1
|
Fultang N, Li X, Li T, Chen YH. Myeloid-Derived Suppressor Cell Differentiation in Cancer: Transcriptional Regulators and Enhanceosome-Mediated Mechanisms. Front Immunol 2021; 11:619253. [PMID: 33519825 PMCID: PMC7840597 DOI: 10.3389/fimmu.2020.619253] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 01/16/2023] Open
Abstract
Myeloid-derived Suppressor Cells (MDSCs) are a sub-population of leukocytes that are important for carcinogenesis and cancer immunotherapy. During carcinogenesis or severe infections, inflammatory mediators induce MDSCs via aberrant differentiation of myeloid precursors. Although several transcription factors, including C/EBPβ, STAT3, c-Rel, STAT5, and IRF8, have been reported to regulate MDSC differentiation, none of them are specifically expressed in MDSCs. How these lineage-non-specific transcription factors specify MDSC differentiation in a lineage-specific manner is unclear. The recent discovery of the c-Rel-C/EBPβ enhanceosome in MDSCs may help explain these context-dependent roles. In this review, we examine several transcriptional regulators of MDSC differentiation, and discuss the concept of non-modular regulation of MDSC signature gene expression by transcription factors such as c-Rel and C/EBPß.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - Youhai H. Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Yan Q, Ahn SH, Medie FM, Sharma-Kuinkel BK, Park LP, Scott WK, Deshmukh H, Tsalik EL, Cyr DD, Woods CW, Yu CHA, Adams C, Qi R, Hansen B, Fowler VG. Candidate genes on murine chromosome 8 are associated with susceptibility to Staphylococcus aureus infection in mice and are involved with Staphylococcus aureus septicemia in humans. PLoS One 2017; 12:e0179033. [PMID: 28594911 PMCID: PMC5464679 DOI: 10.1371/journal.pone.0179033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023] Open
Abstract
We previously showed that chromosome 8 of A/J mice was associated with susceptibility to S. aureus infection. However, the specific genes responsible for this susceptibility are unknown. Chromosome substitution strain 8 (CSS8) mice, which have chromosome 8 from A/J but an otherwise C57BL/6J genome, were used to identify the genetic determinants of susceptibility to S. aureus on chromosome 8. Quantitative trait loci (QTL) mapping of S. aureus-infected N2 backcross mice (F1 [C8A] × C57BL/6J) identified a locus 83180780–88103009 (GRCm38/mm10) on A/J chromosome 8 that was linked to S. aureus susceptibility. All genes on the QTL (n~ 102) were further analyzed by three different strategies: 1) different expression in susceptible (A/J) and resistant (C57BL/6J) mice only in response to S. aureus, 2) consistently different expression in both uninfected and infected states between the two strains, and 3) damaging non-synonymous SNPs in either strain. Eleven candidate genes from the QTL region were significantly differently expressed in patients with S. aureus infection vs healthy human subjects. Four of these 11 genes also exhibited significantly different expression in S. aureus-challenged human neutrophils: Ier2, Crif1, Cd97 and Lyl1. CD97 ligand binding was evaluated within peritoneal neutrophils from A/J and C57BL/6J. CD97 from A/J had stronger CD55 but weaker integrin α5β1 ligand binding as compared with C57BL/6J. Because CD55/CD97 binding regulates immune cell activation and cytokine production, and integrin α5β1 is a membrane receptor for fibronectin, which is also bound by S. aureus, strain-specific differences could contribute to susceptibility to S. aureus. Down-regulation of Crif1 with siRNA was associated with increased host cell apoptosis among both naïve and S. aureus-infected bone marrow-derived macrophages. Specific genes in A/J chromosome 8, including Cd97 and Crif1, may play important roles in host defense against S. aureus.
Collapse
Affiliation(s)
- Qin Yan
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sun Hee Ahn
- Department of Biochemistry School of Dentistry, Chonnam National University, Bukgu, Gwangju, Korea
| | - Felix Mba Medie
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Batu K. Sharma-Kuinkel
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lawrence P. Park
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| | - William K. Scott
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, United States of America
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ephraim L. Tsalik
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Emergency Medicine Service, Durham Veteran’s Affairs Medical Center, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
| | - Christopher W. Woods
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
- Section on Infectious Diseases, Durham Veteran’s Affairs Medical Center, Durham, North Carolina, United States of America
| | - Chen-Hsin Albert Yu
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Carlton Adams
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert Qi
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Brenda Hansen
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Vance G. Fowler
- Division of Infectious Diseases & International Health, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Clinical Research Institute, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
3
|
Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB Subunits by Phosphorylation. Cells 2016; 5:cells5010012. [PMID: 26999213 PMCID: PMC4810097 DOI: 10.3390/cells5010012] [Citation(s) in RCA: 558] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
The NF-κB transcription factor is the master regulator of the inflammatory response and is essential for the homeostasis of the immune system. NF-κB regulates the transcription of genes that control inflammation, immune cell development, cell cycle, proliferation, and cell death. The fundamental role that NF-κB plays in key physiological processes makes it an important factor in determining health and disease. The importance of NF-κB in tissue homeostasis and immunity has frustrated therapeutic approaches aimed at inhibiting NF-κB activation. However, significant research efforts have revealed the crucial contribution of NF-κB phosphorylation to controlling NF-κB directed transactivation. Importantly, NF-κB phosphorylation controls transcription in a gene-specific manner, offering new opportunities to selectively target NF-κB for therapeutic benefit. This review will focus on the phosphorylation of the NF-κB subunits and the impact on NF-κB function.
Collapse
Affiliation(s)
- Frank Christian
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Emma L Smith
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
4
|
Cross-talk between PKA-Cβ and p65 mediates synergistic induction of PDE4B by roflumilast and NTHi. Proc Natl Acad Sci U S A 2015; 112:E1800-9. [PMID: 25831493 DOI: 10.1073/pnas.1418716112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphodiesterase 4B (PDE4B) plays a key role in regulating inflammation. Roflumilast, a phosphodiesterase (PDE)4-selective inhibitor, has recently been approved for treating severe chronic obstructive pulmonary disease (COPD) patients with exacerbation. However, there is also clinical evidence suggesting the development of tachyphylaxis or tolerance on repeated dosing of roflumilast and the possible contribution of PDE4B up-regulation, which could be counterproductive for suppressing inflammation. Thus, understanding how PDE4B is up-regulated in the context of the complex pathogenesis and medications of COPD may help improve the efficacy and possibly ameliorate the tolerance of roflumilast. Here we show that roflumilast synergizes with nontypeable Haemophilus influenzae (NTHi), a major bacterial cause of COPD exacerbation, to up-regulate PDE4B2 expression in human airway epithelial cells in vitro and in vivo. Up-regulated PDE4B2 contributes to the induction of certain important chemokines in both enzymatic activity-dependent and activity-independent manners. We also found that protein kinase A catalytic subunit β (PKA-Cβ) and nuclear factor-κB (NF-κB) p65 subunit were required for the synergistic induction of PDE4B2. PKA-Cβ phosphorylates p65 in a cAMP-dependent manner. Moreover, Ser276 of p65 is critical for mediating the PKA-Cβ-induced p65 phosphorylation and the synergistic induction of PDE4B2. Collectively, our data unveil a previously unidentified mechanism underlying synergistic up-regulation of PDE4B2 via a cross-talk between PKA-Cβ and p65 and may help develop new therapeutic strategies to improve the efficacy of PDE4 inhibitor.
Collapse
|
5
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
6
|
Fullard N, Wilson CL, Oakley F. Roles of c-Rel signalling in inflammation and disease. Int J Biochem Cell Biol 2012; 44:851-60. [PMID: 22405852 DOI: 10.1016/j.biocel.2012.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/13/2022]
Abstract
Nuclear factor kappa B (NFκB) is a dimeric transcription factor comprised of five family members RelA (p65), RelB, c-Rel, p50 and p52. NFκB signalling is complex and controls a myriad of normal cellular functions. However, constitutive or aberrant activation of this pathway is associated with disease progression and cancer in multiple organs. The diverse array of biological responses is modulated by many factors, including the activating stimulus, recruitment of co-regulatory molecules, consensus DNA binding sequence, dimer composition and post-translational modifications. Each subunit has very different biological functions and in the context of disease the individual subunits forming the NFκB dimer can have a profound effect, causing a shift in the balance from normal to pathogenic signalling. Here we discuss the role of c-Rel dependant signalling in normal physiology and its contribution to disease both inside and outside of the immune system.
Collapse
Affiliation(s)
- Nicola Fullard
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
7
|
Gerlo S, Kooijman R, Beck IM, Kolmus K, Spooren A, Haegeman G. Cyclic AMP: a selective modulator of NF-κB action. Cell Mol Life Sci 2011; 68:3823-41. [PMID: 21744067 PMCID: PMC11114830 DOI: 10.1007/s00018-011-0757-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
It has been known for several decades that cyclic AMP (cAMP), a prototypical second messenger, transducing the action of a variety of G-protein-coupled receptor ligands, has potent immunosuppressive and anti-inflammatory actions. These actions have been attributed in part to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappaB (NF-κB). NF-κB plays a crucial role in switching on the gene expression of a plethora of inflammatory and immune mediators, and as such is one of the master regulators of the immune response and a key target for anti-inflammatory drug design. A number of fundamental molecular mechanisms, contributing to the overall inhibitory actions of cAMP on NF-κB function, are well established. Paradoxically, recent reports indicate that cAMP, via its main effector, the protein kinase A (PKA), also promotes NF-κB activity. Indeed, cAMP actions appear to be highly cell type- and context-dependent. Importantly, several novel players in the cAMP/NF-κB connection, which selectively direct cAMP action, have been recently identified. These findings not only open up exciting new research avenues but also reveal novel opportunities for the design of more selective, NF-κB-targeting, anti-inflammatory drugs.
Collapse
Affiliation(s)
- Sarah Gerlo
- VIB Department of Medical Protein Research, Ghent University (UGent), Albert Baertsoenkaai, Belgium.
| | | | | | | | | | | |
Collapse
|
8
|
Alvarez Y, Municio C, Hugo E, Zhu J, Alonso S, Hu X, Fernández N, Sánchez Crespo M. Notch- and transducin-like enhancer of split (TLE)-dependent histone deacetylation explain interleukin 12 (IL-12) p70 inhibition by zymosan. J Biol Chem 2011; 286:16583-95. [PMID: 21402701 DOI: 10.1074/jbc.m111.222158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fungal analog zymosan induces IL-23 and low amounts of IL-12 p70. This study addresses the molecular mechanisms underlying this cytokine pattern in human monocyte-derived dendritic cells. The transcriptional regulation of il23a, one of the chains of IL-23, depended on the activation of c-Rel and histone H3 phosphorylation, as judged from the association of c-Rel with the il23a promoter and the correlation between IL-23 production and Ser-10-histone H3 phosphorylation. Consistent with its reduced ability to produce IL-12 p70, zymosan induced a transient occupancy of the il12a promoter by c-Rel, blocked the production of IL-12 p70 and the transcription of il12a induced by other stimuli, and triggered the expression and nuclear translocation of the transcriptional repressors of the Notch family hairy and enhancer of split (Hes)-1, Hes5, hairy/enhancer-of-split related with YRPW motif protein (Hey)-1, and transducin-like enhancer of split (TLE). Zymosan also induced the interaction of Hes1 and TLE with histone H3 phosphorylated on Ser-10 and deacetylated on Lys-14. Inhibition of class III histone deacetylases increased the production of IL-12 p70 and partially blunted the inhibitory effect of zymosan on the production of IL-12 p70 elicited by LPS and IFN-γ. These results indicate that the selective induction of IL-23 by β-glucans is explained by the activation of c-Rel associated with Ser-10-histone H3 phosphorylation in the il23a promoter mediated by mitogen- and stress-activated kinase and/or protein kinase A and inhibition of il12a transcription by a mechanism involving activation of several corepressors with the ability to bind TLE and to promote histone deacetylation.
Collapse
Affiliation(s)
- Yolanda Alvarez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, 47003-Valladolid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Enns LC, Ladiges W. Protein kinase A signaling as an anti-aging target. Ageing Res Rev 2010; 9:269-72. [PMID: 20188216 DOI: 10.1016/j.arr.2010.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 01/25/2023]
Abstract
Protein kinase A (PKA) is a multi-unit protein kinase that mediates signal transduction of G-protein-coupled receptors through its activation by adenyl cyclase (AC)-mediated cAMP. The vital importance of PKA signaling to cellular function is reflected in the widespread expression of PKA subunit genes. As one of its many functions, PKA plays a key role in the regulation of metabolism and triglyceride storage. The PKA pathway has become of great interest to the study of aging, since mutations that cause a reduction in PKA signaling have been shown to extend lifespan in yeast, and to both delay the incidence and severity of age-related disease, and to promote leanness and longevity, in mice. There is increasing interest in the potential for the inhibition or redistribution of adiposity to attenuate aging, since obesity is associated with impaired function of most organ systems, and is a strong risk factor for shortened life span. Its association with coronary heart disease, hypertension, type 2 diabetes, cancer, sleep apnea and osteoarthritis is leading to its accession as a major cause of global ill health. Therefore, gene signaling pathways such as PKA that promote adiposity are potential inhibitory targets for aging intervention. Since numerous plant compounds have been found that both prevent adipogenesis and inhibit PKA signaling, a focused investigation into their effects on biological systems and the corresponding molecular mechanisms would be of high relevance to the discovery of novel and non-toxic compounds that promote healthy aging.
Collapse
|
10
|
Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010; 2010:823821. [PMID: 20396415 PMCID: PMC2855089 DOI: 10.1155/2010/823821] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/12/2010] [Indexed: 02/08/2023] Open
Abstract
NF-κB comprises a family of transcription factors that are critically involved in various inflammatory processes. In this paper, the role of NF-κB in inflammation and atherosclerosis and the regulation of the NF-κB signaling pathway are summarized. The structure, function, and regulation of the NF-κB inhibitors, IκBα and IκBβ, are reviewed. The regulation of NF-κB activity by glucocorticoid receptor (GR) signaling and IκBα sumoylation is also discussed. This paper focuses on the recently reported regulatory function that adipocyte enhancer-binding protein 1 (AEBP1) exerts on NF-κB transcriptional activity in macrophages, in which AEBP1 manifests itself as a potent modulator of NF-κB via physical interaction with IκBα and a critical mediator of inflammation. Finally, we summarize the regulatory roles that recently identified IκBα-interacting proteins play in NF-κB signaling. Based on its proinflammatory roles in macrophages, AEBP1 is anticipated to serve as a therapeutic target towards the treatment of various inflammatory conditions and disorders.
Collapse
|
11
|
Gambaryan S, Kobsar A, Rukoyatkina N, Herterich S, Geiger J, Smolenski A, Lohmann SM, Walter U. Thrombin and collagen induce a feedback inhibitory signaling pathway in platelets involving dissociation of the catalytic subunit of protein kinase A from an NFkappaB-IkappaB complex. J Biol Chem 2010; 285:18352-63. [PMID: 20356841 DOI: 10.1074/jbc.m109.077602] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein kinase A (PKA) activation by cAMP phosphorylates multiple target proteins in numerous platelet inhibitory pathways that have a very important role in maintaining circulating platelets in a resting state. Here we show that in thrombin- and collagen-stimulated platelets, PKA is activated by cAMP-independent mechanisms involving dissociation of the catalytic subunit of PKA (PKAc) from an NFkappaB-IkappaBalpha-PKAc complex. We demonstrate mRNA and protein expression for most of the NFkappaB family members in platelets. From resting platelets, PKAc was co-immunoprecipitated with IkappaBalpha, and conversely, IkappaBalpha was also co-immunoprecipitated with PKAc. This interaction was significantly reduced in thrombin- and collagen-stimulated platelets. Stimulation of platelets with thrombin- or collagen-activated IKK, at least partly by PI3 kinase-dependent pathways, leading to phosphorylation of IkappaBalpha, disruption of an IkappaBalpha-PKAc complex, and release of free, active PKAc, which phosphorylated VASP and other PKA substrates. IKK inhibitor inhibited thrombin-stimulated IkBalpha phosphorylation, PKA-IkBalpha dissociation, and VASP phosphorylation, and potentiated integrin alphaIIbbeta3 activation and the early phase of platelet aggregation. We conclude that thrombin and collagen not only cause platelet activation but also appear to fine-tune this response by initiating downstream NFkappaB-dependent PKAc activation, as a novel feedback inhibitory signaling mechanism for preventing undesired platelet activation.
Collapse
Affiliation(s)
- Stepan Gambaryan
- Institute of Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Grombühlstrasse 12, D-97080 Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Garbati MR, Alço G, Gilmore TD. Histone acetyltransferase p300 is a coactivator for transcription factor REL and is C-terminally truncated in the human diffuse large B-cell lymphoma cell line RC-K8. Cancer Lett 2009; 291:237-45. [PMID: 19948376 DOI: 10.1016/j.canlet.2009.10.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 01/03/2023]
Abstract
Human c-Rel (REL) is a member of the NF-kappaB family of transcription factors. REL's normal physiological role is in the regulation of B-cell proliferation and survival. The REL gene is amplified in many human B-cell lymphomas and overexpression of REL can transform chicken lymphoid cells. In this report, histone acetyltransferase p300 enhanced REL-induced transactivation and interacted with REL both in vitro and in REL-transformed chicken spleen cells and the B-lymphoma cell line RC-K8, in which REL is constitutively active and required for proliferation. However, due to a deletion in the EP300 locus, only a C-terminally truncated form of p300 is expressed in RC-K8 cells. These results suggest a role for p300 in REL-mediated oncogenic activity in B lymphoma.
Collapse
|
13
|
Reber L, Vermeulen L, Haegeman G, Frossard N. Ser276 phosphorylation of NF-kB p65 by MSK1 controls SCF expression in inflammation. PLoS One 2009; 4:e4393. [PMID: 19197368 PMCID: PMC2632887 DOI: 10.1371/journal.pone.0004393] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 12/09/2008] [Indexed: 02/07/2023] Open
Abstract
Transcription of the mast cell growth factor SCF (stem cell factor) is upregulated in inflammatory conditions, and this is dependent upon NF-κB, as well as the MAP kinases p38 and ERK activation. We show here that the MAPK downstream nuclear kinase MSK1 induces NF-κB p65 Ser276 phosphorylation upon IL-1ß treatment, which was inhibited in cells transfected with a MSK1 kinase-dead (KD) mutant compared to the WT control. In addition, we show by ChIP experiments that MSK1 as well as MAPK inhibition abolishes binding of p65, of its coactivator CBP, and of MSK1 itself to the κB intronic enhancer site of the SCF gene. We show that interaction between NF-κB and CBP is prevented in cells transfected by a p65 S276C mutant. Finally, we demonstrate that both transfections of MSK1-KD and MSK1 siRNA - but not the WT MSK1 or control siRNA - downregulate the expression of SCF induced by IL-1ß. Our study provides therefore a direct link between MSK1-mediated phosphorylation of Ser276 p65 of NF-κB, allowing its binding to the SCF intronic enhancer, and pathophysiological SCF expression in inflammation.
Collapse
Affiliation(s)
- Laurent Reber
- EA3771, Inflammation and Environment in Asthma, Université Louis Pasteur-Strasbourg-I, Faculté de Pharmacie, Illkirch, France
| | - Linda Vermeulen
- LEGEST, Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Guy Haegeman
- LEGEST, Department of Molecular Biology, Ghent University, Ghent, Belgium
| | - Nelly Frossard
- EA3771, Inflammation and Environment in Asthma, Université Louis Pasteur-Strasbourg-I, Faculté de Pharmacie, Illkirch, France
- * E-mail:
| |
Collapse
|
14
|
Leeman JR, Weniger MA, Barth TF, Gilmore TD. Deletion analysis and alternative splicing define a transactivation inhibitory domain in human oncoprotein REL. Oncogene 2008; 27:6770-81. [PMID: 18695674 DOI: 10.1038/onc.2008.284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Misregulation of REL, a nuclear factor-kappaB family transcription factor, has been implicated in several human lymphoid malignancies. REL has a conserved N-terminal DNA-binding/dimerization domain called the Rel homology domain (RHD) and a C-terminal transactivation domain (TAD). Here, we define the sequences (amino acids (aa) 323-422) between the RHD and TAD as a REL inhibitory domain (RID) because deletion of these sequences increases both REL transactivation and DNA binding. Furthermore, we have characterized two REL mRNA splice variants that encode proteins with alterations near RID: one lacking exon 9 sequences (aa 308-330; RELDelta9) and one with an exonized Alu fragment insertion of 32 aa after aa 307 (REL+Alu). Deletion of RID or exon 9-encoded sequences increases transactivation by GAL4-REL by approximately threefold. Moreover, deletion of RID or exon 9 sequences increases transactivation by full-length REL from certain kappaB site-containing promoters and increases DNA binding by REL. Deletion of RID does not affect REL's ability to transform chicken spleen cells. Reverse transcriptase-polymerase chain reaction analysis of mRNA from both primary lymphoma samples and several transformed tissue culture cell lines indicates that the RELDelta9 splice variant is preferentially expressed in lymphoma, suggesting that the REL transcript lacking exon 9 could serve as a marker for certain types of lymphoid tumors.
Collapse
Affiliation(s)
- J R Leeman
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
15
|
Bagchi G, Wu J, French J, Kim J, Moniri NH, Daaka Y. Androgens transduce the G alphas-mediated activation of protein kinase A in prostate cells. Cancer Res 2008; 68:3225-31. [PMID: 18451148 DOI: 10.1158/0008-5472.can-07-5026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Androgens regulate the development and function of male reproductive organs and play a crucial role in the onset and progression of prostate cancer. Androgen action is primarily mediated through the nuclear androgen receptor (AR) which acts as a ligand-dependent transcription factor. This mode of androgen action takes hours to manifest and is called the genomic pathway. The androgen-mediated genomic responses require activity of cyclic AMP (cAMP)-dependent protein kinase (PKA). Androgens also act through nongenomic pathways in certain cell types to evoke rapid responses (manifested in minutes) that are mediated through changes in ion currents and second messengers. Here, we show that androgen causes the rapid and cAMP-dependent activation of PKA in prostate cells. The androgen-induced PKA activation is not inhibited by nuclear AR antagonist bicalutamide and can be observed in cells that do not express nuclear AR gene. Reduction of G alphas expression with siRNA attenuates the androgen-mediated activation of PKA, which is required for the androgen-induced prostate cell proliferation. We conclude that androgen actively evokes a nongenomic signaling pathway to activate PKA that is needed for the genomic functioning of nuclear AR. The inhibition of PKA activation, together with standard AR-targeted therapies, may be more efficacious for treatment of patients with prostate cancer.
Collapse
Affiliation(s)
- Gargi Bagchi
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wietek C, O'Neill LAJ. Diversity and regulation in the NF-kappaB system. Trends Biochem Sci 2007; 32:311-9. [PMID: 17561400 DOI: 10.1016/j.tibs.2007.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/11/2007] [Accepted: 05/23/2007] [Indexed: 11/20/2022]
Abstract
The nuclear factor (NF)-kappaB family of transcription factors is a key participant in multiple biological processes, most notably in the immune and inflammatory response. Five proteins make up the NF-kappaB family, and these proteins can hetero- and homo-dimerize, giving rise to diversity. Recently, it has been shown that certain members can also interact directly with other transcription factors such as signal transducers of activated transcription, interferon regulatory factor family members and p53, providing further diversity. We propose that this promiscuity might help explain the many of roles of NF-kappaB in specialized cell function and fate. Furthermore, the state of a cell and its cellular background in addition to overall promoter structure and variations in the kappaB target sequence will all define the composition and activity of multimeric NF-kappaB complexes.
Collapse
Affiliation(s)
- Claudia Wietek
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
17
|
Abstract
The transcription factor nuclear factor-kappa B (NF-kappaB) is a crucial regulator of many physiological and patho-physiological processes, including control of the adaptive and innate immune responses, inflammation, proliferation, tumorigenesis, and apoptosis. Thus, the tight regulation of NF-kappaB activity within a cell is extremely important. The central mechanism of NF-kappaB regulation is the signal-induced proteolytic degradation of a family of cytoplasmic inhibitors of NF-kappaB, the IkappaBs. However, with the discovery of an IkappaB-independent noncanonical or "alternative" pathway of NF-kappaB activation, the importance of other regulatory mechanisms responsible for the fine-tuning of NF-kappaB became clear. Post-translational modification, especially phosphorylation, of the Rel proteins, of which dimeric NF-kappaB is composed, are such alternative regulatory mechanisms. The best analyzed example is RelA phosphorylation, which takes place at specific amino acids resulting in distinct functional changes of this gene regulatory protein. The interaction of NF-kappaB with other proteins such as glucocorticoid receptors is very important for the regulation of NF-kappaB activity. Recently, exciting new concepts of IkappaB-independent NF-kappaB control like dimer exchange and nucleolar sequestration of RelA have been described, indicating that many aspects of NF-kappaB control are waiting to be discovered.
Collapse
Affiliation(s)
- Manfred Neumann
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Medical Faculty, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | |
Collapse
|
18
|
Weniger MA, Gesk S, Ehrlich S, Martin-Subero JI, Dyer MJS, Siebert R, Möller P, Barth TFE. Gains ofREL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosomes Cancer 2007; 46:406-15. [PMID: 17243160 DOI: 10.1002/gcc.20420] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gains or amplifications of the REL locus are frequently seen in primary mediastinal B-cell lymphoma (PMBL). In classical Hodgkin's lymphoma, genomic overrepresentation of REL correlated with nuclear REL protein accumulation. To investigate the correlation between REL gene copies and its RNA and protein expression in PMBL, we analyzed genomic, transcriptional, and protein levels in 20 PMBLs and the PMBL derived cell lines MedB-1 and Karpas1106P. We found gains/amplifications in 75% of the PMBLs by fluorescence in situ hybridization (FISH) and genomic REL overrepresentation in the PMBL lines. Three of the five PMBLs with amplifications displayed elevated REL transcripts, while only 3/10 PMBLs with gains showed increased REL transcripts by real-time PCR. One PMBL without gains displayed increased REL transcription. REL protein expression exhibited a variable pattern across the PMBLs except for a single case that was completely negative by immunohistochemistry despite having gained REL. Although transcript levels were generally low and nuclear REL staining was weak in the lymphoma cell lines, these nevertheless exhibited high NF-kappaB activation. By fluorescence immunophenotyping and interphase cytogenetics as a tool for investigation of neoplasms, genomic gains/amplifications of REL significantly correlated with nuclear REL expression (P < 0.05). In conclusion, the frequent genomic overrepresentation of REL in PMBL does not necessarily trigger an increased transcription/translation of REL. However, combined genomic and protein analysis revealed a significant association of gained REL and nuclear REL accumulation at the single cell level.
Collapse
Affiliation(s)
- Marc A Weniger
- Department of Pathology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 2006; 25:6717-30. [PMID: 17072324 DOI: 10.1038/sj.onc.1209937] [Citation(s) in RCA: 536] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diverse cellular and biological functions of the nuclear factor kappa B (NF-kappaB) pathway, together with the catastrophic consequences of its aberrant regulation, demand specific and highly regulated control of its activity. As described in this review, regulation of the NF-kappaB pathway is brought about through multiple post-translational modifications that control the activity of the core components of NF-kappaB signaling: the IkappaB kinase (IKK) complex, the IkappaB proteins and the NF-kappaB subunits themselves. These regulatory modifications, which include phosphorylation, ubiquitination, acetylation, sumoylation and nitrosylation, can vary, depending on the nature of the NF-kappaB-inducing stimulus. Moreover, they frequently have distinct, sometimes antagonistic, functional consequences and the same modification can have different effects depending on the context. Given the important role of NF-kappaB in human health and disease, understanding these pathways will not only provide valuable insights into mechanism and function, but could also lead to new drug targets and the development of diagnostic and prognostic biomarkers for many pathological conditions.
Collapse
Affiliation(s)
- N D Perkins
- Division of Gene Regulation and Expression, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
20
|
Starczynowski DT, Trautmann H, Pott C, Harder L, Arnold N, Africa JA, Leeman JR, Siebert R, Gilmore TD. Mutation of an IKK phosphorylation site within the transactivation domain of REL in two patients with B-cell lymphoma enhances REL's in vitro transforming activity. Oncogene 2006; 26:2685-94. [PMID: 17072339 DOI: 10.1038/sj.onc.1210089] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human c-rel proto-oncogene (REL) encodes a subunit of the nuclear factor-kappaB (NF-kappaB) transcription factor. In this report, we have identified an identical point mutation in two human B-cell lymphomas (follicular (FL) and mediastinal) that changes serine (Ser)525 (TCA) to proline (Pro) (CCA) within the REL transactivation domain. This mutation was not identified in a similarly sized cohort of healthy individuals. In the mediastinal B-cell lymphoma, the mutation in REL is of germ-line origin. In both tumors, the S525P mutant allele is over-represented. REL-S525P shows enhanced in vitro transforming activity in chicken spleen cells. REL-S525P has a reduced ability to activate the human manganese superoxide dismutase (MnSOD) promoter in A293 cells; however, the MnSOD protein shows increased expression in REL-S525P-transformed chicken spleen cells as compared to wild-type REL-transformed cells. Ser525 is a site for phosphorylation by IkappaB kinase (IKK) in vitro. The S525P mutation reduces IKKalpha- and tumor necrosis factor (TNF)alpha-stimulated transactivation by a GAL4-REL protein. Furthermore, REL-S525P-transformed chicken spleen cells are more resistant to TNFalpha-induced cell death than cells transformed by wild-type REL. These results suggest that the S525P mutation contributes to the development of human B-cell lymphomas by affecting an IKKalpha-regulated transactivation activity of REL.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Western
- Cell Transformation, Viral
- Chickens
- Electrophoretic Mobility Shift Assay
- Fluorescent Antibody Technique, Indirect
- Humans
- I-kappa B Kinase/physiology
- In Situ Hybridization, Fluorescence
- Kidney/metabolism
- Luciferases/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/metabolism
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Mediastinal Neoplasms/genetics
- Mediastinal Neoplasms/metabolism
- Molecular Sequence Data
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Phosphorylation
- Point Mutation/genetics
- Promoter Regions, Genetic/genetics
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-rel/genetics
- Proto-Oncogene Proteins c-rel/metabolism
- Sequence Homology, Amino Acid
- Spleen/metabolism
- Spleen/virology
- Transcriptional Activation
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
|
21
|
Iijima O, Fukano H, Takahashi H, Shirai M, Suzuki Y. A purine at +2 rather than +1 adjacent to the human U6 promoter is required to prepare effective short hairpin RNAs. Biochem Biophys Res Commun 2006; 350:809-17. [PMID: 17045573 DOI: 10.1016/j.bbrc.2006.08.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 02/04/2023]
Abstract
The human U6 (hU6) promoter is widely used to express short hairpin RNAs (shRNAs) in mammalian cells. To verify the validity of the generalized concept-the hU6 promoter essentially requires a purine (usually guanine) at +1 for transcription, we enzymatically constructed an arbitrary shRNA library with the following features: (1) to have any one of adenine, cytosine, guanine, and thymine at the site; (2) to comprise shRNAs of 25-30 nucleotides in stem length which are transcribed through the promoter. cDNA of the catalytic subunit of cAMP-dependent protein kinase (PKACalpha) was used as material for library construction. We then used luciferase reporter cell lines to screen shRNAs which effectively reduced PKACalpha activity. Consequently, a purine was mostly present at +2, not at +1, of the clones isolated, suggesting that a purine at +2 rather than +1 adjacent to the hU6 promoter provides effective shRNAs for target gene silencing.
Collapse
Affiliation(s)
- Osamu Iijima
- GenoFunction, Inc., 1-25-14 Kannondai, Tsukuba, Ibaraki 305-085, Japan
| | | | | | | | | |
Collapse
|
22
|
Starczynowski DT, Reynolds JG, Gilmore TD. Mutations of tumor necrosis factor α-responsive serine residues within the C-terminal transactivation domain of human transcription factor REL enhance its in vitro transforming ability. Oncogene 2005; 24:7355-68. [PMID: 16027730 DOI: 10.1038/sj.onc.1208902] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human c-rel gene (REL), encoding an NF-kappaB transcription factor, is amplified or mutated in several human B-cell lymphomas and can transform chicken lymphoid cells in vitro. We have previously shown that certain deletions of C-terminal transactivation sequences enhance REL's transforming ability in chicken spleen cells. In this report, we have analysed the effect of single amino-acid changes at select serine residues in the C-terminal transactivation domain on REL's transforming ability. Mutation of either of two TNFalpha-inducible serine residues (Ser460 and Ser471) to nonphosphorylatable residues (alanine, asparagine, phenylalanine) made REL more efficient at transforming chicken spleen cells in vitro. In contrast, mutation of Ser471 to a phosphorylation mimetic aspartate residue impaired REL's transforming ability, even though it increased REL's inherent transactivation ability as a GAL4-fusion protein. Alanine mutations of several other serine residues within the transactivation domain did not substantially affect REL's transforming ability. Transactivation by GAL4-REL fusion proteins containing either transformation enhancing or nonenhancing mutations at serine residues was generally similar to wild-type GAL4-REL. However, more transforming mutants with mutations at either Ser460 or Ser471 differed from wild-type REL in their ability to transactivate certain kappaB-site reporter genes. In particular, the SOD2 promoter, encoding manganese superoxide dismutase, was activated less strongly by the more transforming REL mutant REL-S471N in transient assays, but REL-S471N-transformed chicken spleen cells had increased levels of MnSOD protein as compared to wild-type REL-transformed cells. Taken together, our results show that mutations of certain serine residues can enhance REL's transforming ability in vitro and suggest that these mutations increase REL-mediated transformation by altering REL's ability to modulate the expression of select target genes. Furthermore, phosphorylation of Ser471 may be involved in REL-mediated modulation of transformation-specific target gene expression. Lastly, these results suggest that similar mutations in the REL transactivation domain contribute to the development of certain human B-cell lymphomas.
Collapse
|
23
|
Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 2005; 30:43-52. [PMID: 15653325 DOI: 10.1016/j.tibs.2004.11.009] [Citation(s) in RCA: 1201] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is a transcription factor that has crucial roles in inflammation, immunity, cell proliferation and apoptosis. Activation of NF-kappaB mainly occurs via IkappaB kinase (IKK)-mediated phosphorylation of inhibitory molecules, including IkappaBalpha. Optimal induction of NF-kappaB target genes also requires phosphorylation of NF-kappaB proteins, such as p65, within their transactivation domain by a variety of kinases in response to distinct stimuli. Whether, and how, phosphorylation modulates the function of other NF-kappaB and IkappaB proteins, such as B-cell lymphoma 3, remains unclear. The identification and characterization of all the kinases known to phosphorylate NF-kappaB and IkappaB proteins are described here. Because deregulation of NF-kappaB and IkappaB phosphorylations is a hallmark of chronic inflammatory diseases and cancer, newly designed drugs targeting these constitutively activated signalling pathways represent promising therapeutic tools.
Collapse
Affiliation(s)
- Patrick Viatour
- Laboratory of Medical Chemistry and Human Genetics, CHU, Sart-Tilman, Center for Biomedical Integrated Genoproteomics, University of Liege, Belgium
| | | | | | | |
Collapse
|