1
|
Gourzoulidis G, Barmpouni M, Kossyvaki V, Vietri J, Tzanetakos C. Health and economic outcomes of 20-valent pneumococcal conjugate vaccine compared to 15-valent pneumococcal conjugate vaccine strategies for adults in Greece. Front Public Health 2023; 11:1229524. [PMID: 37841729 PMCID: PMC10570410 DOI: 10.3389/fpubh.2023.1229524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Objective Higher valency pneumococcal conjugate vaccines (PCVs) are expected to improve protection against pneumococcal disease through coverage of additional serotypes. The aim of the present study was to evaluate the cost-effectiveness of 20-valent pneumococcal conjugate vaccine (PCV20) compared to 15-valent pneumococcal conjugate vaccine (PCV15) alone or followed by 23-valent polysaccharide vaccine (PPV23) for adults in Greece. Methods A published Markov model was adapted to simulate lifetime risk of clinical and economic outcomes from the public payer's perspective. The model population was stratified based on age and risk profile (i.e., low, moderate, or high-risk of developing pneumococcal disease). Epidemiologic parameters, serotype coverage and vaccines' effectiveness were based on published literature, while direct medical costs (prices €, 2022) were obtained from official sources. Main model outcomes were projected number of invasive pneumococcal disease (IPD) and all-cause non-bacteremic pneumonia (NBP) cases and attributable deaths, costs and quality-adjusted life-years (QALY) for each vaccination strategy. Sensitivity analyses were performed to ascertain the robustness of model results. Results Over the modeled time horizon, vaccination with PCV20 compared to PCV15 alone or PCV15 followed by PPV23 prevents an additional 747 and 646 cases of IPD, 10,334 and 10,342 cases of NBP and 468 and 455 deaths respectively, resulting in incremental gain of 1,594 and 1,536 QALYs and cost savings of €11,183 and €48,858, respectively. PSA revealed that the probability of PCV20 being cost-effective at the predetermined threshold of €34,000 per QALY gained was 100% compared to either PCV15 alone or the combination of PCV15 followed by PPV23. Conclusion PCV20 is estimated to improve public health by averting additional pneumococcal disease cases and deaths relative to PCV15 alone or followed by PPV23, and therefore translates to cost-savings for the public payer. Overall results showed that vaccination with PCV20 was estimated to be a dominant vaccination strategy (improved health outcomes with reduced costs) over PCV15 alone or followed by PPV23 for prevention of pneumococcal disease in adults in Greece.
Collapse
|
2
|
de Jesús Olivares-Trejo J, Elizbeth Alvarez-Sánchez M. Proteins of Streptococcus pneumoniae Involved in Iron Acquisition. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Streptococcus pneumoniae is a human pathogen bacterium capable of using hemoglobin (Hb) and haem as a single iron source but not in presence of lactoferrin. This bacterium has developed a mechanism through the expression of several membrane proteins that bind to iron sources, between them a lipoprotein of 37 kDa called Spbhp-37 (Streptococcus pneumoniae haem-binding protein) involved in iron acquisition. The Spbhp-37 role is to maintain the viability of S. pneumoniae in presence of Hb or haem. This mechanism is relevant during the invasion of S. pneumoniae to human tissue for the acquisition of iron from hemoglobin or haem as an iron source.
Collapse
|
3
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Katsi V, Antoniou CK, Manolakou P, Toutouzas K, Tousoulis D. What's in a prick? Vaccines and the cardiovascular system. Hellenic J Cardiol 2020; 61:233-240. [PMID: 31740362 DOI: 10.1016/j.hjc.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/22/2019] [Accepted: 09/28/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence suggests a crucial role for vaccines in cardiovascular disease, mediated not only by disease prevention but also by immunomodulatory effects. This review attempts to briefly present the effects of pathogens and vaccines on the cardiovascular system and potential mechanisms for the development of vaccines against cardiovascular diseases per se. Current epidemiological evidence regarding vaccine effectiveness in different categories of heart disease is discussed, as well as current international guidelines' recommendations. In summary, cardiologists should strive to promote vaccination against specific pathogens with proven beneficial effects on cardiovascular diseases.
Collapse
Affiliation(s)
- Vasiliki Katsi
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokrateion Hospital, Athens, Greece
| | | | - Panagiota Manolakou
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokrateion Hospital, Athens, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokrateion Hospital, Athens, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokrateion Hospital, Athens, Greece
| |
Collapse
|
5
|
Shukla SD, Walters EH, Simpson JL, Keely S, Wark PA, O'Toole RF, Hansbro PM. Hypoxia‐inducible factor and bacterial infections in chronic obstructive pulmonary disease. Respirology 2019; 25:53-63. [DOI: 10.1111/resp.13722] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shakti D. Shukla
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - E. Haydn Walters
- School of Medicine, College of Health and MedicineUniversity of Tasmania Hobart TAS Australia
| | - Jodie L. Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - Peter A.B. Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Ronan F. O'Toole
- School of Molecular Sciences, College of Science, Health and EngineeringLa Trobe University Melbourne VIC Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Centenary Institute and School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
6
|
Fritscher J, Amberger D, Dyckhoff S, Bewersdorf JP, Masouris I, Voelk S, Hammerschmidt S, Schmetzer HM, Klein M, Pfister HW, Koedel U. Mast Cells Are Activated by Streptococcus pneumoniae In Vitro but Dispensable for the Host Defense Against Pneumococcal Central Nervous System Infection In Vivo. Front Immunol 2018; 9:550. [PMID: 29616039 PMCID: PMC5867309 DOI: 10.3389/fimmu.2018.00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
Mast cells reside on and near the cerebral vasculature, the predominant site of pneumococcal entry into the central nervous system (CNS). Although mast cells have been reported to be crucial in protecting from systemic bacterial infections, their role in bacterial infections of the CNS remained elusive. Here, we assessed the role of mast cells in pneumococcal infection in vitro and in vivo. In introductory experiments using mouse bone marrow-derived mast cells (BMMC), we found that (i) BMMC degranulate and release selected cytokines upon exposure to Streptococcus pneumoniae, (ii) the response of BMMC varies between different pneumococcal serotypes and (iii) is dependent on pneumolysin. Intriguingly though, apart from a slight enhancement of cerebrospinal fluid (CSF) pleocytosis, neither two different mast cell-deficient Kit mutant mouse strains (WBB6F1-KitW/Wv and C57BL/6 KitW-sh/W-sh mice) nor pharmacologic mast cell stabilization with cromoglycate had any significant impact on the disease phenotype of experimental pneumococcal meningitis. The incomplete reversal of the enhanced CSF pleocytosis by local mast cell engraftment suggests that this phenomenon is caused by other c-Kit mutation-related mechanisms than mast cell deficiency. In conclusion, our study suggests that mast cells can be activated by S. pneumoniae in vitro. However, mast cells do not play a significant role as sentinels of pneumococcal CSF invasion and initiators of innate immunity in vivo.
Collapse
Affiliation(s)
- Johanna Fritscher
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel Amberger
- Department of Internal Medicine III (Oncology), University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Susanne Dyckhoff
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Philipp Bewersdorf
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ilias Masouris
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Stefanie Voelk
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Helga Maria Schmetzer
- Department of Internal Medicine III (Oncology), University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Walter Pfister
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Uwe Koedel
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
7
|
Keller LE, Bradshaw JL, Pipkins H, McDaniel LS. Surface Proteins and Pneumolysin of Encapsulated and Nonencapsulated Streptococcus pneumoniae Mediate Virulence in a Chinchilla Model of Otitis Media. Front Cell Infect Microbiol 2016; 6:55. [PMID: 27242973 PMCID: PMC4870244 DOI: 10.3389/fcimb.2016.00055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae infections result in a range of human diseases and are responsible for almost one million deaths annually. Pneumococcal disease is mediated in part through surface structures and an anti-phagocytic capsule. Recent studies have shown that nonencapsulated S. pneumoniae (NESp) make up a significant portion of the pneumococcal population and are able to cause disease. NESp lack some common surface proteins expressed by encapsulated pneumococci, but express surface proteins unique to NESp. A chinchilla model of otitis media (OM) was used to determine the effect various pneumococcal mutations have on pathogenesis in both NESp and encapsulated pneumococci. Epithelial cell adhesion and invasion assays were used to examine the effects in relation to deletion of intrinsic genes or expression of novel genes. A mouse model of colonization was also utilized for comparison of various pneumococcal mutants. It was determined that pneumococcal surface protein K (PspK) and pneumolysin (Ply) affect NESp middle ear pathogenesis, but only PspK affected epithelial cell adhesion. Experiments in an OM model were done with encapsulated strains testing the importance of native virulence factors and treatment of OM. First, a triple deletion of the common virulence factors PspA, PspC, and Ply, (ΔPAC), from an encapsulated background abolished virulence in an OM model while a PspC mutant had detectable, but reduced amounts of recoverable bacteria compared to wildtype. Next, treatment of OM was effective when starting antibiotic treatment within 24 h with resolution by 48 h post-treatment. Expression of NESp-specific virulence factor PspK in an encapsulated strain has not been previously studied, and we showed significantly increased adhesion and invasion of human epithelial cells by pneumococci. Murine colonization was not significantly increased when an encapsulated strain expressed PspK, but colonization was increased when a capsule mutant expressed PspK. The ability of PspK expression to increase colonization in a capsule mutant despite no increase in adhesion can be attributed to other functions of PspK, such as sIgA binding or immune modulation. OM is a substantial economic burden, thus a better understanding of both encapsulated pneumococcal pathogenesis and the emerging pathogen NESp is necessary for effective prevention and treatment.
Collapse
Affiliation(s)
- Lance E Keller
- Department of Microbiology and Immunology, University of Mississippi Medical Center Jackson, MS, USA
| | - Jessica L Bradshaw
- Department of Microbiology and Immunology, University of Mississippi Medical Center Jackson, MS, USA
| | - Haley Pipkins
- Department of Microbiology and Immunology, University of Mississippi Medical Center Jackson, MS, USA
| | - Larry S McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center Jackson, MS, USA
| |
Collapse
|
8
|
Romero-Espejel ME, Rodríguez MA, Chávez-Munguía B, Ríos-Castro E, Olivares-Trejo JDJ. Characterization of Spbhp-37, a Hemoglobin-Binding Protein of Streptococcus pneumoniae. Front Cell Infect Microbiol 2016; 6:47. [PMID: 27200302 PMCID: PMC4854876 DOI: 10.3389/fcimb.2016.00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/12/2016] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-positive microorganism that is the cause of bacterial pneumonia, sinusitis and otitis media. This human pathogen also can cause invasive diseases such as meningitis, bacteremia and septicemia. Hemoglobin (Hb) and haem can support the growth and viability of S. pneumoniae as sole iron sources. Unfortunately, the acquisition mechanism of Hb and haem in this bacterium has been poorly studied. Previously we identified two proteins of 37 and 22 kDa as putative Hb- and haem-binding proteins (Spbhp-37 and Spbhp-22, respectively). The sequence of Spbhp-37 protein was database annotated as lipoprotein without any function or localization. Here it was immunolocalized in the surface cell by transmission electron microscopy using specific antibodies produced against the recombinant protein. The expression of Spbhp-37 was increased when bacteria were grown in media culture supplied with Hb. In addition, the affinity of Sphbp-37 for Hb was determined. Thus, in this work we are presenting new findings that attempt to explain the mechanism involved in iron acquisition of this pathogen. In the future these results could help to develop new therapy targets in order to avoid the secondary effects caused by the traditional therapies.
Collapse
Affiliation(s)
- María E Romero-Espejel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - Emmanuel Ríos-Castro
- Unidad de Genómica, Proteómica y Metabolómica. LaNSE-CINVESTAV, Centro de Investigación y de Estudios Avanzados del IPN México, México
| | - José de Jesús Olivares-Trejo
- Laboratorio de Bacteriología y Nanomedicina, Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México México, México
| |
Collapse
|
9
|
Zeng XF, Ma Y, Yang L, Zhou L, Xin Y, Chang L, Zhang JR, Hao X. A C-terminal truncated mutation of licC attenuates the virulence of Streptococcus pneumoniae. Res Microbiol 2014; 165:630-8. [PMID: 25283725 DOI: 10.1016/j.resmic.2014.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/21/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
LicC has been identified as a virulence factor of Streptococcus pneumoniae. However, its role in virulence is still not fully understood because deletion of licC is lethal for the bacterium. In this study, a mutant with 78-bp truncation at the C-terminus of licC was obtained from a signature-tagged mutagenesis (STM) library. The mutant was viable with a large reduction in enzymatic activity as CTP:phosphocholine cytidylyltransferase detected in vitro using a firefly luciferase assay. The mutation attenuated the adhesion and invasion of S. pneumoniae ST556 (serotype 19F) to epithelial cells by 72% and 80%, respectively, and increased the phagocytosis by macrophages for 16.5%, compared to the parental strain. When the mutation was introduced into the encapsulated D39 strain (serotype 2), it led to attenuated virulence in mouse models either by intranasal colonization or by intraperitoneal infection. In addition, the phosphocholine (PCho) on cell surface was decreased, and the choline binding proteins (CBPs) were impaired, which may explain the attenuated virulence of the mutant. These observations indicate that C-terminus of licC is accounted for the main activity of LicC in PCho metabolism and is essential for the virulence of S. pneumoniae, which provides a novel target for drug design against pneumococcal infection.
Collapse
Affiliation(s)
- Xian-Fei Zeng
- Department of Clinical Laboratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yueyun Ma
- Department of Clinical Laboratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Liu Yang
- Department of Clinical Laboratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Lei Zhou
- Department of Clinical Laboratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yijuan Xin
- Department of Clinical Laboratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Liang Chang
- Department of Clinical Laboratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100017, China.
| | - Xiaoke Hao
- Department of Clinical Laboratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
10
|
Martín-Galiano AJ, Yuste J, Cercenado MI, de la Campa AG. Inspecting the potential physiological and biomedical value of 44 conserved uncharacterised proteins of Streptococcus pneumoniae. BMC Genomics 2014; 15:652. [PMID: 25096389 PMCID: PMC4143570 DOI: 10.1186/1471-2164-15-652] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 07/21/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The major Gram-positive coccoid pathogens cause similar invasive diseases and show high rates of antimicrobial resistance. Uncharacterised proteins shared by these organisms may be involved in virulence or be targets for antimicrobial therapy. RESULTS Forty four uncharacterised proteins from Streptococcus pneumoniae with homologues in Enterococcus faecalis and/or Staphylococcus aureus were selected for analysis. These proteins showed differences in terms of sequence conservation and number of interacting partners. Twenty eight of these proteins were monodomain proteins and 16 were modular, involving domain combinations and, in many cases, predicted unstructured regions. The genes coding for four of these 44 proteins were essential. Genomic and structural studies showed one of the four essential genes to code for a promising antibacterial target. The strongest impact of gene removal was on monodomain proteins showing high sequence conservation and/or interactions with many other proteins. Eleven out of 40 knockouts (one for each gene) showed growth delay and 10 knockouts presented a chaining phenotype. Five of these chaining mutants showed a lack of putative DNA-binding proteins. This suggest this phenotype results from a loss of overall transcription regulation. Five knockouts showed defective autolysis in response to penicillin and vancomycin, and attenuated virulence in an animal model of sepsis. CONCLUSIONS Uncharacterised proteins make up a reservoir of polypeptides of different physiological importance and biomedical potential. A promising antibacterial target was identified. Five of the 44 examined proteins seemed to be virulence factors.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - José Yuste
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María I Cercenado
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Adela G de la Campa
- />Centro Nacional de Microbiología and CIBERES (CIBER de Enfermedades Respiratorias), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- />Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
11
|
Macedo-Ramos H, Batista AF, Carrier-Ruiz A, Alves L, Allodi S, Ribeiro-Resende VT, Teixeira LM, Baetas-da-Cruz W. Evidence of involvement of the mannose receptor in the internalization of Streptococcus pneumoniae by Schwann cells. BMC Microbiol 2014; 14:211. [PMID: 25085553 PMCID: PMC4236529 DOI: 10.1186/s12866-014-0211-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/21/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The ability of S. pneumoniae to generate infections depends on the restrictions imposed by the host's immunity, in order to prevent the bacterium from spreading from the nasopharynx to other tissues, such as the brain. Some authors claim that strains of S. pneumoniae, which fail to survive in the bloodstream, can enter the brain directly from the nasal cavity by axonal transport through the olfactory and/or trigeminal nerves. However, from the immunological point of view, glial cells are far more responsive to bacterial infections than are neurons. This hypothesis is consistent with several recent reports showing that bacteria can infect glial cells from the olfactory bulb and trigeminal ganglia. Since our group previously demonstrated that Schwann cells (SCs) express a functional and appropriately regulated mannose receptor (MR), we decided to test whether SCs are involved in the internalization of S. pneumoniae via MR. RESULTS Immediately after the interaction step, as well as 3 h later, the percentage of association was approximately 56.5%, decreasing to 47.2% and 40.8% after 12 and 24 h, respectively. Competition assays by adding a 100-fold excess of mannan prior to the S. pneumoniae infection reduced the number of infected cells at 3 and 24 h. A cytochemistry assay with Man/BSA-FITC binding was performed in order to verify a possible overlap between mannosylated ligands and internalized bacteria. Incubation of the SCs with Man/BSA-FITC resulted in a large number of intracellular S. pneumoniae, with nearly complete loss of the capsule. Moreover, the anti-pneumococcal antiserum staining colocalized with the internalized man/BSA-FITC, suggesting that both markers are present within the same endocytic compartment of the SC. CONCLUSIONS Our data offer novel evidence that SCs could be essential for pneumococcal cells to escape phagocytosis and killing by innate immune cells. On the other hand, the results also support the idea that SCs are immunocompetent cells of the PNS that can mediate an efficient immune response against pathogens via MR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wagner Baetas-da-Cruz
- Faculdade de Medicina, Centro de Cirurgia Experimental, Laboratório Translacional em Fisiologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Biofilm formation enhances fomite survival of Streptococcus pneumoniae and Streptococcus pyogenes. Infect Immun 2013; 82:1141-6. [PMID: 24371220 DOI: 10.1128/iai.01310-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Both Streptococcus pyogenes and Streptococcus pneumoniae are widely thought to rapidly die outside the human host, losing infectivity following desiccation in the environment. However, to date, all literature investigating the infectivity of desiccated streptococci has used broth-grown, planktonic populations. In this study, we examined the impact of biofilm formation on environmental survival of clinical and laboratory isolates of S. pyogenes and S. pneumoniae as both organisms are thought to colonize the human host as biofilms. Results clearly demonstrate that while planktonic cells that are desiccated rapidly lose viability both on hands and abiotic surfaces, such as plastic, biofilm bacteria remain viable over extended periods of time outside the host and remain infectious in a murine colonization model. To explore the level and extent of streptococcal fomite contamination that children might be exposed to naturally, direct bacteriologic cultures of items in a day care center were conducted, which demonstrated high levels of viable streptococci of both species. These findings raise the possibility that streptococci may survive in the environment and be transferred from person to person via fomites contaminated with oropharyngeal secretions containing biofilm streptococci.
Collapse
|
13
|
Henriques-Normark B, Tuomanen EI. The pneumococcus: epidemiology, microbiology, and pathogenesis. Cold Spring Harb Perspect Med 2013; 3:3/7/a010215. [PMID: 23818515 DOI: 10.1101/cshperspect.a010215] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pneumococcus is the classic Gram-positive extracellular pathogen. The medical burden of diseases it causes is amongst the greatest in the world. Intense study for more than 100 years has yielded an understanding of fundamental aspects of its physiology, pathogenesis, and immunity. Efforts to control infection have led to the deployment of polysaccharide vaccines and an understanding of antibiotic resistance. The inflammatory response to pneumococci, one of the most potent in medicine, has revealed the double-edged sword of clearance of infection but at a cost of damage to host cells. In virtually every aspect of the infectious process, the pneumococcus has set the rules of the Gram-positive pathogenesis game.
Collapse
|
14
|
Peppoloni S, Colombari B, Beninati C, Felici F, Teti G, Speziale P, Ricci S, Ardizzoni A, Manca L, Blasi E. The Spr1875 protein confers resistance to the microglia-mediated killing of Streptococcus pneumoniae. Microb Pathog 2013; 59-60:42-7. [PMID: 23587464 DOI: 10.1016/j.micpath.2013.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/27/2013] [Accepted: 04/03/2013] [Indexed: 12/11/2022]
Abstract
By screening a whole-genome λ-display library of Streptococcus pneumoniae, we have previously identified a novel surface protein, named Spr1875, that exhibited immunogenic properties and was closely related to pneumococcal virulence. In the present study, we investigated the role of the Spr1875 antigen in the interaction of S. pneumoniae with microglia, the resident brain macrophages. By using an in vitro infection model, the BV2 microglial cell line was challenged with the S. pneumoniae strain DP1004 and its isogenic spr1875-deleted mutant (Δspr1875). Both strains were phagocytosed by microglia efficiently and to a similar extent; however, the DP1004 strain was more resistant than the Δspr1875 mutant to the intracellular killing, as assessed by antibiotic protection and phagosome maturation assays. Moreover, significant differences between the two strains were also observed in terms of susceptibility to microglia-mediated killing. Taken together, these results indicate that S. pneumoniae-microglial cell interplay is influenced by the presence of Spr1875, suggesting that this protein may play a role in the pathogenesis of pneumococcal meningitis.
Collapse
Affiliation(s)
- Samuele Peppoloni
- Dipartimento di Medicina Diagnostica, Clinica e di Sanità Pubblica, Università di Modena e Reggio Emilia (Unimore), 41125 Modena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Iovino F, Brouwer MC, van de Beek D, Molema G, Bijlsma JJE. Signalling or binding: the role of the platelet-activating factor receptor in invasive pneumococcal disease. Cell Microbiol 2013; 15:870-81. [PMID: 23444839 DOI: 10.1111/cmi.12129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 11/29/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is an opportunistic human pathogen, which causes serious invasive disease such as pneumonia, bacteraemia and meningitis. The interaction of the bacteria with host receptors precedes the development of invasive disease. One host receptor implicated in pneumococcal adhesion to, invasion of and ultimately translocation of cell layers is the platelet-activating factor receptor (PAFR). PAFR is a G-protein coupled receptor which binds PAF, a potent phospholipid activator involved in many leucocyte functions, platelet aggregation and inflammation. PAFR has been proposed to bind S. pneumoniae and as such facilitate adhesion to, uptake by and transcytosis of endothelial cells leading to invasive disease. However, there is a shortage of biochemical data supporting direct interaction between PAFR and the bacteria, in addition to conflicting data on its role in development of invasive pneumococcal disease (IPD). In this review, we will discuss current literature on PAFR and S. pneumoniae and other pathogens,including data concerning human PAFR genetic variation related to IPD clinical aspects, to shed light on the importance of PAFR in IPD. Clarification of the role of this receptor in IPD development has the potential to enable the development of novel therapeutic strategies for treating pneumococcal disease by interfering with the PAFR.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Capsular polysaccharide of Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, and its modification with phosphorylcholine. Infect Immun 2012; 80:3993-4003. [PMID: 22949554 DOI: 10.1128/iai.00635-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capsule has been implicated in the virulence of the swine pathogen Erysipelothrix rhusiopathiae, a rod-shaped, intracellular Gram-positive bacterium that has a unique phylogenetic position in the phylum Firmicutes and is a close relative of Mollicutes (mycoplasma species). In this study, we analyzed the genetic locus and composition of the capsular polysaccharide (CPS) of the Fujisawa strain of E. rhusiopathiae. Genome analysis of the Fujisawa strain revealed that the genetic locus for capsular polysaccharide synthesis (cps) is located next to an lic operon, which is involved in the incorporation and expression of phosphorylcholine (PCho). Reverse transcription-PCR analysis showed that cps and lic are transcribed as a single mRNA, indicating that the loci form an operon. Using the cell surface antigen-specific monoclonal antibody (MAb) ER21 as a probe, the capsular materials were isolated from the Fujisawa strain by hot water extraction and treatment with DNase, RNase, pronase, and N-acetylmuramidase SG, followed by anion-exchange and gel filtration chromatography. The materials were then analyzed by high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The CPS of E. rhusiopathiae is heterogeneous and consists of the major monosaccharides galacturonic acid, galactose, mannose, glucose, arabinose, xylose, and N-acetylglucosamine and some minor monosaccharides containing ribose, rhamnose, and N-acetylgalactosamine. In addition, the capsule is modified by PCho, which comigrates with the capsular materials, as determined by Western immunoblotting, and colocalizes on the cell surface, as determined by immunogold electron microscopy. Virulence testing of PCho-defective mutants in mice demonstrated that PCho is critical for the virulence of this organism.
Collapse
|
17
|
Hosoki K, Nakamura A, Nagao M, Hiraguchi Y, Tanida H, Tokuda R, Wada H, Nobori T, Suga S, Fujisawa T. Staphylococcus aureus directly activates eosinophils via platelet-activating factor receptor. J Leukoc Biol 2012; 92:333-41. [PMID: 22595142 DOI: 10.1189/jlb.0112009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Colonization by SA is associated with exacerbation of AD. Eosinophilic inflammation is a cardinal pathological feature of AD, but little is known about possible direct interaction between SA and eosinophils. PAFR appears to be involved in phagocytosis of Gram-positive bacteria by leukocytes. The objective of this study was to investigate whether SA directly induces eosinophil effector functions via PAFR in the context of AD pathogenesis. Peripheral blood eosinophils were cultured with heat-killed SA, and EDN release, superoxide generation, and adhesion to fibronectin-coated plates were measured. Cytokines, released in the supernatants, were quantified by multiplex bead immunoassays. FISH-labeled SA was incubated with eosinophils and visualized by confocal laser-scanning microscopy. PAFR-blocking peptide and PAFR antagonists were tested for inhibitory effects on SA-induced reactions. SA induced EDN release and superoxide generation by eosinophils in a dose-dependent manner. IL-5 significantly enhanced SA-induced EDN release. IL-5 and IL-17A significantly enhanced SA-induced superoxide generation. SA enhanced eosinophil adhesion to fibronectin, which was blocked by anti-CD49d, and induced eosinophil secretion of various cytokines/chemokines (IL-2R, IL-9, TNFR, IL-1 β, IL-17A, IP-10, TNF-α, PDGF-bb, VEGF, and FGF-basic). After incubation of eosinophils with SA, FISH-labeled SA was visualized in the eosinophils' cytoplasm, indicating phagocytosis. A PAFR-blocking peptide and two PAFR antagonists completely inhibited those reactions. In conclusion, SA directly induced eosinophil activation via PAFR. Blockade of PAFR may be a novel, therapeutic approach for AD colonized by SA.
Collapse
Affiliation(s)
- Koa Hosoki
- Institute for Clinical Research, Mie National Hospital, Mie, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kale SS, Yende S. Effects of Aging on Inflammation and Hemostasis through the Continuum of Critical Illness. Aging Dis 2011; 2:501-511. [PMID: 22396897 PMCID: PMC3295067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/02/2011] [Accepted: 10/05/2011] [Indexed: 05/31/2023] Open
Abstract
Older age has long been associated with altered inflammation and hemostasis regulation. Emerging evidence suggests that age-related differences in inflammation and hemostasis abnormalities may play a role in the development of and long-term outcomes after critical illness. A better understanding of underlying mechanisms may provide new possibilities for therapeutic interventions. In this review, we will examine how age-related differences in inflammatory and coagulation responses are affected through the continuum of healthy state, before infection occurs, to severe sepsis and recovery.
Collapse
Affiliation(s)
| | - Sachin Yende
- Correspondence should be addressed to: Sachin Yende, MD, MS., Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Martín-Loeches I, Solé-Violán J, Rodríguez de Castro F, García-Laorden MI, Borderías L, Blanquer J, Rajas O, Briones ML, Aspa J, Herrera-Ramos E, Marcos-Ramos JA, Sologuren I, González-Quevedo N, Ferrer-Agüero JM, Noda J, Rodríguez-Gallego C. Variants at the promoter of the interleukin-6 gene are associated with severity and outcome of pneumococcal community-acquired pneumonia. Intensive Care Med 2011; 38:256-62. [DOI: 10.1007/s00134-011-2406-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/10/2011] [Indexed: 01/05/2023]
|
20
|
Factors affecting the development of systemic inflammatory response syndrome in pneumococcal infections. Curr Opin Infect Dis 2011; 24:241-7. [DOI: 10.1097/qco.0b013e3283463e45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
|
22
|
Accentuate the (Gram) positive. J Mol Med (Berl) 2010; 88:93-5. [DOI: 10.1007/s00109-010-0598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
|