1
|
Nguyen TM, Craig DB, Tran D, Nguyen T, Draghici S. A novel approach for predicting upstream regulators (PURE) that affect gene expression. Sci Rep 2023; 13:18571. [PMID: 37903768 PMCID: PMC10616115 DOI: 10.1038/s41598-023-41374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/25/2023] [Indexed: 11/01/2023] Open
Abstract
External factors such as exposure to a chemical, drug, or toxicant (CDT), or conversely, the lack of certain chemicals can cause many diseases. The ability to identify such causal CDTs based on changes in the gene expression profile is extremely important in many studies. Furthermore, the ability to correctly infer CDTs that can revert the gene expression changes induced by a given disease phenotype is a crucial step in drug repurposing. We present an approach for Predicting Upstream REgulators (PURE) designed to tackle this challenge. PURE can correctly infer a CDT from the measured expression changes in a given phenotype, as well as correctly identify drugs that could revert disease-induced gene expression changes. We compared the proposed approach with four classical approaches as well as with the causal analysis used in Ingenuity Pathway Analysis (IPA) on 16 data sets (1 rat, 5 mouse, and 10 human data sets), involving 8 chemicals or drugs. We assessed the results based on the ability to correctly identify the CDT as indicated by its rank. We also considered the number of false positives, i.e. CDTs other than the correct CDT that were reported to be significant by each method. The proposed approach performed best in 11 out of the 16 experiments, reporting the correct CDT at the very top 7 times. IPA was the second best, reporting the correct CDT at the top 5 times, but was unable to identify the correct CDT at all in 5 out of the 16 experiments. The validation results showed that our approach, PURE, outperformed some of the most popular methods in the field. PURE could effectively infer the true CDTs responsible for the observed gene expression changes and could also be useful in drug repurposing applications.
Collapse
Affiliation(s)
- Tuan-Minh Nguyen
- Department of Computer Science, Wayne State University, Detroit, 48202, USA
| | - Douglas B Craig
- Department of Computer Science, Wayne State University, Detroit, 48202, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Duc Tran
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tin Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, 36849, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, 48202, USA.
- Advaita Bioinformatics, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
2
|
Saad NY, Al-Kharsan M, Garwick-Coppens SE, Chermahini GA, Harper MA, Palo A, Boudreau RL, Harper SQ. Human miRNA miR-675 inhibits DUX4 expression and may be exploited as a potential treatment for Facioscapulohumeral muscular dystrophy. Nat Commun 2021; 12:7128. [PMID: 34880230 PMCID: PMC8654987 DOI: 10.1038/s41467-021-27430-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a potentially devastating myopathy caused by de-repression of the DUX4 gene in skeletal muscles. Effective therapies will likely involve DUX4 inhibition. RNA interference (RNAi) is one powerful approach to inhibit DUX4, and we previously described a RNAi gene therapy to achieve DUX4 silencing in FSHD cells and mice using engineered microRNAs. Here we report a strategy to direct RNAi against DUX4 using the natural microRNA miR-675, which is derived from the lncRNA H19. Human miR-675 inhibits DUX4 expression and associated outcomes in FSHD cell models. In addition, miR-675 delivery using gene therapy protects muscles from DUX4-associated death in mice. Finally, we show that three known miR-675-upregulating small molecules inhibit DUX4 and DUX4-activated FSHD biomarkers in FSHD patient-derived myotubes. To our knowledge, this is the first study demonstrating the use of small molecules to suppress a dominant disease gene using an RNAi mechanism.
Collapse
Affiliation(s)
- Nizar Y. Saad
- grid.240344.50000 0004 0392 3476Center for Gene Therapy, the Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Mustafa Al-Kharsan
- grid.240344.50000 0004 0392 3476Center for Gene Therapy, the Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA ,grid.266832.b0000 0001 2188 8502Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Sara E. Garwick-Coppens
- grid.240344.50000 0004 0392 3476Center for Gene Therapy, the Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Gholamhossein Amini Chermahini
- grid.240344.50000 0004 0392 3476Center for Gene Therapy, the Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Madison A. Harper
- grid.240344.50000 0004 0392 3476Center for Gene Therapy, the Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Andrew Palo
- grid.240344.50000 0004 0392 3476Center for Gene Therapy, the Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA
| | - Ryan L. Boudreau
- grid.214572.70000 0004 1936 8294Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA USA
| | - Scott Q. Harper
- grid.240344.50000 0004 0392 3476Center for Gene Therapy, the Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH USA
| |
Collapse
|
3
|
Lv Y, Liu Y, Wang Y, Kong F, Pang Q, Hu G. CCDC114, DNAI2 and TOP2A involves in the effects of tibolone treatment on postmenopausal endometrium. BMC Womens Health 2021; 21:240. [PMID: 34116668 PMCID: PMC8194000 DOI: 10.1186/s12905-020-01156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to explore the molecular mechanisms of tibolone treatment in postmenopausal women. METHODS The gene set enrichment profile, GSE12446, which includes 9 human endometrial samples from postmenopausal women treated with tibolone (tibolone group) and 9 control samples (control group), was downloaded from GEO database for analysis. Differentially expressed genes (DEGs) in tibolone vs. control groups were identified and then used for function and pathway enrichment analysis. Protein-protein interaction (PPI) network and module analyses were also performed. Finally, drug-target interaction was predicted for genes in modules, and then were validated in Pubmed. RESULTS A total of 238 up-regulated DEGs and 72 down-regulated DEGs were identified. These DEGs were mainly enriched in various biological processed and pathways, such as cilium movement (e.g., CCDC114 and DNAI2), calcium ion homeostasis, regulation of hormone levels and complement/coagulation cascades. PPI network contained 368 interactions and 166 genes, of which IGF1, DNALI1, CCDC114, TOP2A, DNAH5 and DNAI2 were the hue genes. A total of 96 drug-gene interactions were obtained, including 94 drugs and eight genes. TOP2A and HTR2B were found to be targets of 28 drugs and 38 drugs, respectively. Among the 94 obtained drugs, only 12 drugs were reported in studies, of which 7 drugs (e.g., epirubicin) were found to target TOP2A. CONCLUSIONS CCDC114 and DNAI2 might play important roles in tibolone-treated postmenopausal women via cilium movement function. TOP2A might be a crucial target of tibolone in endometrium of postmenopausal women.
Collapse
Affiliation(s)
- Yanhua Lv
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Yanqing Liu
- Department of General Medicine, Jining No. 1 People's Hospital, Jining, 272011, Shandong, China
| | - Yueqiang Wang
- Department of Internal Medicine-Cardiovascular, Affiliated Hospital of Taishan Medical University, Taian, 271000, Shandong, China
| | - Fanrong Kong
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Guirong Hu
- Department of Obstetrics and Gynecology, People's Hospital of Jiaxiang County, No. 188 Yingfeng Road, Jiaxiang, Jining, 272400, Shandong, China.
| |
Collapse
|
4
|
van Weelden WJ, van der Putten LJM, Inda MA, van Brussel A, Snijders MPLM, Schriever LMM, Bulten J, Massuger LFAG, van de Stolpe A, Pijnenborg JMA. Oestrogen receptor pathway activity is associated with outcome in endometrial cancer. Br J Cancer 2020; 123:785-792. [PMID: 32507853 PMCID: PMC7463017 DOI: 10.1038/s41416-020-0925-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Oestrogen receptor (ER) expression is a prognostic biomarker in endometrial cancer (EC). However, expression does not provide information about the functional activity of the ER pathway. We evaluated a model to quantify ER pathway activity in EC, and determined the prognostic relevance of ER pathway activity. METHODS ER pathway activity was measured in two publicly available datasets with endometrial and EC tissue, and one clinical cohort with 107 samples from proliferative and hyperplastic endometrium and endometrioid-type EC (EEC) and uterine serous cancer (USC). ER pathway activity scores were inferred from ER target gene mRNA levels from Affymetrix microarray data (public datasets), or measured by qPCR on formalin-fixed paraffin-embedded samples (clinical cohort) and related to ER expression and outcome. RESULTS ER pathway activity scores differed significantly throughout the menstrual cycle supporting the validity of the pathway test. The highest ER pathway scores were found in proliferative and hyperplastic endometrium and stage I EEC, whereas stage II-IV EEC and USCs had significantly lower levels. Low ER pathway activity was associated with recurrent disease, and added prognostic value in patients with low ER expression. CONCLUSION The ER pathway test reflects activity of the ER pathway, and may improve prediction of outcome in EC patients.
Collapse
Affiliation(s)
- Willem Jan van Weelden
- Department of Obstetrics and Gynaecology, Radboud Institute for Health Science, Radboud university medical center, Nijmegen, the Netherlands.
| | - Louis J M van der Putten
- Department of Obstetrics and Gynaecology, Radboud Institute for Health Science, Radboud university medical center, Nijmegen, the Netherlands
| | | | | | - Marc P L M Snijders
- Department of Obstetrics and Gynaecology, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Lisanne M M Schriever
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Johan Bulten
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Leon F A G Massuger
- Department of Obstetrics and Gynaecology, Radboud Institute for Health Science, Radboud university medical center, Nijmegen, the Netherlands
| | | | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynaecology, Radboud Institute for Health Science, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Inside the Endometrial Cell Signaling Subway: Mind the Gap(s). Int J Mol Sci 2018; 19:ijms19092477. [PMID: 30134622 PMCID: PMC6164241 DOI: 10.3390/ijms19092477] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022] Open
Abstract
Endometrial cells perceive and respond to their microenvironment forming the basis of endometrial homeostasis. Errors in endometrial cell signaling are responsible for a wide spectrum of endometrial pathologies ranging from infertility to cancer. Intensive research over the years has been decoding the sophisticated molecular means by which endometrial cells communicate to each other and with the embryo. The objective of this review is to provide the scientific community with the first overview of key endometrial cell signaling pathways operating throughout the menstrual cycle. On this basis, a comprehensive and critical assessment of the literature was performed to provide the tools for the authorship of this narrative review summarizing the pivotal components and signaling cascades operating during seven endometrial cell fate “routes”: proliferation, decidualization, implantation, migration, breakdown, regeneration, and angiogenesis. Albeit schematically presented as separate transit routes in a subway network and narrated in a distinct fashion, the majority of the time these routes overlap or occur simultaneously within endometrial cells. This review facilitates identification of novel trajectories of research in endometrial cellular communication and signaling. The meticulous study of endometrial signaling pathways potentiates both the discovery of novel therapeutic targets to tackle disease and vanguard fertility approaches.
Collapse
|
6
|
Shukla V, Popli P, Kaushal JB, Gupta K, Dwivedi A. Uterine TPPP3 plays important role in embryo implantation via modulation of β-catenin†. Biol Reprod 2018; 99:982-999. [DOI: 10.1093/biolre/ioy136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Pooja Popli
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
| | - Jyoti Bala Kaushal
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| | - Kanchan Gupta
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
| | - Anila Dwivedi
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow-226031, UP, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CDRI Campus, Lucknow, India
| |
Collapse
|
7
|
Verheul HAM, Blok LJ, Burger CW, Hanifi-Moghaddam P, Kloosterboer HJ. Levels of Tibolone and Estradiol and their Nonsulfated and Sulfated Metabolites in Serum, Myometrium, and Vagina of Postmenopausal Women Following Treatment for 21 Days With Tibolone, Estradiol, or Estradiol Plus Medroxyprogestrone Acetate. Reprod Sci 2016; 14:160-8. [PMID: 17636227 DOI: 10.1177/1933719106298684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tibolone has estrogenic effects on the vagina but not on the uterus. To explain this, levels of tibolone and estradiol and their metabolites were determined in serum, myometrium, and vagina. Thirty-four postmenopausal women with uterine prolapse received either no treatment, tibolone, E(2) or E(2) + medroxyprogesterone acetate (MPA) for 21 days, or a single dose of tibolone. Twenty +/- 6 hours after administration, >98% of the 3-hydroxytibolone metabolites in serum and tissues were disulfated. Of the unconjugated metabolites, the estrogenic 3alpha-hydroxytibolone predominated in serum, whereas the progestagenic/ androgenic Delta(4)-tibolone predominated in myometrium and vagina. Levels of disulfated metabolites in serum and tissues were higher (3- to 5-fold) after multiple dosing than after a single dose. Tissue:serum ratios were <1, except for Delta(4)-tibolone. In all groups, E(2) tissue levels were higher than serum levels; the percentage of serum E(1)S was >90%. Tibolone did not affect endogenous E(1), E(2), or E(1)S levels in serum, but in myometrium and vagina, E(1) levels were significantly higher and E(1)S levels tended to be lower than in controls. Serum and tissue levels of endogenous and exogenous E(1), E(2), and E(1)S were markedly increased 20 hours after E(2) or E(2) + MPA; the percentage of E(1)S and tissue:serum ratios were not affected. MPA had no effect on the degree of sulfation of E(1). Compared with serum, tissue levels of E(2) were high in all groups; absolute E(2) levels in control and tibolone groups were much lower than in the E(2) groups. Tibolone metabolite patterns are different in serum, myometrium, and vagina.
Collapse
|
8
|
Janzen DM, Paik DY, Rosales MA, Yep B, Cheng D, Witte ON, Kayadibi H, Ryan CM, Jung ME, Faull K, Memarzadeh S. Low levels of circulating estrogen sensitize PTEN-null endometrial tumors to PARP inhibition in vivo. Mol Cancer Ther 2013; 12:2917-2928. [PMID: 24222661 PMCID: PMC3904550 DOI: 10.1158/1535-7163.mct-13-0572] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Earlier in vitro work demonstrated that PARP inhibition induces cell death in PTEN-null endometrial cancer cell lines, but the in vivo therapeutic efficacy of these agents against endometrial cancer remains unknown. Here, we test the efficacy of AZD2281 (olaparib), an oral PARP inhibitor, in the therapy of PTEN-null endometrial tumors in a preclinical endometrial cancer mouse model. Primary endometrial tumors were generated by epithelial loss of PTEN using an in vivo model. This model recapitulates epithelial-specific loss of PTEN seen in human tumors, and histologically resembles endometrioid carcinomas, the predominant subtype of human endometrial cancers. Olaparib was administered orally to tumor-bearing mice in two hormonal extremes: high or low estrogen. Olaparib treatment achieved a significant reduction in tumor size in a low estrogenic milieu. In striking contrast, no response to olaparib was seen in tumors exposed to high levels of estrogen. Two key observations were made when estrogen levels were dropped: (i) the serum concentration of olaparib was significantly increased, resulting in sustained PARP inhibition at the tumor bed; and (ii) the homologous recombination pathway was compromised, as evidenced by decreased Rad51 protein expression and function. These two mechanisms may account for the sensitization of PTEN-null tumors to olaparib with estrogen deprivation. Results of this preclinical trial suggest that orally administered PARP inhibitors in a low estrogenic hormonal milieu can effectively target PTEN-null endometrial tumors. Extension of this work to clinical trials could personalize the therapy of women afflicted with advanced endometrial cancer using well-tolerated orally administered therapeutic agents.
Collapse
Affiliation(s)
- Deanna M Janzen
- Corresponding Author: Sanaz Memarzadeh, University of California, Los Angeles, 555 Westwood Plaza, Level B, Box 957243, 1015 Terasaki Life Sciences Building, Los Angeles, CA 90095.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Donato M, Xu Z, Tomoiaga A, Granneman JG, Mackenzie RG, Bao R, Than NG, Westfall PH, Romero R, Draghici S. Analysis and correction of crosstalk effects in pathway analysis. Genome Res 2013; 23:1885-93. [PMID: 23934932 PMCID: PMC3814888 DOI: 10.1101/gr.153551.112] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Identifying the pathways that are significantly impacted in a given condition is a crucial step in understanding the underlying biological phenomena. All approaches currently available for this purpose calculate a P-value that aims to quantify the significance of the involvement of each pathway in the given phenotype. These P-values were previously thought to be independent. Here we show that this is not the case, and that many pathways can considerably affect each other's P-values through a "crosstalk" phenomenon. Although it is intuitive that various pathways could influence each other, the presence and extent of this phenomenon have not been rigorously studied and, most importantly, there is no currently available technique able to quantify the amount of such crosstalk. Here, we show that all three major categories of pathway analysis methods (enrichment analysis, functional class scoring, and topology-based methods) are severely influenced by crosstalk phenomena. Using real pathways and data, we show that in some cases pathways with significant P-values are not biologically meaningful, and that some biologically meaningful pathways with nonsignificant P-values become statistically significant when the crosstalk effects of other pathways are removed. We describe a technique able to detect, quantify, and correct crosstalk effects, as well as identify independent functional modules. We assessed this novel approach on data from four experiments involving three phenotypes and two species. This method is expected to allow a better understanding of individual experiment results, as well as a more refined definition of the existing signaling pathways for specific phenotypes.
Collapse
Affiliation(s)
- Michele Donato
- Computer Science Department, Wayne State University, Detroit, Michigan 48084, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
van der Horst PH, Wang Y, van der Zee M, Burger CW, Blok LJ. Interaction between sex hormones and WNT/β-catenin signal transduction in endometrial physiology and disease. Mol Cell Endocrinol 2012; 358:176-84. [PMID: 21722706 DOI: 10.1016/j.mce.2011.06.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/09/2011] [Accepted: 06/10/2011] [Indexed: 12/20/2022]
Abstract
Wnt/β-catenin signalling plays a rate-limiting role in early development of many different organs in a broad spectrum of organisms. In the developing Müllerian duct, Wnt/β-catenin signalling is important for initiation, outgrowth, patterning and differentiation into vagina, cervix, uterus and oviducts. In adult life, sex hormones modulate Wnt/β-catenin signalling in the endometrium to maintain the monthly balance between estrogen-induced proliferation and progesterone-induced differentiation, and enhanced Wnt/β-catenin signalling seems to be involved in endometrial carcinogenesis. However, early in pregnancy enhanced Wnt/β-catenin signalling is prerequisite for proper implantation and invasion of trophoblast cells into endometrium and myometrium thus helping to form a placenta. Overall, it seems that tight control of Wnt/β-catenin signalling in time and space is important for initiation, development and normal function of the female reproductive tract. However, if Wnt/β-catenin signalling is not kept in check, it easily seems to initiate or contribute to development of a number of uterine disorders.
Collapse
Affiliation(s)
- Paul H van der Horst
- Department of Obstetrics and Gynaecology, Erasmus University Medical Centre Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Nguyen HPT, Sprung CN, Gargett CE. Differential expression of Wnt signaling molecules between pre- and postmenopausal endometrial epithelial cells suggests a population of putative epithelial stem/progenitor cells reside in the basalis layer. Endocrinology 2012; 153:2870-83. [PMID: 22474188 PMCID: PMC3359601 DOI: 10.1210/en.2011-1839] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 03/07/2012] [Indexed: 11/19/2022]
Abstract
The human endometrium undergoes extensive monthly regeneration in response to fluctuating levels of circulating estrogen and progesterone in premenopausal (Pre-M) women. In contrast, postmenopausal (Post-M) endometrium is thin and quiescent with low mitotic activity, similar to the Pre-M endometrial basalis layer. Clonogenic epithelial stem/progenitor (ESP) cells, likely responsible for regenerating endometrial epithelium, have been identified in Pre-M and Post-M endometrium, but their location is unknown. We undertook transcriptional profiling of highly purified epithelial cells from full-thickness Pre-M and Post-M endometrium to identify differentially regulated genes that may indicate a putative ESP cell population resides in the basalis of Pre-M and basalis-like Post-M endometrium. Of 1077 differentially expressed genes identified, the Wnt signaling pathway, important in endometrial development and stem cell regulation, was one of the main gene families detected, including 22 Wnt-associated genes. Twelve genes were validated using quantitative RT-PCR, and all were concordant with microarray data. Immunostaining showed glandular epithelial location of Wnt-regulated genes, Axin-related protein 2 and β-catenin. Axin2 localized to the nucleus of basalis Pre-M and Post-M and cytoplasm of functionalis Pre-M endometrium, suggesting that it regulates β-catenin. Comparison of our Post-M gene profile with published gene microarray datasets revealed similarities to Pre-M basalis epithelial profiles. This differential expression of multiple Wnt-associated genes in human Pre-M and Post-M endometrial epithelial cells and the similar gene profile of Post-M and Pre-M basalis epithelium suggests that a population of putative endometrial ESP may reside in the basalis of Pre-M endometrium, which may be responsible for regenerating glandular epithelium each month.
Collapse
Affiliation(s)
- Hong P. T. Nguyen
- The Ritchie Centre (H.P.T.N., C.E.G.) and Centre for Innate Immunity and Infectious Disease (C.N.S.), Monash Institute of Medical Research, and Department of Obstetrics and Gynaecology (H.P.T.N., C.E.G.), Monash University, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | | | | |
Collapse
|
12
|
Santegoets LA, Baars RV, Terlou A, Heijmans-Antonissen C, Swagemakers SM, van der Spek PJ, Ewing PC, Beurden MV, van der Meijden WI, Helmerhorst TJ, Blok LJ. Different DNA damage and cell cycle checkpoint control in low- and high-risk human papillomavirus infections of the vulva. Int J Cancer 2011; 130:2874-85. [DOI: 10.1002/ijc.26345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/18/2011] [Indexed: 12/11/2022]
|
13
|
Wnt/Β-catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget 2011; 1:674-84. [PMID: 21317462 DOI: 10.18632/oncotarget.101007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A delicate balance between estrogen and progestagen signaling underlies proper functioning of the female reproductive tract and, in particular, the monthly re- and degenerative phases characteristic of the menstrual cycle. Here, we propose that the canonical Wnt/β-catenin signaling pathway may underlie this finely tuned hormonal equilibrium in endometrial homeostasis and, upon its constitutive activation, lead to neoplastic transformation of the endometrium. During the menstrual cycle, estradiol will enhance Wnt/β-catenin signaling in the proliferative phase, while progesterone inhibits Wnt/β-catenin signaling, thus restraining estrogens' proliferative actions, during the secretory phase. In case of enhanced or unopposed estrogen signaling, constitutive activation of Wnt/β-catenin signaling will trigger endometrial hyperplasia, which may develop further into endometrial cancer.
Collapse
|
14
|
Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, Matzuk MM. Functional microRNA involved in endometriosis. Mol Endocrinol 2011; 25:821-32. [PMID: 21436257 DOI: 10.1210/me.2010-0371] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endometriosis is a common disease seen by gynecologists. Clinical features involve pelvic pain and unexplained infertility. Although endometriosis is pathologically characterized by endometrial tissue outside the normal uterine location, endometriosis is otherwise not easily explained. Endometriomas, endometriotic cysts of the ovary, typically cause pain and distortion of pelvic anatomy. To begin to understand the pathogenesis of endometriomas, we describe the first transcriptome-microRNAome analysis of endometriomas and eutopic endometrium using next-generation sequencing technology. Using this approach, we generated a total of more than 54 million independent small RNA reads from our 19 clinical samples. At the microRNA level, we found 10 microRNA that were up-regulated (miR-202, 193a-3p, 29c, 708, 509-3-5p, 574-3p, 193a-5p, 485-3p, 100, and 720) and 12 microRNA that were down-regulated (miR-504, 141, 429, 203, 10a, 200b, 873, 200c, 200a, 449b, 375, and 34c-5p) in endometriomas compared with endometrium. Using in silico prediction algorithms, we correlated these microRNA with their corresponding differentially expressed mRNA targets. To validate the functional roles of microRNA, we manipulated levels of miR-29c in an in vitro system of primary cultures of human endometrial stromal fibroblasts. Extracellular matrix genes that were potential targets of miR-29c in silico were significantly down-regulated using this biological in vitro system. In vitro functional studies using luciferase reporter constructs further confirmed that miR-29c directly affects specific extracellular matrix genes that are dysregulated in endometriomas. Thus, miR-29c and other abnormally regulated microRNA appear to play important roles in the pathophysiology of uterine function and dysfunction.
Collapse
Affiliation(s)
- Shannon M Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, 1709 Dryden Drive, Suite 1100, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang Y, van der Zee M, Fodde R, Blok LJ. Wnt/Β-catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget 2010; 1:674-684. [PMID: 21317462 PMCID: PMC3248134 DOI: 10.18632/oncotarget.201] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/11/2010] [Indexed: 11/25/2022] Open
Abstract
A delicate balance between estrogen and progestagen signaling underlies proper functioning of the female reproductive tract and, in particular, the monthly re- and degenerative phases characteristic of the menstrual cycle. Here, we propose that the canonical Wnt/β-catenin signaling pathway may underlie this finely tuned hormonal equilibrium in endometrial homeostasis and, upon its constitutive activation, lead to neoplastic transformation of the endometrium. During the menstrual cycle, estradiol will enhance Wnt/β-catenin signaling in the proliferative phase, while progesterone inhibits Wnt/β-catenin signaling, thus restraining estrogens' proliferative actions, during the secretory phase. In case of enhanced or unopposed estrogen signaling, constitutive activation of Wnt/β-catenin signaling will trigger endometrial hyperplasia, which may develop further into endometrial cancer.
Collapse
Affiliation(s)
- Yongyi Wang
- Department of Obstetrics & Gynaecology, Josephine Nefkens Institute, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Departments of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marten van der Zee
- Department of Obstetrics & Gynaecology, Josephine Nefkens Institute, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Departments of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Riccardo Fodde
- Departments of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Leen J Blok
- Department of Obstetrics & Gynaecology, Josephine Nefkens Institute, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
16
|
Wang Y, Hanifi-Moghaddam P, Hanekamp EE, Kloosterboer HJ, Franken P, Veldscholte J, van Doorn HC, Ewing PC, Kim JJ, Grootegoed JA, Burger CW, Fodde R, Blok LJ. Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res 2009; 15:5784-93. [PMID: 19737954 DOI: 10.1158/1078-0432.ccr-09-0814] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Wnt signaling regulates the fine balance between stemness and differentiation. Here, the role of Wnt signaling to maintain the balance between estrogen-induced proliferation and progesterone-induced differentiation during the menstrual cycle, as well as during the induction of hyperplasia and carcinogenesis of the endometrium, was investigated. EXPERIMENTAL DESIGN Endometrial gene expression profiles from estradiol (E(2)) and E(2) + medroxyprogesterone acetate-treated postmenopausal patients were combined with profiles obtained during the menstrual cycle (PubMed; GEO DataSets). Ishikawa cells were transfected with progesterone receptors and Wnt inhibitors dickkopf homologue 1 (DKK1) and forkhead box O1 (FOXO1), measuring Wnt activation. Expression of DKK1 and FOXO1 was inhibited by use of sequence-specific short hairpins. Furthermore, patient samples (hormone-treated endometria, hyperplasia, and endometrial cancer) were stained for Wnt activation using nuclear beta-catenin and CD44. RESULTS In vivo, targets and components of the Wnt signaling pathway (among them DKK1 and FOXO1) are regulated by E(2) and progesterone. In Wnt-activated Ishikawa cells, progesterone inhibits Wnt signaling by induction of DKK1 and FOXO1. Furthermore, using siRNA-mediated knockdown of both DKK1 and FOXO1, progesterone inhibition of Wnt signaling was partly circumvented. Subsequently, immunohistochemical analysis of the Wnt target gene CD44 showed that progesterone acted as an inhibitor of Wnt signaling in hyperplasia and in well-differentiated endometrial cancer. CONCLUSION Progesterone induction of DKK1 and FOXO1 results in inhibition of Wnt signaling in the human endometrium. This Wnt inhibitory effect of progesterone is likely to play a rate-limiting role in the maintenance of endometrial homeostasis and, on its loss, in tumor onset and progression toward malignancy.
Collapse
Affiliation(s)
- Yongyi Wang
- Department of Obstetrics and Gynecology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|