinical Resources Translation, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Li T, Huang Z, Wang X, Zou J, Tan S. Role of the GABAA receptors in the long-term cognitive impairments caused by neonatal sevoflurane exposure. Rev Neurosci 2020; 30:869-879. [PMID: 31145696 DOI: 10.1515/revneuro-2019-0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
Sevoflurane is a widely used inhalational anesthetic in pediatric surgeries, which is considered reasonably safe and reversible upon withdrawal. However, recent preclinical studies suggested that peri-neonatal sevoflurane exposure may cause developmental abnormalities in the brain. The present review aimed to present and discuss the accumulating experimental data regarding the undesirable effects of sevoflurane on brain development as revealed by the laboratory studies. First, we summarized the long-lasting side effects of neonatal sevoflurane exposure on cognitive functions. Subsequently, we presented the structural changes, namely, neuroapoptosis, neurogenesis and synaptogenesis, following sevoflurane exposure in the immature brain. Finally, we also discussed the potential mechanisms underlying subsequent cognitive impairments later in life, which are induced by neonatal sevoflurane exposure and pointed out potential strategies for mitigating sevoflurane-induced long-term cognitive impairments. The type A gamma-amino butyric acid (GABAA) receptor, the main targets of sevoflurane, is excitatory rather than inhibitory in the immature neurons. The excitatory effects of the GABAA receptors have been linked to increased neuroapoptosis, elevated serum corticosterone levels and epigenetic modifications following neonatal sevoflurane exposure in rodents, which might contribute to sevoflurane-induced long-term cognitive abnormalities. We proposed that the excitatory GABAA receptor-mediated HPA axis activity might be a novel mechanism underlying sevoflurane-induced long-term cognitive impairments. More studies are needed to investigate the effectiveness and mechanisms by targeting the excitatory GABAA receptor as a prevention strategy to alleviate cognitive deficits induced by neonatal sevoflurane exposure in future.
Collapse
Affiliation(s)
- Tao Li
- Grade 2015 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Xianwen Wang
- Grade 2015 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Ju Zou
- Department of Parasitology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China
| |
Collapse
|
11
|
Song H, Xun S, He H, Duan C, Li Q. Compound Porcine Cerebroside and Ganglioside Injection (CPCGI) Attenuates Sevoflurane-Induced Nerve Cell Injury by Regulating the Phosphorylation of p38 MAP Kinase (p38MAPK)/Nuclear Factor kappa B (NF-κB) Pathway. Med Sci Monit 2020; 26:e919600. [PMID: 32114591 PMCID: PMC7065510 DOI: 10.12659/msm.919600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Compound porcine cerebroside and ganglioside injection (CPCGI) has been widely applied in clinical practice in China to treat functional confusion caused by brain diseases. Sevoflurane, a frequently-used inhalational anesthetic, was discovered to have neurotoxicity that can cause neurological damage in patients. The present study was performed to investigate the protective effect of CPCGI on sevoflurane-induced nerve damage and to reveal the neuroprotective mechanisms of CPCGI. Material/Methods Firstly, the hippocampal neurons were separated from Sprague-Dawley embryonic rats, and were stimulated by 3% sevoflurane for different times (0, 2, 4, and 6 h). Then, cell viability and cell apoptosis were assessed by thiazolyl blue tetrazolium bromide (MTT) and flow cytometry (FCM), respectively. Western blot analysis was used to determine the apoptosis-related protein expression levels. Results The results demonstrated that 3% sevoflurane significantly inhibited cell viability but induced cell apoptosis in neurons in a time-dependent manner. Treatment with 3% sevoflurane also promoted the Bax [B cell leukemia/lymphoma 2 (Bcl2)-associated X protein] and cleaved caspase3 protein expressions, and suppressed Bcl-2 and pro-caspase3 expressions in hippocampal neurons. In addition, phosphorylated (p)-p38 and p-p65 expression and the ratio of p-p38/p38 and p-p65/p65 were upregulated in a time-dependent manner after 3% sevoflurane treatment. Further analysis indicated that all the effects of 3% sevoflurane on hippocampal neurons were reversed by CPCGI pre-treatment. Conclusions We demonstrated the neuroprotective role of CPCGI in sevoflurane-stimulated neuronal cell damage via regulation of the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Haigang Song
- Department of Anesthesiology, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China (mainland)
| | - Shining Xun
- Department of First Anesthesiology and Surgery, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Huali He
- Department of First Anesthesiology and Surgery, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Chongzhen Duan
- Department of First Anesthesiology and Surgery, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Qiang Li
- Department of Anesthesiology, The Fifth Medical Center of PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
12
|
Hu X, Hu X, Huang G. LncRNA MALAT1 is involved in sevoflurane-induced neurotoxicity in developing rats. J Cell Biochem 2019; 120:18209-18218. [PMID: 31190336 DOI: 10.1002/jcb.29127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The purpose of this study is to uncover the effects of long chain noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on sevoflurane-induced neurotoxicity in developing rats. METHODS Sevoflurane neurotoxicity model was established by sevoflurane treatment in 7-day-old Sprague-Dawley rats. The rats were treated with Sevo or MALAT1 small interfering RNA to detect the MALAT1 expression, pathological change, ultrastructure, neuronal apoptosis, expression of apoptosis-related proteins, expression of neurotrophic factors BDNF and NGF, spatial learning and memory function change, as well as neuron cell density of hippocampal tissues. RESULTS MALAT1 was highly expressed in hippocampus tissues of rats. Downregulation of MALAT1 alleviated the pathological change, improved the ultrastructure, inhibited apoptosis of neuronal cells, declined caspase 3 and Bax while elevated Bcl-2, BDNF and NGF, improved capability of spatial learning and memory, and increased density of hippocampal neurons in hippocampal tissues of sevoflurane-induced rats. CONCLUSION Suppression of MALAT1 can reduce the apoptosis of hippocampal neurons induced by sevoflurane anesthesia, improve the capability of spatial learning, and memory function and alleviate the loss of hippocampal nerve cells in developing rats. To a certain extent, it plays the role of protecting brain nerve cells.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Anesthesiology, Yishui Central Hospital, Linyi, People's Republic of China
| | - Xiaodong Hu
- Department of Anesthesiology, Yishui Central Hospital, Linyi, People's Republic of China
| | - Guirong Huang
- Department of Anesthesiology, Yishui Central Hospital, Linyi, People's Republic of China
| |
Collapse
|
13
|
Xie Y, Wang X. Lycium barbarum polysaccharides attenuates the apoptosis of hippocampal neurons induced by sevoflurane. Exp Ther Med 2018; 16:1834-1840. [PMID: 30186408 PMCID: PMC6122330 DOI: 10.3892/etm.2018.6426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/21/2018] [Indexed: 01/29/2023] Open
Abstract
Following the application of inhalational anesthetics, including sevoflurane, patients may suffer from neural injury. The present study was conducted to explore the mechanism involved in Lycium barbarum polysaccharides (LBP) treatment of sevoflurane injured hippocampal neurons. Primary hippocampal neurons were isolated from Sprague Dawley embryonic rats. The Cell Counting Kit-8 (CCK-8) assay was used to detect cell viability. Furthermore, flow cytometry (FCM) was used to determine cell proliferation and apoptosis rates. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were applied to detect the expression levels of apoptosis-related factors, including activated-Caspase-3, B-cell lymphoma/leukemia-2 (Bcl-2) and Bcl-2 associated X (Bax), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and total ERK1/2. The results showed that LBP promoted cell viability and cell proliferation but inhibited cell apoptosis in neurons injured with 3% sevoflurane, in dose-dependent manners (100, 200 and 400 µg/ml). LBP increased the expression levels of Bcl-2 and p-ERK1/2, and decreased levels of activated-Caspase-3 and Bax in a dose-dependent manner in hippocampal neurons that were injured with sevoflurane. In addition, ERK1/2 inhibitor reversed the above phenomenon in 400 µg/ml LBP and 3% sevoflurane-treated hippocampal neurons. Therefore, the present study indicated that LBP protected hippocampal neurons from sevoflurane injury, including aberrant cell apoptosis, via the ERK1/2 pathway.
Collapse
Affiliation(s)
- Yuhai Xie
- Department of Anesthesiology, Qinghai Red Cross Hospital, Xining, Qinghai 810000, P.R. China
| | - Xuejun Wang
- Department of Anesthesiology, Qinghai Red Cross Hospital, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
14
|
Repeated exposure to sevoflurane impairs the learning and memory of older male rats. Life Sci 2017; 192:75-83. [PMID: 29155302 DOI: 10.1016/j.lfs.2017.11.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 11/24/2022]
Abstract
AIMS Critically ill old patients sometimes require repeated surgical interventions, and thus it is important to determine the influence of repeated exposure to anesthetics on learning and memory. Sevoflurane, a widely used inhalation anesthetic, has few neurological adverse effects and offers a rapid return to consciousness. But the long-term influence of sevoflurane exposure and the effect of repeated sevoflurane exposure on cognition have rarely been reported, and available studies are contradictory. MATERIALS AND METHODS In the present study, the Morris water maze test was employed to investigate the long-term influence of single (4h) or repeated (2h daily for 5 consecutive days) exposure to 1.5% or 2.5% sevoflurane on the learning ability and memory of old (16-18months old) male rats. Testing was performed from 1day to 4weeks after the last exposure. In the hippocampus, brain derived neurotrophic factor (BDNF), NF-κB mRNA, and apoptosis rate were also examined to determine whether cellular biochemical changes related to cognition and memory occurred after single or repeated exposure to sevoflurane. KEY FINDINGS Repeated exposure to 2.5% sevoflurane decreased hippocampal levels of BDNF protein, enhanced hippocampal levels of NF-κB mRNA, and increased the apoptosis rate of pyramidal cells. Single exposure to 2.5% sevoflurane, and repeated exposure to either 1.5% or 2.5% sevoflurane significantly compromised learning and memory of old male rats. SIGNIFICANCE Repeated exposure to sevoflurane impaired the learning and memory of old male rats, an impairment that was accompanied by cognition-related biochemical changes in the hippocampus.
Collapse
|