1
|
Yeo IJ, Yu JE, Kim SH, Kim DH, Jo M, Son DJ, Yun J, Han SB, Hong JT. TNF receptor 2 knockout mouse had reduced lung cancer growth and schizophrenia-like behavior through a decrease in TrkB-dependent BDNF level. Arch Pharm Res 2024; 47:341-359. [PMID: 38592583 PMCID: PMC11045614 DOI: 10.1007/s12272-024-01487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 μg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Mice, Knockout
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Humans
- Mice
- Schizophrenia/metabolism
- Schizophrenia/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- A549 Cells
- Male
- Behavior, Animal/drug effects
- Cell Proliferation/drug effects
- Mice, Inbred C57BL
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
Collapse
Affiliation(s)
- In Jun Yeo
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ji Eun Yu
- College of Pharmacy, Mokpo National University, 1666, Yeongsan-ro, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Sung-Hyun Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dae Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Miran Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
2
|
Shahsavani N, Alizadeh A, Kataria H, Karimi-Abdolrezaee S. Availability of neuregulin-1beta1 protects neurons in spinal cord injury and against glutamate toxicity through caspase dependent and independent mechanisms. Exp Neurol 2021; 345:113817. [PMID: 34314724 DOI: 10.1016/j.expneurol.2021.113817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) causes sensorimotor and autonomic impairment that partly reflects extensive, permanent loss of neurons at the epicenter and penumbra of the injury. Strategies aimed at enhancing neuronal protection are critical to attenuate neurodegeneration and improve neurological recovery after SCI. In rat SCI, we previously uncovered that the tissue levels of neuregulin-1beta 1 (Nrg-1β1) are acutely and persistently downregulated in the injured spinal cord. Nrg-1β1 is well-known for its critical roles in the development, maintenance and physiology of neurons and glia in the developing and adult spinal cord. However, despite this pivotal role, Nrg-1β1 specific effects and mechanisms of action on neuronal injury remain largely unknown in SCI. In the present study, using a clinically-relevant model of compressive/contusive SCI in rats and an in vitro model of glutamate toxicity in primary neurons, we demonstrate Nrg-1β1 provides early neuroprotection through attenuation of reactive oxygen species, lipid peroxidation, necrosis and apoptosis in acute and subacute stages of SCI. Mechanistically, availability of Nrg-1β1 following glutamate challenge protects neurons from caspase-dependent and independent cell death that is mediated by modulation of mitochondria associated apoptotic cascades and MAP kinase and AKT signaling pathways. Altogether, our work provides novel insights into the role and mechanisms of Nrg-1β1 in neuronal injury after SCI and introduces its potential as a new neuroprotective target for this debilitating neurological condition.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
3
|
Kataria H, Hart CG, Alizadeh A, Cossoy M, Kaushik DK, Bernstein CN, Marrie RA, Yong VW, Karimi-Abdolrezaee S. Neuregulin-1 beta 1 is implicated in pathogenesis of multiple sclerosis. Brain 2021; 144:162-185. [PMID: 33313801 PMCID: PMC7880664 DOI: 10.1093/brain/awaa385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis is characterized by immune mediated neurodegeneration that results in progressive, life-long neurological and cognitive impairments. Yet, the endogenous mechanisms underlying multiple sclerosis pathophysiology are not fully understood. Here, we provide compelling evidence that associates dysregulation of neuregulin-1 beta 1 (Nrg-1β1) with multiple sclerosis pathogenesis and progression. In the experimental autoimmune encephalomyelitis model of multiple sclerosis, we demonstrate that Nrg-1β1 levels are abated within spinal cord lesions and peripherally in the plasma and spleen during presymptomatic, onset and progressive course of the disease. We demonstrate that plasma levels of Nrg-1β1 are also significantly reduced in individuals with early multiple sclerosis and is positively associated with progression to relapsing-remitting multiple sclerosis. The functional impact of Nrg-1β1 downregulation preceded disease onset and progression, and its systemic restoration was sufficient to delay experimental autoimmune encephalomyelitis symptoms and alleviate disease burden. Intriguingly, Nrg-1β1 therapy exhibited a desirable and extended therapeutic time window of efficacy when administered prophylactically, symptomatically, acutely or chronically. Using in vivo and in vitro assessments, we identified that Nrg-1β1 treatment mediates its beneficial effects in EAE by providing a more balanced immune response. Mechanistically, Nrg-1β1 moderated monocyte infiltration at the blood-CNS interface by attenuating chondroitin sulphate proteoglycans and MMP9. Moreover, Nrg-1β1 fostered a regulatory and reparative phenotype in macrophages, T helper type 1 (Th1) cells and microglia in the spinal cord lesions of EAE mice. Taken together, our new findings in multiple sclerosis and experimental autoimmune encephalomyelitis have uncovered a novel regulatory role for Nrg-1β1 early in the disease course and suggest its potential as a specific therapeutic target to ameliorate disease progression and severity.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael Cossoy
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deepak K Kaushik
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Charles N Bernstein
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruth Ann Marrie
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Children Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Zhang L, Lu B, Wang W, Miao S, Zhou S, Cheng X, Zhu J, Liu C. Alteration of serum neuregulin 4 and neuregulin 1 in gestational diabetes mellitus. Ther Adv Endocrinol Metab 2021; 12:20420188211049614. [PMID: 34646438 PMCID: PMC8504227 DOI: 10.1177/20420188211049614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
CONTEXT Neuregulin 4 (Nrg4) and neuregulin 1 (Nrg1) have been shown to play vital roles in several disorders of glucose metabolism. The pathophysiological role of Nrg4 and Nrg1 in gestational diabetes mellitus (GDM), however, remains poorly understood. We assessed the clinical relevance of the two cytokines in patients with GDM. METHODS The study recruited 36 GDM patients and 38 age-matched, gestational age (24-28 weeks of gestation)-matched, and BMI (during pregnancy)-matched controls in this study. Serum Nrg4 and Nrg1 were measured using ELISA. Inflammatory factors such as IL-6, IL-1β, leptin, TNF-α, and monocyte chemotactic protein 1 (MCP-1) were determined via Luminex technique. RESULTS Serum Nrg4 in GDM patients was significantly lower than that in the controls, while Nrg1 was significantly higher in the GDM group (p < 0.01). Inflammatory factors such as IL-6, leptin, and TNF-α were significantly increased in GDM patients, while MCP-1 and IL-1β were not significantly different between the two groups. In addition, serum Nrg4 was negatively correlated with fasting glucose (r = -0.438, p = 0.008), HOMA-IR (r = -0.364, p = 0.029), IL-6 (r = -0.384, p = 0.021), leptin (r = -0.393, p = 0.018), TNF-α (r = -0.346, p = 0.039), and MCP-1 (r = -0.342, p = 0.041), and positively correlated with high-density lipoprotein cholesterol (HDL-C) (r = -0.357, p = 0.033) in GDM group. Serum Nrg1 was positively correlated with BMI (r = 0.452, p = 0.006), fasting glucose (r = 0.424, p = 0.010), HOMA-IR (r = 0.369, p = 0.027), and triglyceride (r = 0.439, p = 0.007). The decrease of Nrg4 and the increase of Nrg1 were significantly related to the increased prevalence of GDM. Finally, ROC curve results indicated that Nrg1 combined with IL-6 and TNF-α might be an effective means for GDM screening. CONCLUSIONS Lower circulating Nrg4 and higher circulating Nrg1 serve risk factors of GDM. Nrg1 combined with IL-6 and TNF-α might be a potential tool for GDM screening.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, China
| | - Bi Lu
- Department of Rheumatology and Endocrinology, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Wenhua Wang
- Department of Neurology, Wuhan Fourth Hospital, Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shifeng Miao
- Department of Cardiology, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Shuru Zhou
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | - Xingbo Cheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Zhu
- Department of Cardiology, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
| | | |
Collapse
|
5
|
Yang Y, Jain RK, Glenn ST, Xu B, Singh PK, Wei L, Hu Q, Long M, Hutson N, Wang J, Battaglia S, George S. Complete response to anti-PD-L1 antibody in a metastatic bladder cancer associated with novel MSH4 mutation and microsatellite instability. J Immunother Cancer 2020; 8:jitc-2019-000128. [PMID: 32221012 PMCID: PMC7206971 DOI: 10.1136/jitc-2019-000128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Microsatellite instability (MSI) occurs in 3% of urothelial carcinomas as a result of germline or somatic loss of function mutation in mismatch repair (MMR) proteins.1 Although MSH4 is a member of the DNA MMR mutS family, the association of MSH4 mutation with MSI has not been described. We report a complete responder to PD-L1 blockade who had MSH4 mutated metastatic bladder cancer with mixed histology and MSI. The genomics of urothelial, plasmacytoid and squamous histology was characterized individually through microdissection. Case presentation An 81-year-old man was diagnosed with metastatic urothelial carcinoma 8 months after a cystectomy for muscle invasive bladder cancer. His disease was primary refractory to first-line platinum-based chemotherapy but attained complete response to second-line atezolizumab. PCR-based assay revealed MSI high. The tumor mutational burden was elevated to 36.7 mut/Mb. However, immunohistochemistry of MLH1, MSH2, MSH6 and PMS2 was intact. Whole exome sequencing confirmed that the above mentioned four classic MMR genes were wild type but revealed a deleterious MSH4 L359I mutation with variant allele fraction of 30% and Polyphen2 score of 0.873. The association of MSH4 alterations and MSI-H was independently verified in two publicly available MSI-H colorectal cancer datasets. Conclusions The novel MSH4 L359I mutation is associated with MSI and high mutational burden leading to remarkable response to PD-L1 blockade. More studies are warranted to establish the causality relationship between MSH4 and MSI.
Collapse
Affiliation(s)
- Yuanquan Yang
- Division of Medical Oncology, The Ohio State University James Cancer Hospital, Columbus, Ohio, USA .,Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Rohit K Jain
- Department of Genitourinary Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Sean T Glenn
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Bo Xu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Prashant K Singh
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Nicholas Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Jianming Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | - Saby George
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| |
Collapse
|
6
|
Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nat Commun 2020; 11:255. [PMID: 31937769 PMCID: PMC6959272 DOI: 10.1038/s41467-019-13624-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/14/2019] [Indexed: 01/05/2023] Open
Abstract
Copy number variants (CNVs) are suggested to have a widespread impact on the human genome and phenotypes. To understand the role of CNVs across human diseases, we examine the CNV genomic landscape of 100,028 unrelated individuals of European ancestry, using SNP and CGH array datasets. We observe an average CNV burden of ~650 kb, identifying a total of 11,314 deletion, 5625 duplication, and 2746 homozygous deletion CNV regions (CNVRs). In all, 13.7% are unreported, 58.6% overlap with at least one gene, and 32.8% interrupt coding exons. These CNVRs are significantly more likely to overlap OMIM genes (2.94-fold), GWAS loci (1.52-fold), and non-coding RNAs (1.44-fold), compared with random distribution (P < 1 × 10−3). We uncover CNV associations with four major disease categories, including autoimmune, cardio-metabolic, oncologic, and neurological/psychiatric diseases, and identify several drug-repurposing opportunities. Our results demonstrate robust frequency definition for large-scale rare variant association studies, identify CNVs associated with major disease categories, and illustrate the pleiotropic impact of CNVs in human disease. Associations of copy number variations (CNVs) with complex traits are challenging to study because of their low frequency. Here, the authors analyse SNP array and array comparative genomic hybridization data of 100,028 individuals and report their associations with immune-related, cardiometabolic and neuropsychiatric diseases as well as cancer.
Collapse
|
7
|
Behavioural effects of high fat diet in adult Nrg1 type III transgenic mice. Behav Brain Res 2020; 377:112217. [DOI: 10.1016/j.bbr.2019.112217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
8
|
Nrg1 Intracellular Signaling Is Neuroprotective upon Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3930186. [PMID: 31583038 PMCID: PMC6754950 DOI: 10.1155/2019/3930186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
The schizophrenia risk gene NRG1 controls the formation of excitatory and inhibitory synapses in cortical circuits. While the expression of different NRG1 isoforms occurs during development, adult neurons primarily express the CRD-NRG1 isoform characterized by a highly conserved intracellular domain (NRG1-ICD). We and others have demonstrated that Nrg1 intracellular signaling promotes dendrite elongation and excitatory connections during neuronal development. However, the role of Nrg1 intracellular signaling in adult neurons and pathological conditions remains largely unaddressed. Here, we investigated the role of Nrg1 intracellular signaling in neuroprotection and stroke. Our bioinformatic analysis revealed the evolutionary conservation of the NRG1-ICD and a decrease in NRG1 expression with age in the human frontal cortex. Hence, we first evaluated whether Nrg1 signaling may affect pathological hallmarks in an in vitro model of neuronal senescence; however, our data failed to reveal a role for Nrg1 in the activation of the stress-related pathway p38 MAPK and DNA damage. Previous studies demonstrated that the soluble EGF domain of Nrg1 alleviated brain ischemia, a pathological process involving the generation of free radicals, reactive oxygen species (ROS), and excitotoxicity. Hence, we tested the hypothesis that Nrg1 intracellular signaling could be neuroprotective in stroke. We discovered that Nrg1 expression significantly increased neuronal survival upon oxygen-glucose deprivation (OGD), an established in vitro model for stroke. Notably, the specific activation of Nrg1 intracellular signaling by expression of the Nrg1-ICD protected neurons from OGD. Additionally, time-lapse experiments confirmed that Nrg1 intracellular signaling increased the survival of neurons exposed to OGD. Finally, we investigated the relevance of Nrg1 intracellular signaling in stroke in vivo. Using viral vectors, we expressed the Nrg1-ICD in cortical neurons and subsequently challenged them by a focal hemorrhagic stroke; our data indicated that Nrg1 intracellular signaling improved neuronal survival in the infarcted area. Altogether, these data highlight Nrg1 intracellular signaling as neuroprotective upon ischemic lesion both in vitro and in vivo. Given the complexity of the neurotoxic effects of stroke and the involvement of various mechanisms, such as the generation of ROS, excitotoxicity, and inflammation, further studies are required to determine the molecular bases of the neuroprotective effect of Nrg1 intracellular signaling. In conclusion, our research highlights the stimulation of Nrg1 intracellular signaling as a promising target for cortical stroke treatment.
Collapse
|
9
|
Oliveira HR, Cant JP, Brito LF, Feitosa FLB, Chud TCS, Fonseca PAS, Jamrozik J, Silva FF, Lourenco DAL, Schenkel FS. Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci 2019; 102:8159-8174. [PMID: 31301836 DOI: 10.3168/jds.2019-16451] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
We performed genome-wide association analyses for milk, fat, and protein yields and somatic cell score based on lactation stages in the first 3 parities of Canadian Ayrshire, Holstein, and Jersey cattle. The genome-wide association analyses were performed considering 3 different lactation stages for each trait and parity: from 5 to 95, from 96 to 215, and from 216 to 305 d in milk. Effects of single nucleotide polymorphisms (SNP) for each lactation stage, trait, parity, and breed were estimated by back-solving the direct breeding values estimated using the genomic best linear unbiased predictor and single-trait random regression test-day models containing only the fixed population average curve and the random genomic curves. To identify important genomic regions related to the analyzed lactation stages, traits, parities and breeds, moving windows (SNP-by-SNP) of 20 adjacent SNP explaining more than 0.30% of total genetic variance were selected for further analyses of candidate genes. A lower number of genomic windows with a relatively higher proportion of the explained genetic variance was found in the Holstein breed compared with the Ayrshire and Jersey breeds. Genomic regions associated with the analyzed traits were located on 12, 8, and 15 chromosomes for the Ayrshire, Holstein, and Jersey breeds, respectively. Especially for the Holstein breed, many of the identified candidate genes supported previous reports in the literature. However, well-known genes with major effects on milk production traits (e.g., diacylglycerol O-acyltransferase 1) showed contrasting results among lactation stages, traits, and parities of different breeds. Therefore, our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the analyzed traits across breeds, parities, and lactation stages. Further functional studies are needed to validate our findings in independent populations.
Collapse
Affiliation(s)
- H R Oliveira
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - J P Cant
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - L F Brito
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - F L B Feitosa
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - T C S Chud
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - P A S Fonseca
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - J Jamrozik
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Canadian Dairy Network (CDN), Guelph, Ontario, N1K 1E5, Canada
| | - F F Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - D A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
10
|
Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 2019; 180:101643. [PMID: 31229498 DOI: 10.1016/j.pneurobio.2019.101643] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022]
Abstract
Neuregulin-1 (Nrg-1) is a member of the Neuregulin family of growth factors with essential roles in the developing and adult nervous system. Six different types of Nrg-1 (Nrg-1 type I-VI) and over 30 isoforms have been discovered; however, their specific roles are not fully determined. Nrg-1 signals through a complex network of protein-tyrosine kinase receptors, ErbB2, ErbB3, ErbB4 and multiple intracellular pathways. Genetic and pharmacological studies of Nrg-1 and ErbB receptors have identified a critical role for Nrg-1/ErbB network in neurodevelopment including neuronal migration, neural differentiation, myelination as well as formation of synapses and neuromuscular junctions. Nrg-1 signaling is best known for its characterized role in development and repair of the peripheral nervous system (PNS) due to its essential role in Schwann cell development, survival and myelination. However, our knowledge of the impact of Nrg-1/ErbB on the central nervous system (CNS) has emerged in recent years. Ongoing efforts have uncovered a multi-faceted role for Nrg-1 in regulating CNS injury and repair processes. In this review, we provide a timely overview of the most recent updates on Nrg-1 signaling and its role in nervous system injury and diseases. We will specifically highlight the emerging role of Nrg-1 in modulating the glial and immune responses and its capacity to foster neuroprotection and remyelination in CNS injury. Nrg-1/ErbB network is a key regulatory pathway in the developing nervous system; therefore, unraveling its role in neuropathology and repair can aid in development of new therapeutic approaches for nervous system injuries and associated disorders.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Clarke DJ, Chohan TW, Kassem MS, Smith KL, Chesworth R, Karl T, Kuligowski MP, Fok SY, Bennett MR, Arnold JC. Neuregulin 1 Deficiency Modulates Adolescent Stress-Induced Dendritic Spine Loss in a Brain Region-Specific Manner and Increases Complement 4 Expression in the Hippocampus. Schizophr Bull 2019; 45:339-349. [PMID: 29566220 PMCID: PMC6403066 DOI: 10.1093/schbul/sby029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.
Collapse
Affiliation(s)
- David J Clarke
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | - Tariq W Chohan
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia
| | | | - Kristie L Smith
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Rose Chesworth
- School of Medicine, Western Sydney University, Sydney, Australia
| | - Tim Karl
- School of Medicine, Western Sydney University, Sydney, Australia,Neuroscience Research Australia, Randwick, Australia,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Michael P Kuligowski
- Australian Microscopy & Microanalysis Research Facility, University of Sydney, Camperdown, Australia
| | - Sandra Y Fok
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | | | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia,Department of Pharmacology, University of Sydney, Sydney, Australia,To whom correspondence should be addressed; Brain and Mind Centre, Level 6, Building F, 94 Mallett Street, Camperdown, NSW 2050, Australia; tel: +61-29351-0812, e-mail:
| |
Collapse
|
12
|
Abstract
Neuregulin-1 (NRG1) has been shown to be associated with the regulation of inflammation and ovulation. The aim of this study was to investigate the relationship between serum NRG1 levels and various clinical and metabolic parameters in women with polycystic ovary syndrome (PCOS). This case-controlled study included 38 women with PCOS and 46 age and body mass index (BMI)-matched controls without PCOS. The serum NRG1 levels of the women with PCOS were found to be significantly lower compared to the control group. The high sensitivity C-reactive protein (hs-CRP) levels of the PCOS subjects were significantly higher than in the control group. The circulating NRG1 levels were negatively correlated with a homeostasis model assessment of insulin resistance (HOMA-IR) and the hs-CRP in the PCOS group. There is no significant correlation between the circulating NRG1 levels and the serum insulin in the PCOS group. There was a trend toward high NRG1 levels in the PCOS subjects with high BMI, but the difference failed to reach a statistical significance. Decreased NRG1 levels in PCOS subjects may be associated with insulin resistance and a low-grade chronic inflammation. Impact statement What is already known on this subject? Although there have been many studies related to NRG1, we could not find any study explaining the relationship between NRG1 and PCOS. This study provides first and novel insights into the relationship between serum NRG1 levels and the insulin resistance in women with PCOS. What do the results of this study add? A decline in the NRG1 levels in PCOS may be associated with insulin resistance and a low-grade chronic inflammation. What are the implications of these findings for clinical practice and/or further research? Decreased NRG1 levels may play an important role in the reproductive and endocrine properties of PCOS. We think that NRG1 research may be contribute to the clarification of PCOS pathophysiology. Future research investigating NRG1 levels in obese and non-obese cases, as well as in ovulatory and anovulatory PCOS patients, will make a significant contribution to the resolution of the mystery under PCOS aetiology.
Collapse
Affiliation(s)
- Haldun Arpacı
- a Department of Obstetrics and Gynecology, School of Medicine , Kafkas University , Kars , Turkey
| |
Collapse
|
13
|
Altered hippocampal gene expression and structure in transgenic mice overexpressing neuregulin 1 (Nrg1) type I. Transl Psychiatry 2018; 8:229. [PMID: 30348978 PMCID: PMC6197224 DOI: 10.1038/s41398-018-0288-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022] Open
Abstract
Transgenic mice overexpressing the type I isoform of neuregulin 1 (Nrg1; NRG1) have alterations in hippocampal gamma oscillations and an age-emergent deficit in hippocampus-dependent spatial working memory. Here, we examined the molecular and morphological correlates of these findings. Microarrays showed over 100 hippocampal transcripts differentially expressed in Nrg1tg-type I mice, with enrichment of genes related to neuromodulation and, in older mice, of genes involved in inflammation and immunity. Nrg1tg-type I mice had an enlarged hippocampus with a widened dentate gyrus. The results show that Nrg1 type I impacts on hippocampal gene expression and structure in a multifaceted and partly age-related way, complementing the evidence implicating Nrg1 signaling in aspects of hippocampal function. The findings are also relevant to the possible role of NRG1 signaling in the pathophysiology of schizophrenia or other disorders affecting this brain region.
Collapse
|
14
|
Pascual-Gil S, Abizanda G, Iglesias E, Garbayo E, Prósper F, Blanco-Prieto MJ. NRG1 PLGA MP locally induce macrophage polarisation toward a regenerative phenotype in the heart after acute myocardial infarction. J Drug Target 2018; 27:573-581. [DOI: 10.1080/1061186x.2018.1531417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- S. Pascual-Gil
- Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - G. Abizanda
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - E. Iglesias
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - E. Garbayo
- Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - F. Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - M. J. Blanco-Prieto
- Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| |
Collapse
|
15
|
Olaya JC, Heusner CL, Matsumoto M, Sinclair D, Kondo MA, Karl T, Shannon Weickert C. Overexpression of Neuregulin 1 Type III Confers Hippocampal mRNA Alterations and Schizophrenia-Like Behaviors in Mice. Schizophr Bull 2018; 44:865-875. [PMID: 28981869 PMCID: PMC6007747 DOI: 10.1093/schbul/sbx122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuregulin 1 (NRG1) is a schizophrenia candidate gene whose protein product is involved in neuronal migration, survival, and synaptic plasticity via production of specific isoforms. Importantly, NRG1 type III (NRG1 III) mRNA is increased in humans inheriting a schizophrenia risk haplotype for the NRG1 gene (HapICE), and NRG1 protein levels can be elevated in schizophrenia. The nature by which NRG1 type III overexpression results in schizophrenia-like behavior and brain pathology remains unclear, therefore we constructed a transgenic mouse with Nrg1 III overexpression in forebrain neurons (CamKII kinase+). Here, we demonstrate construct validity for this mouse model, as juvenile and adult Nrg1 III transgenic mice exhibit an overexpression of Nrg1 III mRNA and Nrg1 protein in multiple brain regions. Furthermore, Nrg1 III transgenic mice have face validity as they exhibit schizophrenia-relevant behavioral phenotypes including deficits in social preference, impaired fear-associated memory, and reduced prepulse inhibition. Additionally, microarray assay of hippocampal mRNA uncovered transcriptional alterations downstream of Nrg1 III overexpression, including changes in serotonin receptor 2C and angiotensin-converting enzyme. Transgenic mice did not exhibit other schizophrenia-relevant behaviors including hyperactivity, social withdrawal, or an increased vulnerability to the effects of MK-801 malate. Our results indicate that this novel Nrg1 III mouse is valid for modeling potential pathological mechanisms of some schizophrenia-like behaviors, for determining what other neurobiological changes may be downstream of elevated NRG1 III levels and for preclinically testing therapeutic strategies that may be specifically efficacious in patients with the NRG1 (HapICE) risk genotype.
Collapse
Affiliation(s)
- Juan C Olaya
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | | | - Duncan Sinclair
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Mari A Kondo
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Tim Karl
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia,To whom correspondence should be addressed; Neuroscience Research Australia, Barker Street, Randwick, NSW 2031, Australia; tel: +61-2-9399-1117, fax: +61-2-9399-1005, e-mail:
| |
Collapse
|
16
|
Křivohlavá R, Grobárová V, Neuhöferová E, Fišerová A, Benson V. Interaction of colon cancer cells with glycoconjugates triggers complex changes in gene expression, glucose transporters and cell invasion. Mol Med Rep 2018; 17:5508-5517. [PMID: 29393416 DOI: 10.3892/mmr.2018.8490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/15/2017] [Indexed: 11/06/2022] Open
Abstract
Glycan metabolism balance is critical for cell prosperity, and macromolecule glycosylation is essential for cell communication, signaling and survival. Thus, glycotherapy may be a potential cancer treatment. The aim of the present study was to determine whether combined synthetic glycoconjugates (GCs) induce changes in gene expression that alter the survival of colon cancer cells. The current study evaluated the effect of the GCs N‑acetyl‑D‑glucosamine modified polyamidoamine dendrimer and calix[4]arene scaffold on cancer cell proliferation, apoptosis, invasion and sensitivity to immune cell‑mediated killing. Using reverse transcription‑quantitative polymerase chain reaction, the expression of genes involved in the aforementioned processes was measured. It was determined that GCs reduce the expression of the glucosaminyltransferases Mgat3 and Mgat5 responsible for surface glycosylation and employed components of the Wnt signaling pathway Wnt2B and Wnt9B. In addition, the calix[4]arene‑based GC reduced cell colony formation; this was accompanied by the downregulation of the metalloproteinase Mmp3. By contrast, the dendrimer‑based GC affected the expression of the glucose transporter components Sglt1 and Egfr1. Therefore, to the best of our knowledge, the present study is the first to reveal that N‑acetyl‑D‑glucosamine‑dendrimer/calix[4]arene GCs alter mRNA expression in a comprehensive way, resulting in the reduced malignant phenotype of the colon cancer cell line HT‑29.
Collapse
Affiliation(s)
- Romana Křivohlavá
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Valika Grobárová
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Eva Neuhöferová
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Anna Fišerová
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| | - Veronika Benson
- Laboratory of Molecular Biology and Immunology, Department of Immunology, Institute of Microbiology, Czech Academy of Sciences, 14220 Prague 4, Czech Republic
| |
Collapse
|
17
|
Kinnear C, Hoal EG, Schurz H, van Helden PD, Möller M. The role of human host genetics in tuberculosis resistance. Expert Rev Respir Med 2017; 11:721-737. [PMID: 28703045 DOI: 10.1080/17476348.2017.1354700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tuberculosis (TB) remains a public health problem: the latest estimate of new incident cases per year is a staggering 10.4 million. Despite this overwhelming number, the majority of the immunocompetent population can control infection with Mycobacterium tuberculosis. The human genome underlies the immune response and contributes to the outcome of TB infection. Areas covered: Investigations of TB resistance in the general population have closely mirrored those of other infectious diseases and initially involved epidemiological observations. Linkage and association studies, including studies of VDR, SLC11A1 and HLA-DRB1 followed. Genome-wide association studies of common variants, not necessarily sufficient for disease, became possible after technological advancements. Other approaches involved the identification of those individuals with rare disease-causing mutations that strongly predispose to TB, epistasis and the role of ethnicity in disease. Despite these efforts, infection outcome, on an individual basis, cannot yet be predicted. Expert commentary: The early identification of future disease progressors is necessary to stem the TB epidemic. Human genetics may contribute to this endeavour and could in future suggest pathways to target for disease prevention. This will however require concerted efforts to establish large, well-phenotyped cohorts from different ethnicities, improved genomic resources and a better understanding of the human genome architecture.
Collapse
Affiliation(s)
- Craig Kinnear
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Eileen G Hoal
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Haiko Schurz
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Paul D van Helden
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| | - Marlo Möller
- a SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences , Stellenbosch University , Cape Town , South Africa
| |
Collapse
|
18
|
Uniting the neurodevelopmental and immunological hypotheses: Neuregulin 1 receptor ErbB and Toll-like receptor activation in first-episode schizophrenia. Sci Rep 2017. [PMID: 28646138 PMCID: PMC5482801 DOI: 10.1038/s41598-017-03736-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current pathophysiological models of schizophrenia focus on neurodevelopmental and immunological mechanisms. We investigated a molecular pathway traditionally linked to the neurodevelopmental hypothesis (neuregulin 1 - ErbB), and pathogen-associated pattern recognition receptors associated with the immune hypothesis (Toll-like receptors, TLRs). We recruited 42 first-episode, drug-naïve patients with schizophrenia and 42 matched healthy control subjects. In monocytes TLR4/TLR5 and ErbB expressions were measured with flow-cytometry. Pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and the anti-inflammatory cytokine IL-10 were determined following the stimulation of TLR4/TLR5 and ErbB. Results revealed increased TLR4/TLR5 and decreased ErbB4 expression in schizophrenia relative to the control subjects. The expression of ErbB2 and ErbB3 receptors was unaltered in schizophrenia. TLR4 stimulation resulted in lower pro-inflammatory cytokine production in schizophrenia compared to the control levels, whereas the stimulation of ErbB by neuregulin 1 led to higher pro-inflammatory cytokine levels in patients with schizophrenia relative to the control group. In healthy controls, ErbB activation was associated with a marked production of IL-10, which was dampened in schizophrenia. These results indicate that the stimulation of TLR4 and ErbB induces opposite pro-inflammatory cytokine responses in schizophrenia.
Collapse
|
19
|
Ryzhov S, Matafonov A, Galindo CL, Zhang Q, Tran TL, Lenihan DJ, Lenneman CG, Feoktistov I, Sawyer DB. ERBB signaling attenuates proinflammatory activation of nonclassical monocytes. Am J Physiol Heart Circ Physiol 2017; 312:H907-H918. [PMID: 28235789 DOI: 10.1152/ajpheart.00486.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
Immune activation in chronic systolic heart failure (HF) correlates with disease severity and prognosis. Recombinant neuregulin-1 (rNRG-1) is being developed as a possible therapy for HF, based on the activation of ERBB receptors in cardiac cells. Work in animal models of HF led us to hypothesize that there may be direct effects of NRG-1 on immune system activation and inflammation. We investigated the expression of ERBB receptors and the effect of rNRG-1 isoform glial growth factor 2 (GGF2) in subpopulations of peripheral blood mononuclear cells (PB MNCs) in subjects with HF. We found that human monocytes express both ERBB2 and ERBB3 receptors, with high interindividual variability among subjects. Monocyte surface ERBB3 and TNF-α mRNA expression were inversely correlated in subjects with HF but not in human subjects without HF. GGF2 activation of ERBB signaling ex vivo inhibited LPS-induced TNF-α production, specifically in the CD14lowCD16+ population of monocytes in a phosphoinositide 3-kinase-dependent manner. GGF2 suppression of TNF-α correlated directly with the expression of ERBB3. In vivo, a single dose of intravenous GGF2 reduced TNF-α expression in PB MNCs of HF subjects participating in a phase I safety study of GGF2. These results support a role for ERBB3 signaling in the regulation of TNF-α production from CD14lowCD16+ monocytes and a need for further investigation into the clinical significance of NRG-1/ERBB signaling as a modulator of immune system function.NEW & NOTEWORTHY This study identified a novel role of neuregulin-1 (NRG-1)/ERBB signaling in the control of proinflammatory activation of monocytes. These results further improve our fundamental understanding of cardioprotective effects of NRG-1 in patients with heart failure.
Collapse
Affiliation(s)
- Sergey Ryzhov
- Maine Medical Center Research Institute, Scarborough, Maine
| | - Anton Matafonov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee.,Department of Bioengineering and Organic Chemistry, Tomsk Polytechnic University, Tomsk, Russia
| | - Cristi L Galindo
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qinkun Zhang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Truc-Linh Tran
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel J Lenihan
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Igor Feoktistov
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas B Sawyer
- Maine Medical Center Research Institute, Scarborough, Maine; .,Maine Medical Center, Portland, Maine
| |
Collapse
|
20
|
Zhou F, Xia Z, Liu K, Zhou Q. Exogenous neuregulin-1 attenuates STZ-induced diabetic peripheral neuropathic pain in rats. Acta Cir Bras 2017; 32:28-37. [DOI: 10.1590/s0102-865020170104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
|
21
|
Altered cytokine profile, pain sensitivity, and stress responsivity in mice with co-disruption of the developmental genes Neuregulin-1×DISC1. Behav Brain Res 2016; 320:113-118. [PMID: 27916686 DOI: 10.1016/j.bbr.2016.11.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 12/14/2022]
Abstract
The complex genetic origins of many human disorders suggest that epistatic (gene×gene) interactions may contribute to a significant proportion of their heritability estimates and phenotypic heterogeneity. Simultaneous disruption of the developmental genes and schizophrenia risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) in mice has been shown to produce disease-relevant and domain-specific phenotypic profiles different from that observed following disruption of either gene alone. In the current study, anxiety and stress responsivity phenotypes in male and female mutant mice with simultaneous disruption of DISC1 and NRG1 were examined. NRG1×DISC1 mutant mice were generated and adult mice from each genotype were assessed for pain sensitivity (hot plate and tail flick tests), anxiety (light-dark box), and stress-induced hypothermia. Serum samples were assayed to measure circulating levels of pro-inflammatory cytokines. Mice with the NRG1 mutation, irrespective of DISC1 mutation, spent significantly more time in the light chamber, displayed increased core body temperature following acute stress, and decreased pain sensitivity. Basal serum levels of cytokines IL8, IL1β and IL10 were decreased in NRG1 mutants. Mutation of DISC1, in the absence of epistatic interaction with NRG1, was associated with increased serum levels of IL1β. Epistatic effects were evident for IL6, IL12 and TNFα. NRG1 mutation alters stress and pain responsivity, anxiety, and is associated with changes in basal cytokine levels. Epistasis resulting from synergistic NRG1 and DISC1 gene mutations altered pro-inflammatory cytokine levels relative to the effects of each of these genes individually, highlighting the importance of epistatic mechanisms in immune-related pathology.
Collapse
|
22
|
New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1973834. [PMID: 27829982 PMCID: PMC5088319 DOI: 10.1155/2016/1973834] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial disease of the central nervous system (CNS) characterized by an inflammatory process and demyelination. The etiology of the disease is still not fully understood. Therefore, finding new etiological factors is of such crucial importance. It is suspected that the development of MS may be affected by oxidative stress (OS). In the acute phase OS initiates inflammatory processes and in the chronic phase it sustains neurodegeneration. Redox processes in MS are associated with mitochondrial dysfunction, dysregulation of axonal bioenergetics, iron accumulation in the brain, impaired oxidant/antioxidant balance, and OS memory. The present paper is a review of the current literature about the role of OS in MS and it focuses on all major aspects. The article explains the mechanisms of OS, reports unique biomarkers with regard to their clinical significance, and presents a poorly understood relationship between OS and neurodegeneration. It also provides novel methods of treatment, including the use of antioxidants and the role of antioxidants in neuroprotection. Furthermore, adding new drugs in the treatment of relapse may be useful. The article considers the significance of OS in the current treatment of MS patients.
Collapse
|
23
|
Benros ME, Trabjerg BB, Meier S, Mattheisen M, Mortensen PB, Mors O, Børglum AD, Hougaard DM, Nørgaard-Pedersen B, Nordentoft M, Agerbo E. Influence of Polygenic Risk Scores on the Association Between Infections and Schizophrenia. Biol Psychiatry 2016; 80:609-16. [PMID: 27364036 DOI: 10.1016/j.biopsych.2016.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/18/2016] [Accepted: 04/12/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Several studies have suggested an important role of infections in the etiology of schizophrenia; however, shared genetic liability toward infections and schizophrenia could influence the association. We therefore investigated the possible effect of polygenic risk scores (PRSs) for schizophrenia on the association between infections and the risk of schizophrenia. METHODS We conducted a nested case-control study on a Danish population-based sample born after 1981 comprising of 1692 cases diagnosed with schizophrenia between 1994 and 2008 and 1724 matched controls. All individuals were linked utilizing nationwide population-based registers with virtually complete registration of all hospital contacts for infections. PRSs were calculated using discovery effect size estimates weights from an independent meta-analysis (34,600 cases and 45,968 control individuals). RESULTS A prior hospital contact with infection had occurred in 41% of the individuals with schizophrenia and increased the incidence rate ratio (IRR) of schizophrenia by 1.43 (95% confidence interval [CI] = 1.22-1.67). Adding PRS, which was robustly associated with schizophrenia (by an IRR of 1.46 [95% CI = 1.34-1.60] per standard deviation of the score), did not alter the association with infections and the increased risk of schizophrenia remained (IRR = 1.41; 95% CI = 1.20-1.66). Furthermore, there were no interactions between PRS and infections on the risk of developing schizophrenia (p = .554). Neither did PRS affect the risk of acquiring infections among patients with schizophrenia (odds ratio = 1.00; 95% CI = 0.89-1.12) nor among controls (odds ratio = 1.09; 95% CI: 0.96-1.24). CONCLUSIONS PRS and a history of infections have independent effects on the risk for schizophrenia, and the common genetic risk measured by PRS did not account for the association with infection in this sample.
Collapse
Affiliation(s)
- Michael E Benros
- Mental Health Centre Copenhagen, University of Copenhagen, Faculty of Health Sciences, Copenhagen; National Centre for Register-Based Research, Aarhus University, Aarhus; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Copenhagen.
| | - Betina B Trabjerg
- National Centre for Register-Based Research, Aarhus University, Aarhus; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Copenhagen
| | - Sandra Meier
- National Centre for Register-Based Research, Aarhus University, Aarhus; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Copenhagen
| | - Manuel Mattheisen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Copenhagen; Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus
| | - Preben B Mortensen
- National Centre for Register-Based Research, Aarhus University, Aarhus; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Copenhagen
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Copenhagen; Research Department P, Aarhus University Hospital, Risskov
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Copenhagen; Department of Biomedicine and Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus
| | - David M Hougaard
- Danish Centre for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Bent Nørgaard-Pedersen
- Danish Centre for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Copenhagen
| | - Esben Agerbo
- National Centre for Register-Based Research, Aarhus University, Aarhus; The Lundbeck Foundation Initiative for Integrative Psychiatric Research iPSYCH, Copenhagen; CIRRAU-Centre for Integrated Register-Based Research, Aarhus University, Aarhus
| |
Collapse
|
24
|
Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast 2016; 2016:2173748. [PMID: 27725886 PMCID: PMC5048038 DOI: 10.1155/2016/2173748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 02/06/2023] Open
Abstract
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.
Collapse
|
25
|
Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, Karl T, Weickert CS, Everall IP, Bousman CA. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev 2016; 68:387-409. [DOI: 10.1016/j.neubiorev.2016.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
|
26
|
Hemmerle AM, Ahlbrand R, Bronson SL, Lundgren KH, Richtand NM, Seroogy KB. Modulation of schizophrenia-related genes in the forebrain of adolescent and adult rats exposed to maternal immune activation. Schizophr Res 2015; 168. [PMID: 26206493 PMCID: PMC4591187 DOI: 10.1016/j.schres.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maternal immune activation (MIA) is an environmental risk factor for schizophrenia, and may contribute to other developmental disorders including autism and epilepsy. Activation of pro-inflammatory cytokine systems by injection of the synthetic double-stranded RNA polyriboinosinic-polyribocytidilic acid (Poly I:C) mediates important neurochemical and behavioral corollaries of MIA, which have relevance to deficits observed in schizophrenia. We examined the consequences of MIA on forebrain expression of neuregulin-1 (NRG-1), brain-derived neurotrophic factor (BDNF) and their receptors, ErbB4 and trkB, respectively, genes associated with schizophrenia. On gestational day 14, pregnant rats were injected with Poly I:C or vehicle. Utilizing in situ hybridization, expression of NRG-1, ErbB4, BDNF, and trkB was examined in male rat offspring at postnatal day (P) 14, P30 and P60. ErbB4 mRNA expression was significantly increased at P30 in the anterior cingulate (AC Ctx), frontal, and parietal cortices, with increases in AC Ctx expression continuing through P60. ErbB4 expression was also elevated in the prefrontal cortex (PFC) at P14. In contrast, NRG-1 mRNA was decreased in the PFC at P60. Expression of BDNF mRNA was significantly upregulated in the PFC at P60 and decreased in the AC Ctx at P14. Expression of trkB was increased in two regions, the piriform cortex at P14 and the striatum at P60. These findings demonstrate developmentally and regionally selective alterations in the expression of schizophrenia-related genes as a consequence of MIA. Further study is needed to determine contributions of these effects to the development of alterations of relevance to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ann M. Hemmerle
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rebecca Ahlbrand
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Stefanie L. Bronson
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kerstin H. Lundgren
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Neil M. Richtand
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA,San Diego Veterans Affairs Healthcare System, San Diego, CA 92161USA,Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Kim B. Seroogy
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA,Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA,Corresponding Author: Kim B. Seroogy, PhD, The Selma Schottenstein Harris Laboratory for Research in Parkinson’s, Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati College of Medicine, Medical Sciences Building, ML0536, 231 Albert Sabin Way, Cincinnati, OH 45267-0536, USA. Telephone: 513-558-7086; Fax: 513-558-7009;
| |
Collapse
|
27
|
Daya M, van der Merwe L, van Helden PD, Möller M, Hoal EG. Investigating the Role of Gene-Gene Interactions in TB Susceptibility. PLoS One 2015; 10:e0123970. [PMID: 25919455 PMCID: PMC4412713 DOI: 10.1371/journal.pone.0123970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/24/2015] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) is the second leading cause of mortality from infectious disease worldwide. One of the factors involved in developing disease is the genetics of the host, yet the field of TB susceptibility genetics has not yielded the answers that were expected. A commonly posited explanation for the missing heritability of complex disease is gene-gene interactions, also referred to as epistasis. In this study we investigate the role of gene-gene interactions in genetic susceptibility to TB using a cohort recruited from a high TB incidence community from Cape Town, South Africa. Our discovery data set incorporates genotypes from a large a number of candidate gene studies as well as genome-wide data. After limiting our search space to pairs of putative TB susceptibility genes, as well as pairs of genes that have been curated in online databases as potential interactors, we use statistical modelling to identify pairs of interacting SNPs. We attempt to validate the top models identified in our discovery data set using an independent genome-wide TB case-control data set from The Gambia. A number of models were successfully validated, indicating that interplay between the NRG1 - NRG3, GRIK1 - GRIK3 and IL23R - ATG4C gene pairs may modify susceptibility to TB. Gene pairs involved in the NF-κB pathway were also identified in the discovery data set (SFTPD - NOD2, ISG15 - TLR8 and NLRC5 - IL12RB1), but could not be tested in the Gambian study group due to lack of overlapping data.
Collapse
Affiliation(s)
- Michelle Daya
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lize van der Merwe
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G. Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
28
|
Schmidt MJ, Mirnics K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 2015; 40:190-206. [PMID: 24759129 PMCID: PMC4262918 DOI: 10.1038/npp.2014.95] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
The origins of schizophrenia have eluded clinicians and researchers since Kraepelin and Bleuler began documenting their findings. However, large clinical research efforts in recent decades have identified numerous genetic and environmental risk factors for schizophrenia. The combined data strongly support the neurodevelopmental hypothesis of schizophrenia and underscore the importance of the common converging effects of diverse insults. In this review, we discuss the evidence that genetic and environmental risk factors that predispose to schizophrenia disrupt the development and normal functioning of the GABAergic system.
Collapse
Affiliation(s)
- Martin J Schmidt
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, University of Szeged, Szeged, Hungary
| |
Collapse
|
29
|
The Role of Infections and Autoimmune Diseases for Schizophrenia and Depression: Findings from Large-Scale Epidemiological Studies. CURRENT TOPICS IN NEUROTOXICITY 2015. [PMCID: PMC7122152 DOI: 10.1007/978-3-319-13602-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An immunologic component to schizophrenia and depression has been increasingly recognized, which has led to extensive research into the associations with infections and autoimmune diseases. Large-scale nationwide epidemiological studies have displayed an increased prevalence of both autoimmune diseases and infections among persons with schizophrenia and depression. Autoimmune diseases, and especially the number of infections requiring hospitalization, increase the risk of schizophrenia and depression in a dose–response relationship. Infections are a common exposure and a broad spectrum of infections are associated with schizophrenia and depression. Particularly the autoimmune diseases with a potential presence of brain-reactive antibodies were associated with psychiatric disorders. However, the associations seem to be bidirectional, since the risk of autoimmune diseases and infections is also increased after diagnosis with schizophrenia and depression. The risk of autoimmune diseases was particularly increased in individuals with prior hospital contacts for infections. It has been suggested that inflammation and autoimmunity could be involved in the etiology and pathogenesis of some patients with symptoms of schizophrenia and depression. The psychiatric symptoms can be directly triggered by immune components, such as brain-reactive antibodies and cytokines, or infections reaching the central nervous system (CNS), or be secondary to systemic inflammation indirectly affecting the brain. However, the associations could also be caused by shared genetic factors, other environmental factors, or common etiological components. Nonetheless, autoimmune diseases and infections should be considered by clinicians in the treatment of individuals with psychiatric symptoms, since treatment would probably improve the psychiatric symptoms, quality of life, and the survival of the individuals.
Collapse
|
30
|
Abstract
The beta isoform of Neuregulin-1 (NRG-1β), along with its receptors (ErbB2-4), is required for cardiac development. NRG-1β, as well as the ErbB2 and ErbB4 receptors, is also essential for maintenance of adult heart function. These observations have led to its evaluation as a therapeutic for heart failure. Animal studies and ongoing clinical trials have demonstrated beneficial effects of two forms of recombinant NRG-1β on cardiac function. In addition to the possible role for recombinant NRG-1βs as heart failure therapies, endogenous NRG-1β/ErbB signaling appears to play a role in restoring cardiac function after injury. The potential mechanisms by which NRG-1β may act as both a therapy and a mediator of reverse remodeling remain incompletely understood. In addition to direct effects on cardiac myocytes NRG-1β acts on the vasculature, interstitium, cardiac fibroblasts, and hematopoietic and immune cells, which, collectively, may contribute to NRG-1β's role in maintaining cardiac structure and function, as well as mediating reverse remodeling.
Collapse
|
31
|
Vidaurre OG, Haines JD, Katz Sand I, Adula KP, Huynh JL, McGraw CA, Zhang F, Varghese M, Sotirchos E, Bhargava P, Bandaru VVR, Pasinetti G, Zhang W, Inglese M, Calabresi PA, Wu G, Miller AE, Haughey NJ, Lublin FD, Casaccia P. Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics. Brain 2014; 137:2271-86. [PMID: 24893707 PMCID: PMC4164163 DOI: 10.1093/brain/awu139] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/20/2014] [Accepted: 04/06/2014] [Indexed: 11/14/2022] Open
Abstract
Axonal damage is a prominent cause of disability and yet its pathogenesis is incompletely understood. Using a xenogeneic system, here we define the bioenergetic changes induced in rat neurons by exposure to cerebrospinal fluid samples from patients with multiple sclerosis compared to control subjects. A first discovery cohort of cerebrospinal fluid from 13 patients with multiple sclerosis and 10 control subjects showed that acute exposure to cerebrospinal fluid from patients with multiple sclerosis induced oxidative stress and decreased expression of neuroprotective genes, while increasing expression of genes involved in lipid signalling and in the response to oxidative stress. Protracted exposure of neurons to stress led to neurotoxicity and bioenergetics failure after cerebrospinal fluid exposure and positively correlated with the levels of neurofilament light chain. These findings were validated using a second independent cohort of cerebrospinal fluid samples (eight patients with multiple sclerosis and eight control subjects), collected at a different centre. The toxic effect of cerebrospinal fluid on neurons was not attributable to differences in IgG content, glucose, lactate or glutamate levels or differences in cytokine levels. A lipidomic profiling approach led to the identification of increased levels of ceramide C16:0 and C24:0 in the cerebrospinal fluid from patients with multiple sclerosis. Exposure of cultured neurons to micelles composed of these ceramide species was sufficient to recapitulate the bioenergetic dysfunction and oxidative damage induced by exposure to cerebrospinal fluid from patients with multiple sclerosis. Therefore, our data suggest that C16:0 and C24:0 ceramides are enriched in the cerebrospinal fluid of patients with multiple sclerosis and are sufficient to induce neuronal mitochondrial dysfunction and axonal damage.
Collapse
Affiliation(s)
- Oscar G Vidaurre
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffery D Haines
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilana Katz Sand
- 2 Corinne Goldsmith Dickinson Centre for MS, Mount Sinai Medical Centre, New York, NY 10029, USA
| | - Kadidia P Adula
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jimmy L Huynh
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corey A McGraw
- 3 Department of Neurology, Albert Einstein College of Medicine, Montefiore Medical Centre, Bronx, NY, USA
| | - Fan Zhang
- 4 Bioinformatics Department, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merina Varghese
- 5 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elias Sotirchos
- 6 Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Pavan Bhargava
- 6 Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Giulio Pasinetti
- 5 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- 4 Bioinformatics Department, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matilde Inglese
- 7 Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter A Calabresi
- 6 Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gang Wu
- 8 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron E Miller
- 2 Corinne Goldsmith Dickinson Centre for MS, Mount Sinai Medical Centre, New York, NY 10029, USA
| | - Norman J Haughey
- 6 Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Fred D Lublin
- 2 Corinne Goldsmith Dickinson Centre for MS, Mount Sinai Medical Centre, New York, NY 10029, USA
| | - Patrizia Casaccia
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
O'Leary C, Desbonnet L, Clarke N, Petit E, Tighe O, Lai D, Harvey R, Waddington JL, O'Tuathaigh C. Phenotypic effects of maternal immune activation and early postnatal milieu in mice mutant for the schizophrenia risk gene neuregulin-1. Neuroscience 2014; 277:294-305. [PMID: 24969132 DOI: 10.1016/j.neuroscience.2014.06.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/11/2014] [Accepted: 06/15/2014] [Indexed: 01/21/2023]
Abstract
Risk of schizophrenia is likely to involve gene × environment (G × E) interactions. Neuregulin 1 (NRG1) is a schizophrenia risk gene, hence any interaction with environmental adversity, such as maternal infection, may provide further insights into the basis of the disease. This study examined the individual and combined effects of prenatal immune activation with polyriboinosinic-polyribocytidilic acid (Poly I:C) and disruption of the schizophrenia risk gene NRG1 on the expression of behavioral phenotypes related to schizophrenia. NRG1 heterozygous (NRG1 HET) mutant breeding pairs were time-mated. Pregnant dams received a single injection (5mg/kg i.p.) of Poly I:C or vehicle on gestation day 9 (GD9). Offspring were then cross-fostered to vehicle-treated or Poly I:C-treated dams. Expression of schizophrenia-related behavioral endophenotypes was assessed at adolescence and in adulthood. Combining NRG1 disruption and prenatal environmental insult (Poly I:C) caused developmental stage-specific deficits in social behavior, spatial working memory and prepulse inhibition (PPI). However, combining Poly I:C and cross-fostering produced a number of behavioral deficits in the open field, social behavior and PPI. This became more complex by combining NRG1 deletion with both Poly I:C exposure and cross-fostering, which had a robust effect on PPI. These findings suggest that concepts of G × E interaction in risk of schizophrenia should be elaborated to multiple interactions that involve individual genes interacting with diverse biological and psychosocial environmental factors over early life, to differentially influence particular domains of psychopathology, sometimes over specific stages of development.
Collapse
Affiliation(s)
- C O'Leary
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - L Desbonnet
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - N Clarke
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - E Petit
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - O Tighe
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - D Lai
- Victor Chang Cardiac Research Institute, University of New South Wales, Darlinghurst, Australia
| | - R Harvey
- Victor Chang Cardiac Research Institute, University of New South Wales, Darlinghurst, Australia
| | - J L Waddington
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - C O'Tuathaigh
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland.
| |
Collapse
|
33
|
Wu L, Walas S, Leung W, Sykes DB, Wu J, Lo EH, Lok J. Neuregulin1-β decreases IL-1β-induced neutrophil adhesion to human brain microvascular endothelial cells. Transl Stroke Res 2014; 6:116-24. [PMID: 24863743 DOI: 10.1007/s12975-014-0347-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 12/28/2022]
Abstract
Neuroinflammation contributes to the pathophysiology of diverse diseases including stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, and multiple sclerosis, resulting in neurodegeneration and loss of neurological function. The response of the microvascular endothelium often contributes to neuroinflammation. One such response is the upregulation of endothelial adhesion molecules which facilitate neutrophil adhesion to the endothelium and their migration from blood to tissue. Neuregulin-1 (NRG1) is an endogenous growth factor which has been reported to have anti-inflammatory effects in experimental stroke models. We hypothesized that NRG1 would decrease the endothelial response to inflammation and result in a decrease in neutrophil adhesion to endothelial cells. We tested this hypothesis in an in vitro model of cytokine-induced endothelial injury, in which human brain microvascular endothelial cells (BMECs) were treated with IL-1β, along with co-incubation with vehicle or NRG1-β. Outcome measures included protein levels of endothelial ICAM-1, VCAM-1, and E-selectin, as well as the number of neutrophils that adhere to the endothelial monolayer. Our data show that NRG1-β decreased the levels of VCAM-1, E-selectin, and neutrophil adhesion to brain microvascular endothelial cells activated by IL1-β. These findings open new possibilities for investigating NRG1 in neuroprotective strategies in brain injury.
Collapse
Affiliation(s)
- Limin Wu
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Im J, Lee T, Jeon JH, Baik JE, Kim KW, Kang SS, Yun CH, Kim H, Han SH. Gene expression profiling of bovine mammary gland epithelial cells stimulated with lipoteichoic acid plus peptidoglycan from Staphylococcus aureus. Int Immunopharmacol 2014; 21:231-40. [PMID: 24836680 DOI: 10.1016/j.intimp.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 12/22/2022]
Abstract
A Gram-positive bacterium, Staphylococcus aureus is known to be one of the major pathogenic bacteria responsible for causing bovine mastitis. Among the various cell wall components of S. aureus, lipoteichoic acid (LTA) and peptidoglycan (PGN) are closely associated with inflammatory responses. However, the role of LTA and PGN derived from S. aureus in bovine mastitis has not been clearly elucidated. In this study, we characterized the gene expression profile of a bovine mammary gland epithelial cell line, MAC-T cells, in the presence of LTA and PGN from S. aureus. LTA plus PGN, but not LTA or PGN alone, activated MAC-T cells. The analysis of transcriptional profiles using an Affymetrix genechip microarray showed that stimulation with LTA plus PGN produced a total of 2019 (fold change >1.2) differentially expressed genes (DEGs), with 801 up-regulated genes and 1218 down-regulated genes. Of the up-regulated genes, 14 inflammatory mediator-related DEGs, 22 intra-cellular signaling molecule-related DEGs, and 15 transcription factor-related DEGs were observed, whereas among the down-regulated DEGs 17 inflammation-related DEGs were found. The microarray results were confirmed using real-time RT-PCR of 18 genes with substantial changes in expression (9 each from the up-regulated and down-regulated DEGs). These results provide a comprehensive analysis of gene-expression profiles elicited by S. aureus LTA and PGN in MAC-T cells, contributing to an understanding of the pathogenesis for S. aureus-induced bovine mastitis.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Taeheon Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jun Ho Jeon
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korean National Institute of Health, Cheongwon-gun, Chungbuk 363-951, Republic of Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Kyoung Whun Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seok-Seong Kang
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|
35
|
Marballi KK, McCullumsmith RE, Yates S, Escamilla MA, Leach RJ, Raventos H, Walss-Bass C. Global signaling effects of a schizophrenia-associated missense mutation in neuregulin 1: an exploratory study using whole genome and novel kinome approaches. J Neural Transm (Vienna) 2014; 121:479-90. [PMID: 24380930 PMCID: PMC3999257 DOI: 10.1007/s00702-013-1142-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Aberrant neuregulin 1-ErbB4 signaling has been implicated in schizophrenia. We previously identified a novel schizophrenia-associated missense mutation (valine to leucine) in the NRG1 transmembrane domain. This variant inhibits formation of the NRG1 intracellular domain (ICD) and causes decreases in dendrite formation. To assess the global effects of this mutation, we used lymphoblastoid cell lines from unaffected heterozygous carriers (Val/Leu) and non-carriers (Val/Val). Transcriptome data showed 367 genes differentially expressed between the two groups (Val/Val N = 6, Val/Leu N = 5, T test, FDR (1 %), α = 0.05, -log10 p value >1.5). Ingenuity pathway (IPA) analyses showed inflammation and NRG1 signaling as the top pathways altered. Within NRG1 signaling, protein kinase C (PKC)-eta (PRKCH) and non-receptor tyrosine kinase (SRC) were down-regulated in heterozygous carriers. Novel kinome profiling (serine/threonine) was performed after stimulating cells (V/V N = 6, V/L N = 6) with ErbB4, to induce release of the NRG1 ICD, and revealed significant effects of treatment on the phosphorylation of 35 peptides. IPA showed neurite outgrowth (six peptides) as the top annotated function. Phosphorylation of these peptides was significantly decreased in ErbB4-treated Val/Val but not in Val/Leu cells. These results show that perturbing NRG1 ICD formation has major effects on cell signaling, including inflammatory and neurite formation pathways, and may contribute significantly to schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Ketan K Marballi
- Department of Cellular and Structural Biology, 7703 Floyd Curl Dr., University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Psychiatry, Neuroscience Program, South Texas Research Facility, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Robert E McCullumsmith
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 576A Birmingham, AL 35294, USA
| | - Stefani Yates
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 576A Birmingham, AL 35294, USA
| | - Michael A Escamilla
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Ave, El Paso, TX 79905
| | - Robin J Leach
- Department of Cellular and Structural Biology, 7703 Floyd Curl Dr., University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | | | - Consuelo Walss-Bass
- Department of Psychiatry, Neuroscience Program, South Texas Research Facility, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
36
|
Anbazhagan K, Duroux-Richard I, Jorgensen C, Apparailly F. Transcriptomic network support distinct roles of classical and non-classical monocytes in human. Int Rev Immunol 2014; 33:470-89. [PMID: 24730730 DOI: 10.3109/08830185.2014.902453] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Classical and non-classical monocytes are two well-defined subsets of monocytes displaying distinct roles. They differentially express numerous genes relevant to their primary role. Using five independent transcriptomic microarray datasets, we ruled out several inconsistent genes and identified common genes consistently overexpressed either in classical or non-classical monocytes. One hundred and eight genes were significantly increased in classical monocytes and are involved in bacterial defense, inflammation and atherosclerosis. Whereas the 74 genes overexpressed in non-classical monocytes are involved in cytoskeletal dynamics and invasive properties for enhanced motility and infiltration. These signatures unravel the biological functions of monocyte subsets. HIGHLIGHTS We compared five transcriptomic GEO datasets of human monocyte subsets. 108 genes in classical and 74 genes in non-classical monocytes are upregulated. Upregulated genes in classical monocytes support anti-bacterial and inflammatory responses. Upregulated genes in non-classical monocytes support patrolling and infiltration functions.
Collapse
|
37
|
Na KS, Jung HY, Kim YK. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:277-86. [PMID: 23123365 DOI: 10.1016/j.pnpbp.2012.10.022] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/11/2012] [Accepted: 10/26/2012] [Indexed: 12/22/2022]
Abstract
Schizophrenia is a serious mental illness with chronic symptoms and significant impairment in psychosocial functioning. Although novel antipsychotics have been developed, the negative and cognitive symptoms of schizophrenia are still unresponsive to pharmacotherapy. The high level of social impairment and a chronic deteriorating course suggest that schizophrenia likely has neurodegenerative characteristics. Inflammatory markers such as pro-inflammatory cytokines are well-known etiological factors for psychiatric disorders, including schizophrenia. Inflammation in the central nervous system is closely related to neurodegeneration. In addition to pro-inflammatory cytokines, microglia also play an important role in the inflammatory process in the CNS. Uncontrolled activity of pro-inflammatory cytokines and microglia can induce schizophrenia in tandem with genetic vulnerability and glutamatergic neurotransmitters. Several studies have investigated the possible effects of antipsychotics on inflammation and neurogenesis. Additionally, anti-inflammatory adjuvant therapy has been under investigation as a treatment option for schizophrenia. Further studies should consider the confounding effects of systemic factors such as metabolic syndrome and smoking. In addition, the unique mechanisms by which pro-inflammatory cytokines are involved in the etiopathology of schizophrenia should be investigated. In this article, we aimed to review (1) major findings regarding neuroinflammation and pro-inflammatory cytokine alterations in schizophrenia, (2) interactions between neuroinflammation and neurogenesis as possible neural substrates for schizophrenia, and (3) novel pharmacological approaches.
Collapse
Affiliation(s)
- Kyoung-Sae Na
- Department of Psychiatry, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | | | | |
Collapse
|
38
|
McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH. Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 2014; 39:65-87. [PMID: 24091486 PMCID: PMC3857666 DOI: 10.1038/npp.2013.239] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 02/08/2023]
Abstract
We propose that postmortem tissue is an underutilized substrate that may be used to translate genetic and/or preclinical studies, particularly for neuropsychiatric illnesses with complex etiologies. Postmortem brain tissues from subjects with schizophrenia have been extensively studied, and thus serve as a useful vehicle for illustrating the challenges associated with this biological substrate. Schizophrenia is likely caused by a combination of genetic risk and environmental factors that combine to create a disease phenotype that is typically not apparent until late adolescence. The complexity of this illness creates challenges for hypothesis testing aimed at understanding the pathophysiology of the illness, as postmortem brain tissues collected from individuals with schizophrenia reflect neuroplastic changes from a lifetime of severe mental illness, as well as treatment with antipsychotic medications. While there are significant challenges with studying postmortem brain, such as the postmortem interval, it confers a translational element that is difficult to recapitulate in animal models. On the other hand, data derived from animal models typically provide specific mechanistic and behavioral measures that cannot be generated using human subjects. Convergence of these two approaches has led to important insights for understanding molecular deficits and their causes in this illness. In this review, we discuss the problem of schizophrenia, review the common challenges related to postmortem studies, discuss the application of biochemical approaches to this substrate, and present examples of postmortem schizophrenia studies that illustrate the role of the postmortem approach for generating important new leads for understanding the pathophysiology of severe mental illness.
Collapse
Affiliation(s)
| | - John H Hammond
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Dan Shan
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama-Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Jenkins TA. Perinatal complications and schizophrenia: involvement of the immune system. Front Neurosci 2013; 7:110. [PMID: 23805069 PMCID: PMC3691516 DOI: 10.3389/fnins.2013.00110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/01/2013] [Indexed: 11/13/2022] Open
Abstract
The neurodevelopmental hypothesis of schizophrenia suggests that, at least in part, events occurring within the intrauterine or perinatal environment at critical times of brain development underlies emergence of the psychosis observed during adulthood, and brain pathologies that are hypothesized to be from birth. All potential risks stimulate activation of the immune system, and are suggested to act in parallel with an underlying genetic liability, such that an imperfect regulation of the genome mediates these prenatal or early postnatal environmental effects. Epidemiologically based animal models looking at environment and with genes have provided us with a wealth of knowledge in the understanding of the pathophysiology of schizophrenia, and give us the best possibility for interventions and treatments for schizophrenia.
Collapse
Affiliation(s)
- Trisha A Jenkins
- School of Medical Sciences, Health Innovations Research Institute, RMIT University Bundoora, VIC, Australia
| |
Collapse
|
40
|
Gene expression profiling and association studies implicate the neuregulin signaling pathway in Behçet's disease susceptibility. J Mol Med (Berl) 2013; 91:1013-23. [PMID: 23625463 DOI: 10.1007/s00109-013-1022-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/01/2013] [Accepted: 03/07/2013] [Indexed: 10/26/2022]
Abstract
Behçet's disease (BD) is a complex disease with genetic and environmental risk factors implicated in its etiology; however, its pathophysiology is poorly understood. To decipher BD's genetic underpinnings, we combined gene expression profiling with pathway analysis and association studies. We compared the gene expression profiles in peripheral blood mononuclear cells (PBMCs) of 15 patients and 14 matched controls using Affymetrix microarrays and found that the neuregulin signaling pathway was over-represented among the differentially expressed genes. The Epiregulin (EREG), Amphiregulin (AREG), and Neuregulin-1 (NRG1) genes of this pathway stand out as they are also among the top differentially expressed genes. Twelve haplotype tagging SNPs at the EREG-AREG locus and 15 SNPs in NRG1 found associated in at least one published BD genome-wide association study were tested for association with BD in a dataset of 976 Iranian patients and 839 controls. We found a novel association with BD for the rs6845297 SNP located downstream of EREG, and replicated three associations at NRG1 (rs4489285, rs383632, and rs1462891). Multifactor dimensionality reduction analysis indicated the existence of epistatic interactions between EREG and NRG1 variants. EREG-AREG and NRG1, which are members of the epidermal growth factor (EGF) family, seem to modulate BD susceptibility through main effects and gene-gene interactions. These association findings support a role for the EGF/ErbB signaling pathway in BD pathogenesis that warrants further investigation and highlight the importance of combining genetic and genomic approaches to dissect the genetic architecture of complex diseases.
Collapse
|
41
|
Prenatal inflammation and neurodevelopment in schizophrenia: a review of human studies. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:92-100. [PMID: 22510462 DOI: 10.1016/j.pnpbp.2012.03.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 11/23/2022]
Abstract
A confluence of evidence supports an association between prenatal inflammation and risk of schizophrenia. Outside of studies of prenatal infections and risk of schizophrenia, other relevant human studies of prenatal inflammation and neurodevelopment in schizophrenia have not been reviewed. In this paper, we review human studies of 1) prenatal inflammation and risk of schizophrenia, 2) inflammation as a potential common mediator of several prenatal risk factors for schizophrenia other than prenatal infections, 3) prenatal inflammation and immune function, neurocognition, brain morphology, and gene expression in adult offspring with schizophrenia, and 4) gene by environment and gene by gene interactions relevant to these associations. We suggest future areas for human studies research based on existing findings.
Collapse
|
42
|
Spencer JR, Darbyshire KME, Boucher AA, Kashem MA, Long LE, McGregor IS, Karl T, Arnold JC. Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence: a hippocampal proteomic study in mice. Front Cell Neurosci 2013; 7:15. [PMID: 23447498 PMCID: PMC3581856 DOI: 10.3389/fncel.2013.00015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/06/2013] [Indexed: 02/01/2023] Open
Abstract
Neuregulin 1 (NRG1) is linked to an increased risk of developing schizophrenia and cannabis dependence. Mice that are hypomorphic for Nrg1 (Nrg1 HET mice) display schizophrenia-relevant behavioral phenotypes and aberrant expression of serotonin and glutamate receptors. Nrg1 HET mice also display idiosyncratic responses to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (THC). To gain traction on the molecular pathways disrupted by Nrg1 hypomorphism and Nrg1-cannabinoid interactions we conducted a proteomic study. Adolescent wildtype (WT) and Nrg1 HET mice were exposed to repeated injections of vehicle or THC and their hippocampi were submitted to 2D gel proteomics. Comparison of WT and Nrg1 HET mice identified proteins linked to molecular changes in schizophrenia that have not been previously associated with Nrg1. These proteins are involved in vesicular release of neurotransmitters such as SNARE proteins; enzymes impacting serotonergic neurotransmission, and proteins affecting growth factor expression. Nrg1 HET mice treated with THC expressed a distinct protein expression signature compared to WT mice. Replicating prior findings, THC caused proteomic changes in WT mice suggestive of greater oxidative stress and neurodegeneration. We have previously observed that THC selectively increased hippocampal NMDA receptor binding of adolescent Nrg1 HET mice. Here we observed outcomes consistent with heightened NMDA-mediated glutamatergic neurotransmission. This included differential expression of proteins involved in NMDA receptor trafficking to the synaptic membrane; lipid raft stabilization of synaptic NMDA receptors; and homeostatic responses to dampen excitotoxicity. These findings uncover novel proteins altered in response to Nrg1 hypomorphism and Nrg1-cannabinoid interactions that improves our molecular understanding of Nrg1 signaling and Nrg1-mediated genetic vulnerability to the neurobehavioral effects of cannabinoids.
Collapse
Affiliation(s)
- Jarrah R Spencer
- Discipline of Pharmacology, University of Sydney Sydney, NSW, Australia ; Brain and Mind Research Institute, University of Sydney Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Benros ME, Mortensen PB, Eaton WW. Autoimmune diseases and infections as risk factors for schizophrenia. Ann N Y Acad Sci 2012; 1262:56-66. [PMID: 22823436 DOI: 10.1111/j.1749-6632.2012.06638.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunological hypotheses have become increasingly prominent when studying the etiology of schizophrenia. Autoimmune diseases, and especially the number of infections requiring hospitalization, have been identified as significant risk factors for schizophrenia in a dose-response relationship, which seem compatible with an immunological hypothesis for subgroups of patients with schizophrenia. Inflammation and infections may affect the brain through many different pathways that are not necessarily mutually exclusive and can possibly increase the risk of schizophrenia in vulnerable individuals. However, the findings could also be an epiphenomenon and not causal, due to, for instance, common genetic vulnerability, which could be supported by the observations of an increased prevalence of autoimmune diseases and infections in parents of patients with schizophrenia. Nevertheless, autoimmune diseases and infections should be considered in the treatment of individuals with schizophrenia symptoms, and further research is needed of the immune system's possible contributing pathogenic factors in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Michael E Benros
- National Center for Register-based Research, Aarhus University, Aarhus, Denmark.
| | | | | |
Collapse
|
44
|
Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: a putative model of gene × environment interaction. Brain Behav Immun 2012; 26:660-71. [PMID: 22426432 DOI: 10.1016/j.bbi.2012.02.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/20/2012] [Accepted: 02/29/2012] [Indexed: 12/13/2022] Open
Abstract
There is a paucity of animal models by which the contributions of environmental and genetic factors to the pathobiology of psychosis can be investigated. This study examined the individual and combined effects of chronic social stress during adolescence and deletion of the schizophrenia risk gene neuregulin-1 (NRG1) on adult mouse phenotype. Mice were exposed to repeated social defeat stress during adolescence and assessed for exploratory behaviour, working memory, sucrose preference, social behaviour and prepulse inhibition in adulthood. Thereafter, in vitro cytokine responses to mitogen stimulation and corticosterone inhibition were assayed in spleen cells, with measurement of cytokine and brain-derived neurotrophic factor (BDNF) mRNA in frontal cortex, hippocampus and striatum. NRG1 mutants exhibited hyperactivity, decreased anxiety, impaired sensorimotor gating and reduced preference for social novelty. The effects of stress on exploratory/anxiety-related parameters, spatial working memory, sucrose preference and basal cytokine levels were modified by NRG1 deletion. Stress also exerted varied effect on spleen cytokine response to concanavalin A and brain cytokine and BDNF mRNA expression in NRG1 mutants. The experience of psychosocial stress during adolescence may trigger further pathobiological features that contribute to the development of schizophrenia, particularly in those with underlying NRG1 gene abnormalities. This model elaborates the importance of gene × environment interactions in the etiology of schizophrenia.
Collapse
|
45
|
Abstract
Abstract
Collapse
|
46
|
Reduced ErbB4 Expression in Immune Cells of Patients with Relapsing Remitting Multiple Sclerosis. Mult Scler Int 2011; 2011:561262. [PMID: 22096639 PMCID: PMC3197252 DOI: 10.1155/2011/561262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/25/2022] Open
Abstract
Background. There is an insufficient remyelination in the lesions of multiple sclerosis (MS). One of the factor that was found to promote remyelination is neuregulin-1 which is the ligand of ErbB4. Immune cells have been implicated in neurogenesis and oligodendrogenesis. Aims. We studied the expression of ErbB4 in the immune cells of patients with relapsing remitting (RR) multiple sclerosis (MS) and healthy controls. Methods. ErB4 expression in immune cells was studied by flow cytometry without stimulation or with stimulation with anti-CD3 and anti-CD28 monoclonal antibodies or in the presence of interferon-g or TNF-α as well as by immunoprecipitation and Western blot, and its mRNA was studied by real-time PCR. Results. We found reduced levels of ErbB4 in the total PBMCs and in T cells, monocytes, and B cells of RR MS patients. Similarly, the ErbB4 RNA levels were reduced in the immune cells of patients with RR-MS. Stimulation via CD3 and CD28 significantly upregulated the expression of ErbB4 on immune cells healthy individuals. This effect was weaker in the patients group. Conclusion. ErbB4 may play a role in the proliferation of oligodendrocyte progenitor cells, differentiation of oligodendrocytes, and remyelination, and, therefore, the reduced ErbB4 expression in immune cells of patients with RR-MS may contribute to insufficient remyelination that occurs in the disease.
Collapse
|
47
|
Moon E, Rollins B, Mesén A, Sequeira A, Myers RM, Akil H, Watson SJ, Barchas J, Jones EG, Schatzberg A, Bunney WE, DeLisi LE, Byerley W, Vawter MP. Lack of association to a NRG1 missense polymorphism in schizophrenia or bipolar disorder in a Costa Rican population. Schizophr Res 2011; 131:52-7. [PMID: 21745728 PMCID: PMC3159824 DOI: 10.1016/j.schres.2011.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 12/30/2022]
Abstract
A missense polymorphism in the NRG1 gene, Val>Leu in exon 11, was reported to increase the risk of schizophrenia in selected families from the Central Valley region of Costa Rica (CVCR). The present study investigated the relationship between three NRG1 genetic variants, rs6994992, rs3924999, and Val>Leu missense polymorphism in exon 11, in cases and selected controls from an isolated population from the CVCR. Isolated populations can have less genetic heterogeneity and increase power to detect risk variants in candidate genes. Subjects with bipolar disorder (BD, n=358), schizophrenia (SZ, n=273), or unrelated controls (CO, n=479) were genotyped for three NRG1 variants. The NRG1 promoter polymorphism (rs6994992) was related to altered expression of NRG1 Type IV in other studies. The expression of NRG1 type IV in the dorsolateral prefrontal cortex (DLPFC) and the effect of the rs6994992 genotype on expression were explored in a postmortem cohort of BD, SZ, major depressive disorder (MDD) cases, and controls. The missense polymorphism Val>Leu in exon 11 was not significantly associated with schizophrenia as previously reported in a family sample from this population, the minor allele frequency is 4%, thus our sample size is not large enough to detect an association. We observed however an association of rs6994992 with NRG1 type IV expression in DLPFC and a significantly decreased expression in MDD compared to controls. The present results while negative do not rule out a genetic association of these SNPs with BD and SZ in CVCR, perhaps due to small risk effects that we were unable to detect and potential intergenic epistasis. The previous genetic relationship between expression of a putative brain-specific isoform of NRG1 type IV and SNP variation was replicated in postmortem samples in our preliminary study.
Collapse
Affiliation(s)
- Emily Moon
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| | - Brandi Rollins
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| | - Andrea Mesén
- ACENP of Costa Rica, Center of Neuropsychiatric Studies of Costa Rica, San José, Costa Rica
| | - Adolfo Sequeira
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jack Barchas
- Department of Psychiatry, Cornell University, New York, NY, USA
| | - Edward G. Jones
- Neuroscience Center, University of California, Davis, CA, USA
| | - Alan Schatzberg
- Department of Psychiatry, Stanford University, Palo Alto, CA, USA
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| | | | - William Byerley
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Marquis P. Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|