1
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Tufail M, Jiang CH, Li N. Tumor dormancy and relapse: understanding the molecular mechanisms of cancer recurrence. Mil Med Res 2025; 12:7. [PMID: 39934876 PMCID: PMC11812268 DOI: 10.1186/s40779-025-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
Cancer recurrence, driven by the phenomenon of tumor dormancy, presents a formidable challenge in oncology. Dormant cancer cells have the ability to evade detection and treatment, leading to relapse. This review emphasizes the urgent need to comprehend tumor dormancy and its implications for cancer recurrence. Despite notable advancements, significant gaps remain in our understanding of the mechanisms underlying dormancy and the lack of reliable biomarkers for predicting relapse. This review provides a comprehensive analysis of the cellular, angiogenic, and immunological aspects of dormancy. It highlights the current therapeutic strategies targeting dormant cells, particularly combination therapies and immunotherapies, which hold promise in preventing relapse. By elucidating these mechanisms and proposing innovative research methodologies, this review aims to deepen our understanding of tumor dormancy, ultimately facilitating the development of more effective strategies for preventing cancer recurrence and improving patient outcomes.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, 410008, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Tian Q, Chung H, Wen D. The role of lipids in genome integrity and pluripotency. Biochem Soc Trans 2024; 52:639-650. [PMID: 38506536 PMCID: PMC11088914 DOI: 10.1042/bst20230479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Pluripotent stem cells (PSCs), comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), offer immense potential for regenerative medicine due to their ability to differentiate into all cell types of the adult body. A critical aspect of harnessing this potential is understanding their metabolic requirements during derivation, maintenance, and differentiation in vitro. Traditional culture methods using fetal bovine serum often lead to issues such as heterogeneous cell populations and diminished pluripotency. Although the chemically-defined 2i/LIF medium has provided solutions to some of these challenges, prolonged culturing of these cells, especially female ESCs, raises concerns related to genome integrity. This review discusses the pivotal role of lipids in genome stability and pluripotency of stem cells. Notably, the introduction of lipid-rich albumin, AlbuMAX, into the 2i/LIF culture medium offers a promising avenue for enhancing the genomic stability and pluripotency of cultured ESCs. We further explore the unique characteristics of lipid-induced pluripotent stem cells (LIP-ESCs), emphasizing their potential in regenerative medicine and pluripotency research.
Collapse
Affiliation(s)
- Qiyu Tian
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Hoyoung Chung
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| |
Collapse
|
4
|
Pre-Clinical Evaluation of the Hypomethylating Agent Decitabine for the Treatment of T-Cell Lymphoblastic Lymphoma. Cancers (Basel) 2023; 15:cancers15030647. [PMID: 36765607 PMCID: PMC9913791 DOI: 10.3390/cancers15030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive lymphatic cancer, often diagnosed at a young age. Patients are treated with intensive chemotherapy, potentially followed by a hematopoietic stem cell transplantation. Although prognosis of T-LBL has improved with intensified treatment protocols, they are associated with side effects and 10-20% of patients still die from relapsed or refractory disease. Given this, the search toward less toxic anti-lymphoma therapies is ongoing. Here, we targeted the recently described DNA hypermethylated profile in T-LBL with the DNA hypomethylating agent decitabine. We evaluated the anti-lymphoma properties and downstream effects of decitabine, using patient derived xenograft (PDX) models. Decitabine treatment resulted in prolonged lymphoma-free survival in all T-LBL PDX models, which was associated with downregulation of the oncogenic MYC pathway. However, some PDX models showed more benefit of decitabine treatment compared to others. In more sensitive models, differentially methylated CpG regions resulted in more differentially expressed genes in open chromatin regions. This resulted in stronger downregulation of cell cycle genes and upregulation of immune response activating transcripts. Finally, we suggest a gene signature for high decitabine sensitivity in T-LBL. Altogether, we here delivered pre-clinical proof of the potential use of decitabine as a new therapeutic agent in T-LBL.
Collapse
|
5
|
Dulińska-Litewka J, Felkle D, Dykas K, Handziuk Z, Krzysztofik M, Gąsiorkiewicz B. The role of cyclins in the development and progression of prostate cancer. Biomed Pharmacother 2022; 155:113742. [PMID: 36179490 DOI: 10.1016/j.biopha.2022.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/10/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
The role of cyclins in hormone-dependent neoplasms is crucial in the development of the disease that is resistant to first-line therapy, as the example of breast cancer shows. However, in prostate cancer, cyclins are studied to a lesser extent. There are some well-described molecular pathways, including cyclins A1 and D1 signaling, however the role of other cyclins, e.g., D2, D3, E, and H, still requires further investigation. Recent studies indicate that cyclins regulate various cellular processes, not only the cell cycle. Furthermore, they remain in cross-talk with many other signaling pathways, e.g., MAPK/ERK, PI3K/Akt, and Notch. The androgen signaling axis, which is pivotal in prostate cancer progression, interferes with cyclin pathways at many levels. This article summarizes current knowledge on the influence of cyclins on prostate cancer progression by describing interactions between the androgen receptor and cyclins, as well as mechanisms underlying the development of resistance to currently used therapies.
Collapse
Affiliation(s)
- Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland.
| | - Dominik Felkle
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Kacper Dykas
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Zuzanna Handziuk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Marta Krzysztofik
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| | - Bartosz Gąsiorkiewicz
- Chair of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Krakow, Mikołaja Kopernika Street 7C, Poland
| |
Collapse
|
6
|
Singh M, Kumar V, Sehrawat N, Yadav M, Chaudhary M, Upadhyay SK, Kumar S, Sharma V, Kumar S, Dilbaghi N, Sharma AK. Current paradigms in epigenetic anticancer therapeutics and future challenges. Semin Cancer Biol 2021; 83:422-440. [PMID: 33766649 DOI: 10.1016/j.semcancer.2021.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Any alteration at the genetic or epigenetic level, may result in multiplex of diseases including tumorigenesis which ultimately results in the cancer development. Restoration of the normal epigenome by reversing the epigenetic alterations have been reported in tumors paving the way for development of an effective epigenetic treatment in cancer. However, delineating various epigenetic events has been a challenging task so far despite substantial progress in understanding DNA methylation and histone modifications during transcription of genes. Many inhibitors in the form of epigenetic drugs mostly targeting chromatin and histone modifying enzymes including DNA methyltransferase (DNMT) enzyme inhibitors and a histone deacetylases (HDACs) inhibitor, have been in use subsequent to the approval by FDA for cancer treatment. Similarly, other inhibitory drugs, such as FK228, suberoylanilide hydroxamic acid (SAHA) and MS-275, have been successfully tested in clinical studies. Despite all these advancements, still we see a hazy view as far as a promising epigenetic anticancer therapy is concerned. The challenges are to have more specific and effective inhibitors with negligible side effects. Moreover, the alterations seen in tumors are not well understood for which one has to gain deeper insight into the tumor pathology as well. Current review focusses on such epigenetic alterations occurring in cancer and the effective strategies to utilize such alterations for potential therapeutic use and treatment in cancer.
Collapse
Affiliation(s)
- Manoj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Nirmala Sehrawat
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mukesh Yadav
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mayank Chaudhary
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sushil K Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College Sector-26, Chandigarh, UT, 160019, India
| | - Sandeep Kumar
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio& Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| |
Collapse
|
7
|
Qian Y, Wang JW, Yu-Fang, Yuan XD, Fan YC, Gao S, Wang K. Measurement of Cyclin D2 (CCND2) Gene Promoter Methylation in Plasma and Peripheral Blood Mononuclear Cells and Alpha-Fetoprotein Levels in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma. Med Sci Monit 2020; 26:e927444. [PMID: 33320844 PMCID: PMC7749526 DOI: 10.12659/msm.927444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alpha-fetoprotein (AFP) is widely used to screen for hepatocellular carcinoma (HCC). However, the use of this biomarker has been challenged due to its low sensitivity and high rate of false negatives. In this study, we evaluated the diagnostic capability of cyclin D2 (CCND2) promoter methylation in patients with HCC related to hepatitis B virus (HBV). MATERIAL AND METHODS Using methylation-specific PCR and quantitative real-time PCR, we measured methylation status and mRNA levels of CCND2 in plasma and peripheral blood mononuclear cells (PBMCs) from 275 subjects: 75 patients with chronic hepatitis B (CHB), 47 with liver cirrhosis (LC), 118 with HCC, and 35 healthy controls (HCs). RESULTS The methylation rate of the CCND2 promoter was significantly higher in HCC patients than in patients without HCC (P<0.001). Furthermore, advanced HCC (TNM III/IV) was associated with a significantly higher frequency of CCND2 methylation and lower CCND2 mRNA levels than early-stage disease (TNM I/II; P<0.05). Combined measurement of CCND2 methylation and AFP yielded significantly higher sensitivity and area under the curve (AUC) than AFP alone in distinguishing patients with HCC from subjects with LC and CHB (P<0.001). CONCLUSIONS CCND2 methylation may be useful for predicting HCC progression. In addition, combined measurement of CCND2 methylation and AFP could serve as a non-invasive diagnostic marker for patients with HBV-related HCC.
Collapse
Affiliation(s)
- Yu Qian
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yu-Fang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiao-Dong Yuan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Institute of Hepatology, Shandong University, Jinan, Shandong, P.R. China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Institute of Hepatology, Shandong University, Jinan, Shandong, P.R. China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
- Institute of Hepatology, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
8
|
Zhang HP, Li SY, Wang JP, Lin J. Clinical significance and biological roles of cyclins in gastric cancer. Onco Targets Ther 2018; 11:6673-6685. [PMID: 30349301 PMCID: PMC6186297 DOI: 10.2147/ott.s171716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background and aim Cyclins have been reported to be overexpressed with poor prognosis in several human cancers. However, limited numbers of studies evaluated the expressions and prognostic roles of cyclins in gastric cancer (GC). We aim to evaluate the expressions and prognostic roles of cyclins. Also, further efforts were made to explore biological function of the differentially expressed cyclins. Methods Cyclins expressions were analyzed by Oncomine and The Cancer Genome Atlas datasets, and the prognostic roles of cyclins in GC patients were investigated by the Kaplan–Meier Plotter database. Then, a comprehensive PubMed literature search was performed to identify expression and prognosis of cyclins in GC. Biological functions of the differentially expressed cyclins were explored through Enrich R platform, and KEGG and transcription factor were analyzed. Results The expression levels of CCNA2 (cyclin A2), CCNB1 (cyclin B1), CCNB2 (cyclin B2), and CCNE1 (cyclin E1) mRNAs were identified to be significantly higher in GC tissues than in normal tissues in both Oncomine and The Cancer Genome Atlas datasets. High expressions of CCNA2, CCNB1, and CCNB2 mRNAs were identified to be related with poor overall survival in Kaplan–Meier Plotter dataset. Evidence from clinical studies showed that CCNB1 was related with overall survival in GC patients. Cyclins were associated with several biological pathways, including cell cycle, p53 signaling pathway, FoxO signaling pathway, viral carcinogenesis, and AMPK signaling pathway. Enrichment analysis also showed that cyclins interacted with some certain transcription factors, such as FOXM1, SIN3A, NFYA, and E2F4. Conclusion Based on our results, high expressions of cyclins were related with poor prognosis in GC patients. The above information might be useful for better understanding the clinical and biological roles of cyclins mRNA and guiding individualized treatments for GC patients.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China,
| | - Shu-Yu Li
- Department of Gastroenterology, Zhongshan Hospital of Hubei Province, Wuhan City, Hubei Province 430071, China
| | - Jian-Ping Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China,
| | - Jun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province 430071, China,
| |
Collapse
|
9
|
Cao Z, Wei L, Zhu W, Yao X. Meta-analysis of CDKN2A methylation to find its role in prostate cancer development and progression, and also to find the effect of CDKN2A expression on disease-free survival (PRISMA). Medicine (Baltimore) 2018; 97:e0182. [PMID: 29561434 PMCID: PMC5895353 DOI: 10.1097/md.0000000000010182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Reduction of cyclin-dependent kinase inhibitor 2A (CDKN2A) (p16 and p14) expression through DNA methylation has been reported in prostate cancer (PCa). This meta-analysis was conducted to assess the difference of p16 and p14 methylation between PCa and different histological types of nonmalignant controls and the correlation of p16 or p14 methylation with clinicopathological features of PCa. METHODS According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement criteria, articles were searched in PubMed, Embase, EBSCO, Wanfang, and CNKI databases. The strength of correlation was calculated by the pooled odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs). Trial sequential analysis (TSA) was used to estimate the required population information for significant results. RESULTS A total of 20 studies published from 1997 to 2017 were identified in this meta-analysis, including 1140 PCa patients and 530 cases without cancer. Only p16 methylation in PCa was significantly higher than in benign prostatic lesions (OR = 4.72, P = .011), but had a similar level in PCa and adjacent tissues or high-grade prostatic intraepithelial neoplasias (HGPIN). TSA revealed that this analysis on p16 methylation is a false positive result in cancer versus benign prostatic lesions (the estimated required information size of 5116 participants). p16 methylation was not correlated with PCa in the urine and blood. Besides, p16 methylation was not linked to clinical stage, prostate-specific antigen (PSA) level, and Gleason score (GS) of patients with PCa. p14 methylation was not correlated with PCa in tissue and urine samples. No correlation was observed between p14 methylation and clinical stage or GS. CDKN2A mutation and copy number alteration were not associated with prognosis of PCa in overall survival and disease-free survival. CDKN2A expression was not correlated with the prognosis of PCa in overall survival (492 cases) (P > .1), while CDKN2A expression was significantly associated with a poor disease-free survival (P < .01). CONCLUSION CDKN2A methylation may not be significantly associated with the development, progression of PCa. Although CDKN2A expression had an unfavorable prognosis in disease-free survival. More studies are needed to confirm our results.
Collapse
Affiliation(s)
| | - Lijuan Wei
- Department of Respiratory Medicine, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang, China
| | | | | |
Collapse
|
10
|
Nowacka-Zawisza M, Wiśnik E. DNA methylation and histone modifications as epigenetic regulation in prostate cancer (Review). Oncol Rep 2017; 38:2587-2596. [PMID: 29048620 DOI: 10.3892/or.2017.5972] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is the second most commonly diagnosed cancer in men in Poland after lung cancer and the third leading cause of cancer-related mortality after lung and colon cancer. The etiology of most cases of prostate cancer are not fully known, and therefore it is essential to search for the molecular basis of prostate cancer and markers for the early diagnosis of this type of cancer. Epigenetics deals with changes in gene expression that are not determined by changes in the DNA sequence. Epigenetic changes refer to changes in the structure of DNA, which are the result of DNA modification after replication and/or post-translational modification of proteins associated with DNA. In contrast to mutations, epigenetic changes are reversible and occur very rapidly. The major epigenetic mechanisms include DNA methylation, modification of histone proteins, chemical modification and chromatin remodeling changes in gene expression caused by microRNAs (miRNAs). Epigenetic changes play an important role in malignant transformation and can be specific to types of cancers including prostate cancer.
Collapse
Affiliation(s)
- Maria Nowacka-Zawisza
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Ewelina Wiśnik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
11
|
Abstract
Endometrial carcinoma (EC) is the most common gynecologic malignancy, but the molecular events involved in the development and progression of EC remain unclear. This study aimed to investigate the role of DNA methyltransferase 1 (DNMT1), a member of DNA methyltransferases, in EC. AN3CA cells were transfected with DNMT1 siRNA. The proliferation, cell cycle, and apoptosis of AN3CA cells were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The expression of related genes was detected by polymerase chain reaction and Western blot analysis. Knockdown of DNMT1 inhibited the proliferation, induced apoptosis, and G0/G1 phase arrest of AN3CA cells. Furthermore, knockdown of DNMT1 upregulated the expression of nuclear factor kappa-B-inhibitor alpha (NF-κBIA) and Bax and downregulated the expression of Bcl-2 and CCND1/2 in AN3CA cells. In conclusion, this study provides the first evidence that knockdown of DNMT1 affects the expression of cell cycle- and apoptosis-associated proteins in EC cells, suggesting the potential of DNMT1 in EC therapy.
Collapse
Affiliation(s)
- Xinjing Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Bilan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Lázaro-Ibáñez E, Lunavat TR, Jang SC, Escobedo-Lucea C, Oliver-De La Cruz J, Siljander P, Lötvall J, Yliperttula M. Distinct prostate cancer-related mRNA cargo in extracellular vesicle subsets from prostate cell lines. BMC Cancer 2017; 17:92. [PMID: 28143451 PMCID: PMC5286827 DOI: 10.1186/s12885-017-3087-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/24/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Multiple types of extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs), are released by all cells constituting part of the cellular EV secretome. The bioactive cargo of EVs can be shuffled between cells and consists of lipids, metabolites, proteins, and nucleic acids, including multiple RNA species from non-coding RNAs to messenger RNAs (mRNAs). In this study, we hypothesized that the mRNA cargo of EVs could differ based on the EV cellular origin and subpopulation analyzed. METHODS We isolated MVs and EXOs from PC-3 and LNCaP prostate cancer cells by differential centrifugation and compared them to EVs derived from the benign PNT2 prostate cells. The relative mRNA levels of 84 prostate cancer-related genes were investigated and validated using quantitative reverse transcription PCR arrays. RESULTS Based on the mRNA abundance, MVs rather than EXOs were enriched in the analyzed transcripts, providing a snapshot of the tumor transcriptome. LNCaP MVs specifically contained significantly increased mRNA levels of NK3 Homeobox 1 (NKX3-1), transmembrane protease serine 2 (TMPRSS2), and tumor protein 53 (TP53) genes, whereas PC-3 MVs carried increased mRNA levels of several genes including, caveolin-2 (CAV2), glutathione S-transferase pi 1 (GSTP1), pescadillo ribosomal biogenesis factor 1 (PES1), calmodulin regulated spectrin associated protein 1 (CAMSAP1), zinc-finger protein 185 (ZNF185), and others compared to PNT2 MVs. Additionally, ETS variant 1 (ETV1) and fatty acid synthase (FASN) mRNAs identified in LNCaP- and PC-3- derived MVs highly correlated with prostate cancer progression. CONCLUSIONS Our study provides new understandings of the variability of the mRNA cargo of MVs and EXOs from different cell lines despite same cancer origin, which is essential to better understand the the proportion of the cell transcriptome that can be detected within EVs and to evaluate their role in disease diagnosis.
Collapse
Affiliation(s)
- Elisa Lázaro-Ibáñez
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland. .,Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, 40530, Sweden.
| | - Taral R Lunavat
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Su Chul Jang
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Carmen Escobedo-Lucea
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Institute for Advanced Biomedical Engineering, Tokyo Women´s Medical University (TWINS), Tokyo, 162 8666, Japan
| | - Jorge Oliver-De La Cruz
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
| | - Pia Siljander
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Helsinki, 00014, Finland
| | - Jan Lötvall
- Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, 40530, Sweden.
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Division of Pharmaceutical Sciences, Faculty of Pharmacy, University of Padova, Padova, 35131, Italy
| |
Collapse
|
13
|
The Silencing of CCND2 by Promoter Aberrant Methylation in Renal Cell Cancer and Analysis of the Correlation between CCND2 Methylation Status and Clinical Features. PLoS One 2016; 11:e0161859. [PMID: 27583477 PMCID: PMC5008725 DOI: 10.1371/journal.pone.0161859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/13/2016] [Indexed: 12/21/2022] Open
Abstract
Cyclin D2 (CCND2) is a member of the D-type cyclins, which plays a pivotal role in cell cycle regulation, differentiation and malignant transformation. However, its expression status and relative regulation mechanism remains unclear in renal cell cancer (RCC). In our study, the mRNA expression level of CCND2 is down-regulated in 22/23 paired RCC tissues (p<0.05). In addition, its protein expression level is also decreased in 43/43 RCC tumor tissues compared with its corresponding non-malignant tissues (p<0.001). We further detected that CCND2 was down-regulated or silenced in 6/7 RCC cell lines, but expressed in “normal” human proximal tubular (HK-2) cell line. Subsequently, MSP and BGS results showed that the methylation status in CCND2 promoter region is closely associated with its expression level in RCC cell lines. Treatment with 5-Aza with or without TSA restored CCND2 expression in several methylated RCC cell lines. Among the 102 RCC tumors, methylation of CCND2 was detected in 29/102 (28%) cases. Only 2/23 (8.7%) adjacent non-malignant tissues showed methylation. We then analyzed the correlation of clinical features and its promoter methylation. Collectively, our data suggested that loss of CCND2 expression is closely associated with the promoter aberrant methylation.
Collapse
|
14
|
Russo LC, Araujo CB, Iwai LK, Ferro ES, Forti FL. A Cyclin D2-derived peptide acts on specific cell cycle phases by activating ERK1/2 to cause the death of breast cancer cells. J Proteomics 2016; 151:24-32. [PMID: 27371349 DOI: 10.1016/j.jprot.2016.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023]
Abstract
Protein degradation by the proteasome generates functional intracellular peptides. Pep5, a peptide derived from Cyclin D2, induces cell death in tumor cell lines and reduces the volume of rat C6 glioblastoma tumors in vivo. Here, we chose the human MDA-MB-231 breast cancer cells to evaluate the mechanism of cell death induced by pep5 in different phases of the cell cycle. Fluorescently labeled pep5, monitored by real time confocal microscopy, entered the MDA-MB-231 cells 3min after application and localized to the nucleus and cytoplasm. Pep5-induced cell death was increased when the MDA-MB-231 cell population was arrested at the G1/S transition or in S phase compared to asynchronous cells. Pep5 induced permanent extracellular signal-regulated kinase (ERK1/2) phosphorylation in MDA-MB-231 cells synchronized in G1/S or S phase. Affinity chromatography followed by mass spectrometry identified CLIC1 and Plectin as the only two proteins that interacted with pep5 in both asynchronous and synchronized MDA-MB-231 cells. These interactions could explain the long-lasting ERK1/2 phosphorylation and the cytoskeleton perturbations in the MDA-MB-231 cells, in which the stress fibers' integrity is affected by pep5 treatments. These data suggest that pep5 has potential therapeutic properties for treating specific types of cancers, such as breast cancer cells. BIOLOGICAL SIGNIFICANCE Pep5, a natural intracellular peptide formed by the degradation of Cyclin D2 through the ubiquitin-proteasome system, induces cell death when reintroduced into MDA-MB-231 breast cancer cells, which express low levels of Cyclin D2, specifically in G1/S arrested cells or in cells that are passing through S phase. Under these conditions, pep5 is able to interact with different intracellular proteins, primarily cytoskeleton and proteasome components, which can lead to cellular apoptosis. Together, our data suggest that pep5 is an intracellular peptide with therapeutic potential for treating specific types of tumors with low expression of Cyclin D2 by inhibiting cell proliferation.
Collapse
Affiliation(s)
- Lilian C Russo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Christiane B Araujo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response, and Cell Signaling (CETICS), Butantan Institute, São Paulo, SP 05503-000, Brazil
| | - Leo K Iwai
- Special Laboratory of Applied Toxinology (LETA), Center of Toxins, Immune Response, and Cell Signaling (CETICS), Butantan Institute, São Paulo, SP 05503-000, Brazil
| | - Emer S Ferro
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fabio L Forti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
15
|
Vieira FQ, Costa-Pinheiro P, Almeida-Rios D, Graça I, Monteiro-Reis S, Simões-Sousa S, Carneiro I, Sousa EJ, Godinho MI, Baltazar F, Henrique R, Jerónimo C. SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets Cyclin D2 through H4K20me3. Oncotarget 2016; 6:13644-57. [PMID: 25980436 PMCID: PMC4537039 DOI: 10.18632/oncotarget.3767] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PCa) is one of the most incident cancers worldwide but clinical and pathological parameters have limited ability to discriminate between clinically significant and indolent PCa. Altered expression of histone methyltransferases and histone methylation patterns are involved in prostate carcinogenesis. SMYD3 transcript levels have prognostic value and discriminate among PCa with different clinical aggressiveness, so we decided to investigate its putative oncogenic role on PCa. We silenced SMYD3 and assess its impact through in vitro (cell viability, cell cycle, apoptosis, migration, invasion assays) and in vivo (tumor formation, angiogenesis). We evaluated SET domain's impact in PCa cells' phenotype. Histone marks deposition on SMYD3 putative target genes was assessed by ChIP analysis. Knockdown of SMYD3 attenuated malignant phenotype of LNCaP and PC3 cell lines. Deletions affecting the SET domain showed phenotypic impact similar to SMYD3 silencing, suggesting that tumorigenic effect is mediated through its histone methyltransferase activity. Moreover, CCND2 was identified as a putative target gene for SMYD3 transcriptional regulation, through trimethylation of H4K20. Our results support a proto-oncogenic role for SMYD3 in prostate carcinogenesis, mainly due to its methyltransferase enzymatic activity. Thus, SMYD3 overexpression is a potential biomarker for clinically aggressive disease and an attractive therapeutic target in PCa.
Collapse
Affiliation(s)
- Filipa Quintela Vieira
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Pedro Costa-Pinheiro
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal
| | - Diogo Almeida-Rios
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Sara Monteiro-Reis
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | - Susana Simões-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isa Carneiro
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | - Elsa Joana Sousa
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal
| | - Maria Inês Godinho
- Departments of Immunology, Portuguese Oncology Institute, Porto, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
16
|
Hafez MM, Al-Shabanah OA, Al-Rejaie SS, Al-Harbi NO, Hassan ZK, Alsheikh A, Al Theyab AI, Aldelemy ML, Sayed-Ahmed MM. Increased hypermethylation of glutathione S-transferase P1, DNA-binding protein inhibitor, death associated protein kinase and paired box protein-5 genes in triple-negative breast cancer Saudi females. Asian Pac J Cancer Prev 2015; 16:541-9. [PMID: 25684485 DOI: 10.7314/apjcp.2015.16.2.541] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with higher metastatic rate and both local and systemic recurrence compared to non-TNBC. The generation of reactive oxygen species (ROS) secondary to oxidative stress is associated with DNA damage, chromosomal degradation and alterations of both hypermethylation and hypomethylation of DNA. This study concerns differential methylation of promoter regions in specific groups of genes in TNBC and non-TNBC Saudi females in an effort to understand whether epigenetic events might be involved in breast carcinogenesis, and whether they might be used as markers for Saudi BCs. Methylation of glutathione S-transferase P1 (GSTP1), T-cadherin (CDH13), Paired box protein 5 (PAX5), death associated protein kinase (DAPK), twist-related protein (TWIST), DNA-binding protein inhibitor (ID4), High In Normal-1 (HIN-1), cyclin-dependent kinase inhibitor 2A (p16), cyclin D2 and retinoic acid receptor-β (RARβ1) genes was analyzed by methylation specific polymerase chain reaction (MSP) in 200 archival formalin- fixed paraffin embedded BC tissues divided into 3 groups; benign breast tissues (20), TNBC (80) and non-TNBC (100). The relationships between methylation status, and clinical and pathological characteristics of patients and tumors were assessed. Higher frequencies of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 hypermethylation were found in TNBC than in non-TNBC. Hypermethylation of GSTP1, CDH13, ID4, DAPK, HIN-1 and PAX5 increased with tumor grade increasing. Other statistically significant correlations were identified with studied genes. Data from this study suggest that increased hypermethylation of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 genes in TNBC than in non-TNBC can act as useful biomarker for BCs in the Saudi population. The higher frequency of specific hypermethylated genes paralleling tumor grade, size and lymph node involvement suggests contributions to breast cancer initiation and progression.
Collapse
Affiliation(s)
- Mohamed M Hafez
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Misiewicz-Krzeminska I, Sarasquete ME, Vicente-Dueñas C, Krzeminski P, Wiktorska K, Corchete LA, Quwaider D, Rojas EA, Corral R, Martín AA, Escalante F, Bárez A, García JL, Sánchez-García I, García-Sanz R, San Miguel JF, Gutiérrez NC. Post-transcriptional Modifications Contribute to the Upregulation of Cyclin D2 in Multiple Myeloma. Clin Cancer Res 2015; 22:207-17. [PMID: 26341922 DOI: 10.1158/1078-0432.ccr-14-2796] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 08/14/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Dysregulation of one of the three D-cyclin genes has been observed in virtually all multiple myeloma tumors. The mechanisms by which CCND2 is upregulated in a set of multiple myeloma are not completely deciphered. We investigated the role of post-transcriptional regulation through the interaction between miRNAs and their binding sites at 3'UTR in CCND2 overexpression in multiple myeloma. EXPERIMENTAL DESIGN Eleven myeloma cell lines and 45 primary myeloma samples were included in the study. Interactions between miRNAs deregulated in multiple myeloma and mRNA targets were analyzed by 3'UTR-luciferase plasmid assay. The presence of CCND2 mRNA isoforms different in length was explored using qRT-PCR, Northern blot, mRNA FISH, and 3' rapid amplification of cDNA ends (RACE)-PCR. RESULTS We detected the presence of short CCND2 mRNA, both in the multiple myeloma cell lines and primary cells. The results obtained by 3'RACE experiments revealed that changes in CCND2 3'UTR length are explained by alternative polyadenylation. The luciferase assays using plasmids harboring the truncated CCND2 mRNA strongly confirmed the loss of miRNA sites in the shorter CCND2 mRNA isoform. Those multiple myelomas with greater abundance of the shorter 3'UTR isoform were associated with significant higher level of total CCND2 mRNA expression. Furthermore, functional analysis showed significant CCND2 mRNA shortening after CCND1 silencing and an increased relative expression of longer isoform after CCND1 and CCND3 overexpression, suggesting that cyclin D1 and D3 could regulate CCND2 levels through modifications in polyadenylation-cleavage reaction. CONCLUSIONS Overall, these results highlight the impact of CCND2 3'UTR shortening on miRNA-dependent regulation of CCND2 in multiple myeloma.
Collapse
Affiliation(s)
- Irena Misiewicz-Krzeminska
- Centro de Investigacion del Cancer-IBMCC (USAL-CSIC), Salamanca, Spain. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. National Medicines Institute, Warsaw, Poland
| | - María E Sarasquete
- Centro de Investigacion del Cancer-IBMCC (USAL-CSIC), Salamanca, Spain. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carolina Vicente-Dueñas
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. Experimental Therapeutics and Translational Oncology Program, Instituto de Biologia Molecular y Celular del Cancer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Patryk Krzeminski
- Centro de Investigacion del Cancer-IBMCC (USAL-CSIC), Salamanca, Spain. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Luis Antonio Corchete
- Centro de Investigacion del Cancer-IBMCC (USAL-CSIC), Salamanca, Spain. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Dalia Quwaider
- Centro de Investigacion del Cancer-IBMCC (USAL-CSIC), Salamanca, Spain. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Elizabeta A Rojas
- Centro de Investigacion del Cancer-IBMCC (USAL-CSIC), Salamanca, Spain. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Rocío Corral
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. Servicio de Hematología, Hospital Universitario, Salamanca, Spain
| | - Ana A Martín
- Servicio de Hematología, Hospital Universitario, Salamanca, Spain
| | | | | | - Juan Luis García
- Centro de Investigacion del Cancer-IBMCC (USAL-CSIC), Salamanca, Spain. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Isidro Sánchez-García
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. Experimental Therapeutics and Translational Oncology Program, Instituto de Biologia Molecular y Celular del Cancer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Ramón García-Sanz
- Centro de Investigacion del Cancer-IBMCC (USAL-CSIC), Salamanca, Spain. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. Servicio de Hematología, Hospital Universitario, Salamanca, Spain
| | - Jesús F San Miguel
- Clinica Universidad de Navarra, Centro de Investigaciones Medicas Aplicadas (CIMA), Pamplona, Spain
| | - Norma C Gutiérrez
- Centro de Investigacion del Cancer-IBMCC (USAL-CSIC), Salamanca, Spain. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. Servicio de Hematología, Hospital Universitario, Salamanca, Spain.
| |
Collapse
|
18
|
Maldonado L, Brait M, Michailidi C, Munari E, Driscoll T, Schultz L, Bivalacqua T, Schoenberg M, Sidransky D, Netto GJ, Hoque MO. An epigenetic marker panel for recurrence risk prediction of low grade papillary urothelial cell carcinoma (LGPUCC) and its potential use for surveillance after transurethral resection using urine. Oncotarget 2015; 5:5218-33. [PMID: 24980822 PMCID: PMC4170626 DOI: 10.18632/oncotarget.2129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
By a candidate gene approach, we analyzed the promoter methylation (PM) of 8 genes genes (ARF, TIMP3, RAR-β2, NID2, CCNA1, AIM1, CALCA and CCND2) by quantitative methylation specific PCR (QMSP) in DNA of 17 non-recurrent and 19 recurrent noninvasive low grade papillary urothelial cell carcinoma (LGPUCC) archival tissues. Among the genes tested, by establishing an empiric cutoff value, CCND2, CCNA1, NID2, and CALCA showed higher frequency of methylation in recurrent than in non-recurrent LGPUCC: CCND2 10/19 (53%) vs. 2/17 (12%) (p=0.014); CCNA1 11/19 (58%) vs. 4/17 (23.5%) (p=0.048); NID2 13/19 (68%) vs. 3/17 (18%) (p=0.003) and CALCA 10/19 (53%) vs. 4/17 (23.5%) (p=0.097), respectively. We further analyzed PM of CCND2, CCNA1, and CALCA in urine DNA from UCC patients including LGPUCC and controls. The frequency of CCND2, CCNA1 and CALCA was significantly higher (p<0.0001) in urine of UCC cases [ 38/148 (26%), 50/73 (68%) and 94/148 (63.5%) respectively] than controls [0/56 (0%), 10/60 (17%) and 16/56 (28.5%), respectively)]. Most importantly we found any one of the 3 markers methylation positive in 25 out of 30 (83%) cytology negative LGPUCC cases. We also explored the biological function of CCNA1 in UCC. Prospective confirmatory studies are needed to develop a reliable tool for prediction of recurrence using primary LGPUCC tissues and/or urine.
Collapse
Affiliation(s)
- Leonel Maldonado
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. These authors contributed equally to this work
| | - Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. These authors contributed equally to this work
| | - Christina Michailidi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Enrico Munari
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tina Driscoll
- Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Luciana Schultz
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Trinity Bivalacqua
- Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark Schoenberg
- Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - George J Netto
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA. Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mohammad Obaidul Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. Department of Urology, Johns Hopkins University, Baltimore, Maryland, USA. Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Abstract
Malignancies of the genitourinary system have some of the highest cancer incidence and mortality rates. For example prostate cancer is the second most common cancer in men and ovarian cancer mortality and incidence are near equal. In addition to genetic changes modulation of the epigenome is critical to cancer development and progression. In this regard epigenetic changes in DNA methylation state and DNA hypermethylation in particular has garnered a great deal of attention. While hypomethylation occurs mostly in repeated sequence such as tandem and interspersed repeats and segment duplications, hypermethylation is associated with CpG islands. Hypomethylation leads to activation of cancer-causing genes with global DNA hypomethylation being commonly associated with metastatic disease. Hypermethylation-mediated silencing of tumor suppressive genes is commonly associated with cancer development. Bioactive phytochemicals such as flavonoids present in fruits, vegetables, beverages etc. have the ability to modulate DNA methylation status and are therefore very valuable agents for cancer prevention. In this review we discuss several commonly methylated genes and flavonoids used to modulate DNA methylation in the prevention of genitourinary cancers.
Collapse
|
20
|
Maldonado L, Brait M, Loyo M, Sullenberger L, Wang K, Peskoe SB, Rosenbaum E, Howard R, Toubaji A, Albadine R, Netto GJ, Hoque MO, Platz EA, Sidransky D. GSTP1 promoter methylation is associated with recurrence in early stage prostate cancer. J Urol 2014; 192:1542-8. [PMID: 24769028 PMCID: PMC4390043 DOI: 10.1016/j.juro.2014.04.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE Recurrent prostate cancer remains a major problem. Staging, grading and prostate specific antigen level at surgery are helpful but still imperfect predictors of recurrence. For this reason there is an imperative need for additional biomarkers that add to the prediction of currently used prognostic factors. MATERIALS AND METHODS We evaluated the extent of promoter methylation of genes previously reported as aberrantly methylated in prostate cancer (AIM1, APC, CCND2, GPX3, GSTP1, MCAM, RARβ2, SSBP2 and TIMP3) by quantitative fluorogenic methylation-specific polymerase chain reaction. We used cancer tissue from a nested case-control study of 452 patients surgically treated for prostate cancer. Recurrence cases and controls were compared and the association between methylation extent and recurrence risk was estimated by logistic regression adjusting for patient age at prostatectomy, prostatectomy year, stage, grade, surgical margins and preprostatectomy prostate specific antigen. All statistical tests were 2-sided with p ≤0.05 considered statistically significant. RESULTS The extent of GSTP1 methylation was higher in patients with recurrence than in controls (p = 0.01), especially patients with early disease, ie organ confined or limited extraprostatic extension (p = 0.001). After multivariate adjustment GSTP1 promoter methylation at or above the median was associated with an increased risk of recurrence, including in men with early disease (each p = 0.05). CONCLUSIONS Greater GSTP1 promoter methylation in cancer tissue was independently associated with the risk of recurrence in patients with early prostate cancer. This suggests that GSTP1 promoter methylation may be a potential tissue based recurrence marker.
Collapse
Affiliation(s)
- Leonel Maldonado
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Myriam Loyo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lauren Sullenberger
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kevin Wang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah B Peskoe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Eli Rosenbaum
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roslyn Howard
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antoun Toubaji
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Roula Albadine
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - George J Netto
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mohammad O Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth A Platz
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
21
|
Yang CC, Chung A, Ku CY, Brill LM, Williams R, Wolf DA. Systems analysis of the prostate tumor suppressor NKX3.1 supports roles in DNA repair and luminal cell differentiation. F1000Res 2014; 3:115. [PMID: 25177484 PMCID: PMC4141641 DOI: 10.12688/f1000research.3818.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 11/20/2022] Open
Abstract
NKX3.1 is a homeobox transcription factor whose function as a prostate tumor suppressor remains insufficiently understood because neither the transcriptional program governed by NKX3.1, nor its interacting proteins have been fully revealed. Using affinity purification and mass spectrometry, we have established an extensive NKX3.1 interactome which contains the DNA repair proteins Ku70, Ku80, and PARP, thus providing a molecular underpinning to previous reports implicating NKX3.1 in DNA repair. Transcriptomic profiling of NKX3.1-negative prostate epithelial cells acutely expressing NKX3.1 revealed a rapid and complex response that is a near mirror image of the gene expression signature of human prostatic intraepithelial neoplasia (PIN). Pathway and network analyses suggested that NKX3.1 actuates a cellular reprogramming toward luminal cell differentiation characterized by suppression of pro-oncogenic c-MYC and interferon-STAT signaling and activation of tumor suppressor pathways. Consistently, ectopic expression of NKX3.1 conferred a growth arrest depending on TNFα and JNK signaling. We propose that the tumor suppressor function of NKX3.1 entails a transcriptional program that maintains the differentiation state of secretory luminal cells and that disruption of NKX3.1 contributes to prostate tumorigenesis by permitting luminal cell de-differentiation potentially augmented by defects in DNA repair.
Collapse
Affiliation(s)
- Chih-Cheng Yang
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Alicia Chung
- Genentech Inc., South San Francisco, CA 94080, USA
| | - Chia-Yu Ku
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Laurence M Brill
- NCI-designated Cancer Center Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Roy Williams
- Informatics and Data Management Core, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Dieter A Wolf
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; NCI-designated Cancer Center Proteomics Facility, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA; San Diego Center for Systems Biology, La Jolla, CA 92093-0375, USA
| |
Collapse
|
22
|
Oktem G, Bilir A, Uslu R, Inan SV, Demiray SB, Atmaca H, Ayla S, Sercan O, Uysal A. Expression profiling of stem cell signaling alters with spheroid formation in CD133 high/CD44 high prostate cancer stem cells. Oncol Lett 2014; 7:2103-2109. [PMID: 24932297 PMCID: PMC4049671 DOI: 10.3892/ol.2014.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 11/22/2013] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSC) isolated from multiple tumor types differentiate in vivo and in vitro when cultured in serum; however, the factors responsible for their differentiation have not yet been identified. The first aim of the present study was to identify CD133high/CD44high DU145 prostate CSCs and compare their profiles with non-CSCs as bulk counterparts of the population. Subsequently, the two populations continued to be three-dimensional multicellular spheroids. Differentiation was then investigated with stem cell-related genomic characteristics. Polymerase chain reaction array analyses of cell cycle regulation, embryonic and mesenchymal cell lineage-related markers, and telomerase reverse transcriptase (TERT) and Notch signaling were performed. Immunohistochemistry of CD117, Notch1, Jagged1, Delta1, Sox2, c-Myc, Oct4, KLF4, CD90 and SSEA1 were determined in CSC and non-CSC monolayer and spheroid subcultures. Significant gene alterations were observed in the CD133high/CD44high population when cultured as a monolayer and continued as spheroid. In this group, marked gene upregulation was determined in collagen type 9 α1, Islet1 and cyclin D2. Jagged1, Delta-like 3 and Notch1 were respectively upregulated genes in the Notch signaling pathway. According to immunoreactivity, the staining density of Jagged1, Sox2, Oct4 and Klf-4 increased significantly in CSC spheroids. Isolated CSCs alter their cellular characterization over the course of time and exhibit a differentiation profile while maintaining their former surface antigens at a level of transcription or translation. The current study suggested that this differentiation process may be a mechanism responsible for the malignant process and tumor growth.
Collapse
Affiliation(s)
- Gulperi Oktem
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, Istanbul Medical Faculty, Istanbul University, Capa, Istanbul 34098, Turkey
| | - Ruchan Uslu
- Department of Medical Oncology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Sevinc V Inan
- Department of Histology and Embryology, Faculty of Medicine, Manisa 45030, Turkey
| | - Sirin B Demiray
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Harika Atmaca
- Department of Biology, Faculty of Science and Art, Celal Bayar University, Manisa 45030, Turkey
| | - Sule Ayla
- Zeynep Kamil Gynecology and Maternity Training and Research Hospital, Istanbul 34668, Turkey
| | - Ogun Sercan
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Bornova, Izmir 35340, Turkey
| | - Aysegul Uysal
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| |
Collapse
|
23
|
Henrique R, Oliveira AI, Costa VL, Baptista T, Martins AT, Morais A, Oliveira J, Jerónimo C. Epigenetic regulation of MDR1 gene through post-translational histone modifications in prostate cancer. BMC Genomics 2013; 14:898. [PMID: 24344919 PMCID: PMC3878566 DOI: 10.1186/1471-2164-14-898] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 12/11/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Multidrug resistance 1 (MDR1) gene encodes for an ATP binding cassette transporter--P-glycoprotein (P-gp)-- involved in chemoresistance to taxanes. MDR1 promoter methylation is frequent in prostate carcinoma (PCa), suggesting an epigenetic regulation but no functional correlation has been established. We aimed to elucidate the epigenetic mechanisms involved in MDR1 deregulation in PCa. RESULTS MDR1 promoter methylation and P-gp expression were assessed in 121 PCa, 39 high-grade prostatic intraepithelial neoplasia (HGPIN), 28 benign prostatic hyperplasia (BPH) and 10 morphologically normal prostate tissue (NPT) samples, using quantitative methylation specific PCR and immunohistochemistry, respectively. PCa cell lines were exposed to a DNA methyltransferases inhibitor 5-aza-2'deoxycytidine (DAC) and histone deacetylases inhibitor trichostatin A (TSA). Methylation and histone posttranscriptional modifications status were characterized and correlated with mRNA and protein expression. MDR1 promoter methylation levels and frequency significantly increased from NPTs, to HGPIN and to PCa. Conversely, decreased or absent P-gp immunoexpression was observed in HGPIN and PCa, inversely correlating with methylation levels. Exposure to DAC alone did not alter significantly methylation levels, although increased expression was apparent. However, P-gp mRNA and protein re-expression were higher in cell lines exposed to TSA alone or combined with DAC. Accordingly, histone active marks H3Ac, H3K4me2, H3K4me3, H3K9Ac, and H4Ac were increased at the MDR1 promoter after exposure to TSA alone or combined with DAC. CONCLUSION Our data suggests that, in prostate carcinogenesis, MDR1 downregulation is mainly due to histone post-translational modifications. This occurs concomitantly with aberrant promoter methylation, substantiating the association with P-gp decreased expression.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Adult
- Aged
- Aged, 80 and over
- Azacitidine/pharmacology
- Cell Line, Tumor
- CpG Islands
- DNA Methylation
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Histones/metabolism
- Humans
- Male
- Middle Aged
- Neoplasm Grading
- Neoplasm Staging
- Promoter Regions, Genetic
- Prostate/metabolism
- Prostatic Hyperplasia/genetics
- Prostatic Hyperplasia/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Protein Processing, Post-Translational
Collapse
Affiliation(s)
- Rui Henrique
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal
| | - Ana Isabel Oliveira
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Vera L Costa
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Tiago Baptista
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Teresa Martins
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - António Morais
- Department of Urology, Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Epigenetics Group, Research Center of the Portuguese Oncology Institute, Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Largo Prof. Abel Salazar 2, 4099-003 Porto, Portugal
| |
Collapse
|
24
|
Chen QW, Zhu XY, Li YY, Meng ZQ. Epigenetic regulation and cancer (review). Oncol Rep 2013; 31:523-32. [PMID: 24337819 DOI: 10.3892/or.2013.2913] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/04/2013] [Indexed: 11/06/2022] Open
Abstract
'Epigenetics' is defined as the inheritable changes in gene expression with no alterations in DNA sequences. Epigenetics is a rapidly expanding field, and the study of epigenetic regulation in cancer is emerging. Disruption of the epigenome is a fundamental mechanism in cancer, and several epigenetic drugs have been proven to prolong survival and to be less toxic than conventional chemotherapy. Promising results from combination clinical trials with DNA methylation inhibitors and histone deacetylase inhibitors have recently been reported, and data are emerging that describe molecular determinants of clinical responses. Despite significant advances, challenges remain, including a lack of predictive markers, unclear mechanisms of response and resistance, and rare responses in solid tumors. Preclinical studies are ongoing with novel classes of agents that target various components of the epigenetic machinery. In the present review, examples of studies that demonstrate the role of epigenetic regulation in human cancers with the focus on histone modifications and DNA methylation, and the recent clinical and translational data in the epigenetics field that have potential in cancer therapy are discussed.
Collapse
Affiliation(s)
- Q W Chen
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - X Y Zhu
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Y Y Li
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Z Q Meng
- Department of Integrated Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Saha K, Hornyak TJ, Eckert RL. Epigenetic cancer prevention mechanisms in skin cancer. AAPS JOURNAL 2013; 15:1064-71. [PMID: 23904153 DOI: 10.1208/s12248-013-9513-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/11/2013] [Indexed: 12/21/2022]
Abstract
Epigenetics is an important emerging area for study of mechanisms of cancer prevention. In recent years, it has been realized that cancer prevention agents, derived from natural dietary sources, impact cancer cell survival by modulating epigenetic processes. In the present manuscript, we review key epigenetic regulatory mechanisms and examine the impact of sulforaphane and green tea polyphenols on these processes. We also discuss available information on the epigenetics in the context of skin cancer. These studies indicate that diet-derived chemopreventive agents modulate DNA methylation status and histone modification via multiple processes and point to additional areas for study of epigenetic mechanisms in skin cancer.
Collapse
Affiliation(s)
- Kamalika Saha
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, Maryland, 21201, USA
| | | | | |
Collapse
|
26
|
Witt D, Burfeind P, von Hardenberg S, Opitz L, Salinas-Riester G, Bremmer F, Schweyer S, Thelen P, Neesen J, Kaulfuss S. Valproic acid inhibits the proliferation of cancer cells by re-expressing cyclin D2. Carcinogenesis 2013; 34:1115-24. [PMID: 23349020 DOI: 10.1093/carcin/bgt019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study, primary murine prostate cancer (PCa) cells were derived using the well-established TRAMP model. These PCa cells were treated with the histone deacetylase inhibitor, valproic acid (VPA), and we demonstrated that VPA treatment has an antimigrative, antiinvasive and antiproliferative effect on PCa cells. Using microarray analyses, we discovered several candidate genes that could contribute to the cellular effects we observed. In this study, we could demonstrate that VPA treatment of PCa cells causes the re-expression of cyclin D2, a known regulator that is frequently lost in PCa as we could show using immunohistochemical analyses on PCa specimens. We demonstrate that VPA specifically induces the re-expression of cyclin D2, one of the highly conserved D-type cyclin family members, in several cancer cell lines with weak or no cyclin D2 expression. Interestingly, VPA treatment had no effect in fibroblasts, which typically have high basal levels of cyclin D2 expression. The re-expression of cyclin D2 observed in PCa cells is activated by increased histone acetylation in the promoter region of the Ccnd2 gene and represents one underlying molecular mechanism of VPA treatment that inhibits the proliferation of cancer cells. Altogether, our results confirm that VPA is an anticancer therapeutic drug for the treatment of tumors with epigenetically repressed cyclin D2 expression.
Collapse
Affiliation(s)
- Daria Witt
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Augello MA, Ostrander WF, Knudsen KE. Beyond the Cell Cycle: Implications of D-type Cyclin Deregulation in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
28
|
Ko E, Kim Y, Park SE, Cho EY, Han J, Shim YM, Park J, Kim DH. Reduced expression of cyclin D2 is associated with poor recurrence-free survival independent of cyclin D1 in stage III non-small cell lung cancer. Lung Cancer 2012; 77:401-6. [DOI: 10.1016/j.lungcan.2012.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/27/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022]
|
29
|
Lee C, Zhang Q, Zi X, Dash A, Soares MB, Rahmatpanah F, Jia Z, McClelland M, Mercola D. TGF-β mediated DNA methylation in prostate cancer. Transl Androl Urol 2012; 1:78-88. [PMID: 25133096 PMCID: PMC4131550 DOI: 10.3978/j.issn.2223-4683.2012.05.06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 05/04/2012] [Indexed: 12/15/2022] Open
Abstract
Almost all tumors harbor a defective negative feedback loop of signaling by transforming growth factor-β (TGF-β). Epigenetic mechanisms of gene regulation, including DNA methylation, are fundamental to normal cellular function and also play a major role in carcinogenesis. Recent evidence demonstrated that TGF-β signaling mediates cancer development and progression. Many key events in TGF-β signaling in cancer included auto-induction of TGF-β1 and increased expression of DNA methyltransferases (DNMTs), suggesting that DNA methylation plays a significant role in cancer development and progression. In this review, we performed an extensive survey of the literature linking TGF-β signaling to DNA methylation in prostate cancer. It appeared that almost all DNA methylated genes detected in prostate cancer are directly or indirectly related to TGF-β signaling. This knowledge has provided a basis for our future directions of prostate cancer research and strategies for prevention and therapy for prostate cancer.
Collapse
|
30
|
Even-skipped homeobox 1 is frequently hypermethylated in prostate cancer and predicts PSA recurrence. Br J Cancer 2012; 107:100-7. [PMID: 22596233 PMCID: PMC3389415 DOI: 10.1038/bjc.2012.216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: DNA methylation is an important epigenetic mechanism in prostate cancer (PCa) progression. Given the role of even-skipped homeobox 1 (EVX1) in the regulation of multiple genes during embryogenesis, we postulated that EVX1 methylation is altered in PCa progression. Methods: Bisulphite sequencing and quantitative MethyLight were used to assess methylation in human prostate epithelial cells, four PCa cell lines, liver, lung, spleen, kidney, 35 paired tumour and tumour-associated benign tissues, and 11 normal prostate tissues. Prostate cancer cell lines were treated with 5-azacytidine (AzaC) or trichostatin A (TSA), and expression of EVX1 transcript and variants was assessed by qPCR. Hypermethylation was compared with clinicopathological features in a validation set of 58 patients using microarray. Results: Even-skipped homeobox 1 hypermethylation was observed in all four PCa cell lines and 57% of tumours. High-grade tumours exhibited increased methylation compared with intermediate-grade tumours. Even-skipped homeobox 1 expression was induced in PCa cell lines after treatment with AzaC or TSA. In the validation set, 83% of tumours were hypermethylated and hypermethylation was associated with worse recurrence-free survival. Conclusion: In this first evaluation of EVX1 methylation in human cancer, EVX1 is one of the most commonly hypermethylated genes observed in PCa and predicted treatment failure in moderate risk patients.
Collapse
|
31
|
Schiewer MJ, Augello MA, Knudsen KE. The AR dependent cell cycle: mechanisms and cancer relevance. Mol Cell Endocrinol 2012; 352:34-45. [PMID: 21782001 PMCID: PMC3641823 DOI: 10.1016/j.mce.2011.06.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/08/2011] [Accepted: 06/27/2011] [Indexed: 01/04/2023]
Abstract
Prostate cancer cells are exquisitely dependent on androgen receptor (AR) activity for proliferation and survival. As these functions are critical targets of therapeutic intervention for human disease, it is imperative to delineate the mechanisms by which AR engages the cell cycle engine. More than a decade of research has revealed that elegant intercommunication between AR and the cell cycle machinery governs receptor-dependent cellular proliferation, and that perturbations in this process occur frequently in human disease. Here, AR-cell cycle interplay and associated cancer relevance will be reviewed.
Collapse
Affiliation(s)
- Matthew J. Schiewer
- Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St., Philadelphia, PA 19107, USA
- Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St., Philadelphia, PA 19107, USA
| | - Michael A. Augello
- Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St., Philadelphia, PA 19107, USA
- Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St., Philadelphia, PA 19107, USA
| | - Karen E. Knudsen
- Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St., Philadelphia, PA 19107, USA
- Department of Cancer Biology, Thomas Jefferson University, 233 S 10th St., Philadelphia, PA 19107, USA
- Department of Urology, Thomas Jefferson University, 233 S 10th St., Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Thomas Jefferson University, 233 S 10th St., Philadelphia, PA 19107, USA
- Corresponding author at: Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th St., BLSB 1008, Philadelphia, PA 19107, USA. Tel.: +1 215 503 8574 (office)/+1 215 503 8573 (lab). (K.E. Knudsen)
| |
Collapse
|
32
|
Yang M, Park JY. DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol 2012; 863:67-109. [PMID: 22359288 DOI: 10.1007/978-1-61779-612-8_5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prostate gland is the most common site of cancer and the second leading cause of cancer death in American men. Recent emerging molecular biological technologies help us to know that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. In this chapter, we updated current information on methylated genes associated with the development and progression of prostate cancer. Over 40 genes have been investigated for methylation in promoter region in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is discussed. These findings may provide new information of the pathogenesis, the exciting potential to be predictive and to provide personalized treatment of prostate cancer. Indeed, some epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use.
Collapse
Affiliation(s)
- Mihi Yang
- Division of Cancer Prevention and Controls, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
33
|
Abstract
Prostate cancer (PC) is the most commonly diagnosed nonskin malignancy and the second most common cause of cancer death among men in the United States. Epigenetics is the study of heritable changes in gene expression caused by mechanisms other than changes in the underlying DNA sequences. Two common epigenetic mechanisms, DNA methylation and histone modification, have demonstrated critical roles in prostate cancer growth and metastasis. DNA hypermethylation of cytosine-guanine (CpG) rich sequence islands within gene promoter regions is widespread during neoplastic transformation of prostate cells, suggesting that treatment-induced restoration of a “normal” epigenome could be clinically beneficial. Histone modification leads to altered tumor gene function by changing chromosome structure and the level of gene transcription. The reversibility of epigenetic aberrations and restoration of tumor suppression gene function have made them attractive targets for prostate cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases.
Collapse
|
34
|
Hsu A, Wong CP, Yu Z, Williams DE, Dashwood RH, Ho E. Promoter de-methylation of cyclin D2 by sulforaphane in prostate cancer cells. Clin Epigenetics 2011; 3:3. [PMID: 22303414 PMCID: PMC3257546 DOI: 10.1186/1868-7083-3-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 10/26/2011] [Indexed: 12/11/2022] Open
Abstract
Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables, induces potent anti-proliferative effects in prostate cancer cells. One mechanism that may contribute to the anti-proliferative effects of SFN is the modulation of epigenetic marks, such as inhibition of histone deacetylase (HDAC) enzymes. However, the effects of SFN on other common epigenetic marks such as DNA methylation are understudied. Promoter hyper-methylation of cyclin D2, a major regulator of cell cycle, is correlated with prostate cancer progression, and restoration of cyclin D2 expression exerts anti-proliferative effects on LnCap prostate cancer cells. Our study aimed to investigate the effects of SFN on DNA methylation status of cyclin D2 promoter, and how alteration in promoter methylation impacts cyclin D2 gene expression in LnCap cells. We found that SFN significantly decreased the expression of DNA methyltransferases (DNMTs), especially DNMT1 and DNMT3b. Furthermore, SFN significantly decreased methylation in cyclin D2 promoter regions containing c-Myc and multiple Sp1 binding sites. Reduced methlyation of cyclin D2 promoter corresponded to an increase in cyclin D2 transcript levels, suggesting that SFN may de-repress methylation-silenced cyclin D2 by impacting epigenetic pathways. Our results demonstrated the ability of SFN to epigenetically modulate cyclin D2 expression, and provide novel insights into the mechanisms by which SFN may regulate gene expression as a prostate cancer chemopreventive agent.
Collapse
Affiliation(s)
- Anna Hsu
- School of Biological and Population Health Sciences, 103 Milam Hall, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
35
|
Jerónimo C, Bastian PJ, Bjartell A, Carbone GM, Catto JW, Clark SJ, Henrique R, Nelson WG, Shariat SF. Epigenetics in Prostate Cancer: Biologic and Clinical Relevance. Eur Urol 2011; 60:753-66. [DOI: 10.1016/j.eururo.2011.06.035] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/13/2011] [Indexed: 12/28/2022]
|
36
|
Swift-Scanlan T, Vang R, Blackford A, Fackler MJ, Sukumar S. Methylated genes in breast cancer: associations with clinical and histopathological features in a familial breast cancer cohort. Cancer Biol Ther 2011; 11:853-65. [PMID: 21383541 DOI: 10.4161/cbt.11.10.15177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hundreds of hypermethylated genes have been described in breast cancer, yet the nature and contribution of these genes in their methylated state to overall risk and prognosis is under-characterized in non-sporadic breast cancers. We therefore compared associations of DNA methylation with tumor stage, hormone/growth receptor status, and clinical outcomes in a familial breast cancer cohort. Because few previous methylation studies have considered the oncogenic or tumor suppressor properties of their gene sets, this functional status was included as part of our correlative analysis. RESULTS We found methylation of oncogenes was associated with better prognostic indicators, whereas tumor suppressor gene methylation was associated with a more severe phenotype in women that were either HER2+ or lymph node positive at diagnosis, and/or tended to recur or develop distant metastases. For example, the methylation of the tumor suppressor gene APC was strongly associated with a specific subset of tumors that were both ER+ and HER2+, while methylation of the TWIST oncogene was associated with breast cancers that did not metastasize. METHODS This was a retrospective, hospital-based study of n = 99 archival breast tumors derived from women with a germline genetic BRCA1 or BRCA2 mutation and/or familial breast cancer history. DNA methylation was quantified from formalin fixed, paraffin embedded tumors using the established protocol of quantitative multiplex-methylation specific PCR (QM-MSP). Non-parametric statistics were used to analyze candidate gene methylation in association with clinical outcomes. CONCLUSION We report several novel, positive associations between percent methylation of the APC, RASSF1A, TWIST, ERα, CDH1, and Cyclin D2 genes and key variables such as tumor stage, hormone and growth receptor status, and a history of recurrent or metastatic disease. Our data suggest the potential utility of parsing gene methylation by functional status and breast tumor subtype.
Collapse
Affiliation(s)
- Theresa Swift-Scanlan
- The University of North Carolina at Chapel Hill School of Nursing, Chapel Hill, NC, USA.
| | | | | | | | | |
Collapse
|
37
|
Comstock CES, Augello MA, Schiewer MJ, Karch J, Burd CJ, Ertel A, Knudsen ES, Jessen WJ, Aronow BJ, Knudsen KE. Cyclin D1 is a selective modifier of androgen-dependent signaling and androgen receptor function. J Biol Chem 2011; 286:8117-8127. [PMID: 21212260 DOI: 10.1074/jbc.m110.170720] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
D-type cyclins regulate cellular outcomes in part through cyclin-dependent, kinase-independent mechanisms that modify transcription factor action, and recent in vivo studies showed that cyclin D1 associates with a large number of transcriptional regulators in cells of the retina and breast. Given the frequency of cyclin D1 alterations in cancer, it is imperative to delineate the molecular mechanisms by which cyclin D1 controls key transcription factor networks in human disease. Prostate cancer was used as a paradigm because this tumor type is reliant at all stages of the disease on androgen receptor (AR) signaling, and cyclin D1 has been shown to negatively modulate AR-dependent expression of prostate-specific antigen (KLK3/PSA). Strategies were employed to control cyclin D1 expression under conditions of hormone depletion, and the effect of cyclin D1 on subsequent androgen-dependent gene expression was determined using unbiased gene expression profiling. Modulating cyclin D1 conferred widespread effects on androgen signaling and revealed cyclin D1 to be a selective effector of hormone action. A subset of androgen-induced target genes, known to be directly regulated by AR, was strongly suppressed by cyclin D1. Analyses of AR occupancy at target gene regulatory loci of clinical relevance demonstrated that cyclin D1 limits AR residence after hormone stimulation. Together, these findings reveal a new function for cyclin D1 in controlling hormone-dependent transcriptional outcomes and demonstrate a pervasive role for cyclin D1 in regulating transcription factor dynamics.
Collapse
Affiliation(s)
| | | | | | - Jason Karch
- the Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45221
| | - Craig J Burd
- NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Adam Ertel
- From the Kimmel Cancer Center,; Department of Cancer Biology
| | - Erik S Knudsen
- From the Kimmel Cancer Center,; Department of Cancer Biology
| | - Walter J Jessen
- the Covance Biomarker Center of Excellence, Greenfield, Indiana 46140, and
| | - Bruce J Aronow
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Karen E Knudsen
- From the Kimmel Cancer Center,; Department of Cancer Biology,; Department of Urology, and; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,.
| |
Collapse
|
38
|
Shahi MH, Afzal M, Sinha S, Eberhart CG, Rey JA, Fan X, Castresana JS. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma. BMC Cancer 2010; 10:614. [PMID: 21059263 PMCID: PMC2989332 DOI: 10.1186/1471-2407-10-614] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 11/08/2010] [Indexed: 11/26/2022] Open
Abstract
Background The Sonic hedgehog (Shh) signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. Methods We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR) to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Results Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63%) and primary astrocytoma tumor samples (32%), but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Conclusions Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes.
Collapse
Affiliation(s)
- Mehdi H Shahi
- Brain Tumor Biology Unit-CIFA, University of Navarra School of Sciences, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
BACKGROUND The prostate gland is the most common site of cancer and the second leading cause of cancer mortality in American men. It is well known that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. METHODS This review discusses current information on methylated genes associated with prostate cancer development and progression. RESULTS Over 30 genes have been investigated for promoter methylation in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is reviewed. CONCLUSIONS These findings may provide new information of the pathogenesis of prostate cancer. Certain epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use.
Collapse
Affiliation(s)
- Jong Y Park
- Division of Cancer Prevention and Control, Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
40
|
Müller I, Wischnewski F, Pantel K, Schwarzenbach H. Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by methyl-CpG binding proteins and histone modifications. BMC Cancer 2010; 10:297. [PMID: 20565761 PMCID: PMC2912262 DOI: 10.1186/1471-2407-10-297] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 06/17/2010] [Indexed: 12/14/2022] Open
Abstract
Background The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation. Methods In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies. Results Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR. Conclusions This study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.
Collapse
Affiliation(s)
- Imke Müller
- Department of Tumour Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
41
|
Kobayashi T, Nakamura E, Shimizu Y, Terada N, Maeno A, Kobori G, Kamba T, Kamoto T, Ogawa O, Inoue T. Restoration of cyclin D2 has an inhibitory potential on the proliferation of LNCaP cells. Biochem Biophys Res Commun 2009; 387:196-201. [PMID: 19577536 DOI: 10.1016/j.bbrc.2009.06.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 11/16/2022]
Abstract
Despite well known oncogenic function of G1-S cell-cycle progression, cyclin D2 (CCND2) is often silenced epigenetically in prostate cancers. Here we show that CCND2 has an inhibitory potential on the proliferation of androgen receptor (AR)-dependent prostate cancer LNCaP cells. Forced expression of CCND2 suppressed the proliferative ability and induced cell death in LNCaP cells in a cdk-independent manner. Knocking down CCND2 restored the proliferation of LNCaP subclones with relatively high CCND2 expression and low proliferative profiles. Immunoprecipitation using deletion mutants of CCND2 indicated that a central domain of CCND2 is required for binding to AR. A deletion mutant lacking the central domain failed to hinder LNCaP cells. Collectively, our results indicated that CCND2 inhibits cell proliferation of AR-dependent prostate cancer through the interaction with AR. Our study suggests that restoration of CCND2 expression potentially prevents the carcinogenesis of prostate cancer, which is mostly AR-dependent in the initial settings.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Department of Urology, Kyoto University, Graduate School of Medicine, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hoque MO. DNA methylation changes in prostate cancer: current developments and future clinical implementation. Expert Rev Mol Diagn 2009; 9:243-57. [PMID: 19379083 DOI: 10.1586/erm.09.10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Promoter hypermethylation is associated with the loss of expression of tumor-suppressor genes in cancer. Currently, several genome-wide technologies are available and have been utilized to examine the extent of DNA methylation in discovery-based studies involving several physiological and disease states. Although early in the process, aberrant DNA methylation is gaining strength in the fields of cancer risk assessment, diagnosis and therapy monitoring in different cancer types. There is a need to improve existing methods for early diagnosis of prostate cancer and to identify men at risk for developing aggressive disease. Because of the ubiquity of DNA methylation changes and the ability to detect methylated DNA in several body fluids (e.g., blood and urine), this specifically altered DNA may serve, on one hand, as a possible new screening marker for prostate cancer and, on the other hand, as a tool for therapy monitoring in patients having had neoplastic disease of the prostate. Since many prostate cancer patients present with advanced disease and some present with nonspecific elevation of prostate-specific antigen without prostate cancer, early detection with high specificity and sensitivity is considered to be one of the most important approaches to reduce mortality and unwanted tension of the men with high prostate-specific antigen. Therefore, an effective screening test would have substantial clinical benefits. Furthermore, methylation markers of risk of progression of disease in patients having prostate cancer permits immediate commencement of specific treatment regimens and probably longer survival and better quality of life. This review illustrates the current benefits and limitations of potentially useful prostate cancer methylation markers that have considerable existing data and touches upon other future markers as well as the field of methylation in prostate cancer.
Collapse
Affiliation(s)
- Mohammad Obaidul Hoque
- Department of Otolaryngology and Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M.07, Baltimore, MD 21231, USA.
| |
Collapse
|
43
|
Gurel B, Iwata T, Koh C, Yegnasubramanian S, Nelson WG, De Marzo AM. Molecular alterations in prostate cancer as diagnostic, prognostic, and therapeutic targets. Adv Anat Pathol 2008; 15:319-31. [PMID: 18948763 PMCID: PMC3214657 DOI: 10.1097/pap.0b013e31818a5c19] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostatic adenocarcinoma is extremely common in Western nations, representing the second leading cause of cancer death in American men. The recent application of increasingly sophisticated molecular approaches to the study of prostate cancer in this "postgenomic" era has resulted in a rapid increase in the identification of somatic genome alterations and germline heritable risk factors in this disease. These findings are leading to a new understanding of the pathogenesis of prostate cancer and to the generation of new targets for diagnosis, prognosis, and prediction of therapeutic response. Although we are still in the very early phase of clinical development, some of the molecular alterations identified in prostate cancer are being translated into clinical practice. The purpose of this review is to update the practicing surgical pathologist, and residents-in-training in pathology, regarding recent findings in the molecular pathobiology of prostate cancer. We will highlight some of the somatic molecular alterations associated with prostate cancer development and progression, with a focus on newer discoveries. In addition, recent studies in which new molecular diagnostic approaches have been applied in the clinic will be discussed.
Collapse
Affiliation(s)
- Bora Gurel
- Johns Hopkins University School of Medicine, Department of Pathology
| | - Tsuyoshi Iwata
- Johns Hopkins University School of Medicine, Department of Pathology
| | - Cheryl Koh
- Johns Hopkins University School of Medicine, Department of Pathology
| | - Srinivasan Yegnasubramanian
- Johns Hopkins University School of Medicine, Department of Oncology
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - William G. Nelson
- Johns Hopkins University School of Medicine, Department of Pathology
- Johns Hopkins University School of Medicine, Department of Oncology
- Johns Hopkins University School of Medicine, Department of Urology
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
- The Brady Urological Research Institute at Johns Hopkins
| | - Angelo M. De Marzo
- Johns Hopkins University School of Medicine, Department of Pathology
- Johns Hopkins University School of Medicine, Department of Oncology
- Johns Hopkins University School of Medicine, Department of Urology
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
- The Brady Urological Research Institute at Johns Hopkins
| |
Collapse
|
44
|
Henrique R, Ribeiro FR, Fonseca D, Hoque MO, Carvalho AL, Costa VL, Pinto M, Oliveira J, Teixeira MR, Sidransky D, Jerónimo C. High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res 2007; 13:6122-9. [PMID: 17947477 DOI: 10.1158/1078-0432.ccr-07-1042] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Prostate cancer is a highly prevalent malignancy and constitutes a major cause of cancer-related morbidity and mortality. Owing to the limitations of current clinical, serologic, and pathologic parameters in predicting disease progression, we sought to investigate the prognostic value of promoter methylation of a small panel of genes by quantitative methylation-specific PCR (QMSP) in prostate biopsies. EXPERIMENTAL DESIGN Promoter methylation levels of APC, CCND2, GSTP1, RARB2, and RASSF1A were determined by QMSP in a prospective series of 83 prostate cancer patients submitted to sextant biopsy. Clinicopathologic data [age, serum prostate-specific antigen (PSA), stage, and Gleason score] and time to progression and/or death from prostate cancer were correlated with methylation findings. Log-rank test and Cox regression model were used to identify which epigenetic markers were independent predictors of prognosis. RESULTS At a median follow-up time of 45 months, 15 (18%) patients died from prostate cancer, and 37 (45%) patients had recurrent disease. In univariate analysis, stage and hypermethylation of APC were significantly associated with worse disease-specific survival, whereas stage, Gleason score, high diagnostic serum PSA levels, and hypermethylation of APC, GSTP1, and RASSF1A were significantly associated with poor disease-free survival. However, in the final multivariate analysis, only clinical stage and high methylation of APC were significantly and independently associated with unfavorable prognosis, i.e., decreased disease-free and disease-specific survival. CONCLUSIONS High-level APC promoter methylation is an independent predictor of poor prognosis in prostate biopsy samples and might provide relevant prognostic information for patient management.
Collapse
Affiliation(s)
- Rui Henrique
- Department of Pathology, Portuguese Oncology Institute--Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|