1
|
Masmoudi D, Villalba M, Alix-Panabières C. Natural killer cells: the immune frontline against circulating tumor cells. J Exp Clin Cancer Res 2025; 44:118. [PMID: 40211394 PMCID: PMC11983744 DOI: 10.1186/s13046-025-03375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Natural killer (NK) play a key role in controlling tumor dissemination by mediating cytotoxicity towards cancer cells without the need of education. These cells are pivotal in eliminating circulating tumor cells (CTCs) from the bloodstream, thus limiting cancer spread and metastasis. However, aggressive CTCs can evade NK cell surveillance, facilitating tumor growth at distant sites. In this review, we first discuss the biology of NK cells, focusing on their functions within the tumor microenvironment (TME), the lymphatic system, and circulation. We then examine the immune evasion mechanisms employed by cancer cells to inhibit NK cell activity, including the upregulation of inhibitory receptors. Finally, we explore the clinical implications of monitoring circulating biomarkers, such as NK cells and CTCs, for therapeutic decision-making and emphasize the need to enhance NK cell-based therapies by overcoming immune escape mechanisms.
Collapse
Affiliation(s)
- Doryan Masmoudi
- Laboratory of Rare Circulating Human Cells, University Medical Center of Montpellier, Montpellier, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells, University Medical Center of Montpellier, Montpellier, France.
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, Montpellier, IRD, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- LCCRH, Site Unique de Biologie (SUB), 641, Avenue du Doyen Gaston Giraud, Montpellier, 34093, France.
| |
Collapse
|
2
|
Li Y, Gu Y, Yang P, Wang Y, Yu X, Li Y, Jin Z, Xu L. CD69 is a Promising Immunotherapy and Prognosis Prediction Target in Cancer. Immunotargets Ther 2024; 13:1-14. [PMID: 38223406 PMCID: PMC10787557 DOI: 10.2147/itt.s439969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
Immunotherapy utilizing T cells that attack tumors is a promising strategy for treatment, but immune suppressive T cell subsets, such as regulatory T cell (Treg), and immune checkpoint molecules, including programmed death-1 (PD-1), can suppress the intensity of a T cell immune reaction and thereby impair tumor clearance. Cluster of differentiation 69 (CD69), known as an early leukocyte activation marker, can be used as a measure or early marker of T cell activation. In recent years, the functions of CD69 in the regulation of Treg/Th17 (T helper cell 17) differentiation and in the tissue retention of T cells have attracted considerable interest. These functions are related to the role of CD69 in immune suppression in tumor environments (TME). In this review, we first summarized current perspectives in the biological function of CD69 and demonstrated that CD69 acts as a regulator of T cell activation, differentiation, retention, and exhaustion. Then, we discussed recent advances in understanding of CD69 deficiency and anti-CD69 antibody administration and shed light on the value of targeting on CD69 for cancer immunotherapy and prognosis prediction.
Collapse
Affiliation(s)
- Yuchen Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yinfeng Gu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Pengyue Yang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yan Wang
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xibao Yu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Zhenyi Jin
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, People’s Republic of China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
3
|
Oura K, Morishita A, Hamaya S, Fujita K, Masaki T. The Roles of Epigenetic Regulation and the Tumor Microenvironment in the Mechanism of Resistance to Systemic Therapy in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:2805. [PMID: 36769116 PMCID: PMC9917861 DOI: 10.3390/ijms24032805] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer and the third most common cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is a major histologic type with a poor prognosis owing to the difficulty in early detection, the chemotherapy resistance, and the high recurrence rate of the disease. Despite recent advancements in HCC prevention and diagnosis, over 50% of patients are diagnosed at Barcelona Clinic Liver Cancer Stage B or C. Systemic therapies are recommended for unresectable HCC (uHCC) with major vascular invasion, extrahepatic metastases, or intrahepatic lesions that have a limited response to transcatheter arterial chemoembolization, but the treatment outcome tends to be unsatisfactory due to acquired drug resistance. Elucidation of the mechanisms underlying the resistance to systemic therapies and the appropriate response strategies to solve this issue will contribute to improved outcomes in the multidisciplinary treatment of uHCC. In this review, we summarize recent findings on the mechanisms of resistance to drugs such as sorafenib, regorafenib, and lenvatinib in molecularly targeted therapy, with a focus on epigenetic regulation and the tumor microenvironment and outline the approaches to improve the therapeutic outcome for patients with advanced HCC.
Collapse
Affiliation(s)
- Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | | | | | | | | |
Collapse
|
4
|
Takasu C, Nishi M, Yoshikawa K, Tokunaga T, Nakao T, Kashihara H, Wada Y, Yoshimoto T, Okikawa S, Yamashita S, Shimada M. Role of IDO expression in patients with locally advanced rectal cancer treated with preoperative chemoradiotherapy. BMC Cancer 2022; 22:1263. [PMID: 36471264 PMCID: PMC9720962 DOI: 10.1186/s12885-022-10357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of the immune system in locally advanced rectal cancer (LARC) following preoperative chemoradiotherapy (CRT) has been widely investigated in recent years. This study examined the prognostic significance of indoleamine-pyrrole 2,3-dioxygenase (IDO) expression in patients with LARC who received preoperative CRT. METHODS Ninety patients with LARC who underwent preoperative CRT and curative resection were enrolled. IDO and programmed death-ligand 1 (PD-L1) expression was evaluated by immunohistochemistry. RESULTS Clinicopathological factors did not significantly differ between patients with positive or negative IDO expression, excluding the correlation of positive IDO expression with better tumor differentiation (p = 0.02). IDO expression was not associated with pathological response (p = 0.44), but it was associated with PD-L1 expression. The 5-year overall survival (OS) rate was significantly worse in the IDO-positive group than in the IDO-negative group (64.8% vs. 85.4%, p = 0.02). Univariate analysis identified IDO and PD-L1 expression (p = 0.02), surgical procedure (p = 0.01), final pathological stage (p = 0.003), lymph node metastasis (p < 0.001), and lymphatic invasion (p = 0.002) as significant prognostic factors for OS. Multivariate analysis revealed that IDO expression (HR: 7.10, p = 0.0006), surgical procedure (HR: 5.03, p = 0.01), lymph node metastasis (HR: 2.37, p = 0.04) and lymphatic invasion (HR: 4.97, p = 0.01) were independent prognostic indicators. Disease-free survival was not correlated with IDO or PD-L1 expression. CONCLUSIONS IDO expression in patients with LARC who received preoperative CRT could be a potential prognostic indicator. IDO expression could be a useful marker for specifying individual treatment strategies in LARC.
Collapse
Affiliation(s)
- Chie Takasu
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Masaaki Nishi
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Kozo Yoshikawa
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Takuya Tokunaga
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Toshihiro Nakao
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Hideya Kashihara
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Yuma Wada
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Toshiaki Yoshimoto
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Shohei Okikawa
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Shoko Yamashita
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Mitsuo Shimada
- grid.267335.60000 0001 1092 3579Department of Surgery, University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| |
Collapse
|
5
|
Guizhen Z, Guanchang J, Liwen L, Huifen W, Zhigang R, Ranran S, Zujiang Y. The tumor microenvironment of hepatocellular carcinoma and its targeting strategy by CAR-T cell immunotherapy. Front Endocrinol (Lausanne) 2022; 13:918869. [PMID: 36093115 PMCID: PMC9452721 DOI: 10.3389/fendo.2022.918869] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, which ranks sixth in cancer incidence and third in mortality. Although great strides have been made in novel therapy for HCC, such as immunotherapy, the prognosis remains less than satisfactory. Increasing evidence demonstrates that the tumor immune microenvironment (TME) exerts a significant role in the evolution of HCC and has a non-negligible impact on the efficacy of HCC treatment. In the past two decades, the success in hematological malignancies made by chimeric antigen receptor-modified T (CAR-T) cell therapy leveraging it holds great promise for cancer treatment. However, in the face of a hostile TME in solid tumors like HCC, the efficacy of CAR-T cells will be greatly compromised. Here, we provide an overview of TME features in HCC, discuss recent advances and challenges of CAR-T immunotherapy in HCC.
Collapse
Affiliation(s)
- Zhang Guizhen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji Guanchang
- Department of Urology People’s Hospital of Puyang, Puyang, China
| | - Liu Liwen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wang Huifen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ren Zhigang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sun Ranran
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zujiang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
6
|
Wozniakova M, Skarda J, Raska M. The Role of Tumor Microenvironment and Immune Response in Colorectal Cancer Development and Prognosis. Pathol Oncol Res 2022; 28:1610502. [PMID: 35936516 PMCID: PMC9350736 DOI: 10.3389/pore.2022.1610502] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The patient’s prognosis largely depends on the tumor stage at diagnosis. The pathological TNM Classification of Malignant Tumors (pTNM) staging of surgically resected cancers represents the main prognostic factor and guidance for decision-making in CRC patients. However, this approach alone is insufficient as a prognostic predictor because clinical outcomes in patients at the same histological tumor stage can still differ. Recently, significant progress in the treatment of CRC has been made due to improvements in both chemotherapy and surgical management. Immunotherapy-based approaches are one of the most rapidly developing areas of tumor therapy. This review summarizes the current knowledge about the tumor microenvironment (TME), immune response and its interactions with CRC development, immunotherapy and prognosis.
Collapse
Affiliation(s)
- Maria Wozniakova
- Institute of Pathology and Molecular Genetics, University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Maria Wozniakova,
| | - Jozef Skarda
- Institute of Pathology and Molecular Genetics, University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
7
|
Jiang Z, Zhu H, Wang P, Que W, Zhong L, Li X, Du F. Different subpopulations of regulatory T cells in human autoimmune disease, transplantation, and tumor immunity. MedComm (Beijing) 2022; 3:e137. [PMID: 35474948 PMCID: PMC9023873 DOI: 10.1002/mco2.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs), a subpopulation of naturally CD4+ T cells that characteristically express transcription factor Forkhead box P3 (FOXP3), play a pivotal role in the maintenance of immune homeostasis and the prevention of autoimmunity. With the development of biological technology, the understanding of plasticity and stability of Tregs has been further developed. Recent studies have suggested that human Tregs are functionally and phenotypically diverse. The functions and mechanisms of different phenotypes of Tregs in different disease settings, such as tumor microenvironment, autoimmune diseases, and transplantation, have gradually become hot spots of immunology research that arouse extensive attention. Among the complex functions, CD4+CD25+FOXP3+ Tregs possess a potent immunosuppressive capacity and can produce various cytokines, such as IL‐2, IL‐10, and TGF‐β, to regulate immune homeostasis. They can alleviate the progression of diseases by resisting inflammatory immune responses, whereas promoting the poor prognosis of diseases by helping cells evade immune surveillance or suppressing effector T cells activity. Therefore, methods for targeting Tregs to regulate their functions in the immune microenvironment, such as depleting them to strengthen tumor immunity or expanding them to treat immunological diseases, need to be developed. Here, we discuss that different subpopulations of Tregs are essential for the development of immunotherapeutic strategies involving Tregs in human diseases.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Haitao Zhu
- Department of Hepatobiliary Surgery The Affiliated Hospital of Guizhou Medical University Guizhou P. R. China
| | - Pusen Wang
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Weitao Que
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Lin Zhong
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
| | - Xiao‐Kang Li
- Department of General Surgery Shanghai General Hospital Shanghai Jiao Tong University School of Medicine Shanghai P. R. China
- Division of Transplantation Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Futian Du
- Department of Hepatobiliary Surgery Weifang People's Hospital Shandong P. R. China
| |
Collapse
|
8
|
Vitale C, Marzagalli M, Scaglione S, Dondero A, Bottino C, Castriconi R. Tumor Microenvironment and Hydrogel-Based 3D Cancer Models for In Vitro Testing Immunotherapies. Cancers (Basel) 2022; 14:1013. [PMID: 35205760 PMCID: PMC8870468 DOI: 10.3390/cancers14041013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, immunotherapy has emerged as a promising novel therapeutic strategy for cancer treatment. In a relevant percentage of patients, however, clinical benefits are lower than expected, pushing researchers to deeply analyze the immune responses against tumors and find more reliable and efficient tools to predict the individual response to therapy. Novel tissue engineering strategies can be adopted to realize in vitro fully humanized matrix-based models, as a compromise between standard two-dimensional (2D) cell cultures and animal tests, which are costly and hardly usable in personalized medicine. In this review, we describe the main mechanisms allowing cancer cells to escape the immune surveillance, which may play a significant role in the failure of immunotherapies. In particular, we discuss the role of the tumor microenvironment (TME) in the establishment of a milieu that greatly favors cancer malignant progression and impact on the interactions with immune cells. Then, we present an overview of the recent in vitro engineered preclinical three-dimensional (3D) models that have been adopted to resemble the interplays between cancer and immune cells and for testing current therapies and immunotherapeutic approaches. Specifically, we focus on 3D hydrogel-based tools based on different types of polymers, discussing the suitability of each of them in reproducing the TME key features based on their intrinsic or tunable characteristics. Finally, we introduce the possibility to combine the 3D models with technological fluid dynamics platforms, reproducing the dynamic complex interactions between tumor cells and immune effectors migrated in situ via the systemic circulation, pointing out the challenges that still have to be overcome for setting more predictive preclinical assays.
Collapse
Affiliation(s)
- Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | | | - Silvia Scaglione
- React4life SRL, 16121 Genova, Italy; (M.M.); (S.S.)
- National Research Council of Italy, Institute of Electronics, Information Engineering and Telecommunications (IEIIT), 16149 Genova, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| | - Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
- IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (C.V.); (A.D.); (R.C.)
| |
Collapse
|
9
|
Rai V, Mukherjee S. Targets of immunotherapy for hepatocellular carcinoma: An update. World J Hepatol 2022; 14:140-157. [PMID: 35126844 PMCID: PMC8790386 DOI: 10.4254/wjh.v14.i1.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma, the most common primary liver cancer, in an immunogenic tumor with a poor prognosis because these tumors are diagnosed at late stages. Although, surgical resection, ablation, liver transplant, and locoregional therapies are available for early stages; however, there are yet no effective treatment for advanced and recurrent tumors. Immune checkpoint inhibitor therapy and adoptive cell transfer therapy has gained the popularity with some positive results because these therapies overcome anergy and systemic immune suppression. However, still there is a lack of an effective treatment and thus there is an unmet need of a novel treatment. At present, the focus of the research is on oncolytic viral therapy and combination therapy where therapies including radiotherapy, immune checkpoint therapy, adoptive cell transfer therapy, and vaccines are combined to get an additive or synergistic effect enhancing the immune response of the liver with a cytotoxic effect on tumor cells. This review discusses the recent key development, the basis of drug resistance, immune evasion, immune tolerance, the available therapies based on stage of the tumor, and the ongoing clinical trials on immune checkpoint inhibitor therapy, adoptive cell transfer therapy, oncolytic viral vaccine therapy, and combination therapy.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Sandeep Mukherjee
- Department of Medicine, Creighton University School of Medicine, Omaha, NE 68124, United States.
| |
Collapse
|
10
|
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2021; 8:631351. [PMID: 33585406 PMCID: PMC7878384 DOI: 10.3389/fchem.2020.631351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.
Collapse
Affiliation(s)
- Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Chemical Engineering, Thadomal Shahani Engineering College, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
11
|
Sarkar T, Dhar S, Sa G. Tumor-infiltrating T-regulatory cells adapt to altered metabolism to promote tumor-immune escape. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:132-141. [PMID: 35492399 PMCID: PMC9040151 DOI: 10.1016/j.crimmu.2021.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/16/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor mass and its microenvironment alter host immune system in various ways to promote tumor growth. One of the modifications is evasion of immune surveillance by augmenting the number of Tregs in tumor vicinity. Elevated levels of Tregs are seen in peripheral circulation and tumor tissue of cancer patients. Cancer cells release several chemokines to attract Tregs in tumor-site. Infiltration of Tregs has clinical significance because being immunosuppressive infiltrating Tregs suppress other immune cells making the tumor microenvironment favorable for tumor growth. On the other hand, infiltrating Tregs show metabolic alteration in tumor microenvironment which allows their selective survival over the others. Persistence of Tregs in the tumor microenvironment and subsequent immunosuppression makes Tregs a potential therapeutic obstacle and the reason behind the failure of immunotherapy. In this review, we emphasize the recent development in the metabolic adaptation of tumor-infiltrating Tregs and the therapeutic approaches to boost immunity against cancer.
Collapse
|
12
|
Hepatocellular carcinoma immunotherapy: The impact of epigenetic drugs and the gut microbiome. LIVER RESEARCH 2020; 4:191-198. [PMID: 33343967 PMCID: PMC7746137 DOI: 10.1016/j.livres.2020.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) has been increasing for decades. This disease has now risen to become the sixth most common malignancy overall, while ranking as the third most frequent cause of cancer mortality. While several surgical interventions and loco-regional treatment options are available, up to 80% of patients present with advanced disease not amenable to standard therapies. Indeed, traditional cytotoxic chemotherapeutic agents are notoriously ineffective and essentially play no role in the management of affected patients. This has led to an enormous need for more effective systemic therapeutic options. In recent years, immunotherapy has emerged as a potentially viable and exciting new alternative for the treatment of HCC. Although the current immunotherapeutic options remain imperfect, various strategies can be employed to further improve their efficacy. New findings have revealed epigenetic modulation can be effective as a new approach for improving HCC immunotherapy. Studying the gut microbiome (gut-liver axis) can also be an interesting subject in this regard. Here, we explore the latest insights into the role of immunotherapy treatmenting HCC, both mono and in combination with other agents. We also focus on the impact of epigenetic drugs and the microbiome in the overall effectiveness of HCC immunotherapy.
Collapse
|
13
|
Takasu C, Nishi M, Yoshikawa K, Tokunaga T, Kashihara H, Yoshimoto T, Shimada M. Impact of sidedness of colorectal cancer on tumor immunity. PLoS One 2020; 15:e0240408. [PMID: 33045001 PMCID: PMC7549786 DOI: 10.1371/journal.pone.0240408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Clinical and molecular characteristics differ between right-sided and left-sided colorectal cancer (CRC). This study aimed to clarify the correlation between CRC sidedness and tumor immunity. Methods A total of 102 patients who underwent curative colectomy for stage II/III CRC were included in this study. The expression of programmed cell death (PD)-1, PD1-ligand 1 (PD-L1), forkhead box P3 (Foxp3), transforming growth factor (TGF)-β, and indoleamine-pyrrole 2,3-dioxygenase (IDO) were examined using immunohistochemistry and the relationships between sidedness and several prognostic factors were examined. Results Clinicopathological factors were not significantly different between right- and left-sided CRC. The tumor immunity-related molecule PD-L1 was more highly expressed in right-sided than in left-sided CRC (62.9% vs. 30.6%, p<0.01). No significant difference was found in overall survival (OS) and disease-free survival (DFS) by sidedness. PD-1 and Foxp3 expression were significant prognostic factors for OS. Lymph node metastasis (N), lymphatic invasion (ly), and PD-L1 expression were significant prognostic factors for DFS. In right-sided CRC, IDO-positive patients had a poor OS (p<0.05), and IDO was the only independent prognostic indicator for OS. N and venous invasion were identified as independent prognostic indicators for DFS. In left-sided CRC, univariate analysis identified PD-1, PD-L1, and Foxp3 expression as significant predictors of poor OS. Multivariate analysis confirmed PD-L1 expression as an independent prognostic indicator. N, ly, and PD-L1 expression levels were identified as significant predictors of poor DFS. Conclusions The prognostic factors were IDO in right-sided CRC and PD-L1 and Foxp3 in left-sided CRC. These findings indicated that tumor immunity might play different roles depending upon sidedness. Tumor location may be an important factor to consider when assessing immune response and therapeutic decisions in CRC patients.
Collapse
Affiliation(s)
- Chie Takasu
- Department of Surgery, The University of Tokushima, Tokushima, Japan
- * E-mail:
| | - Masaaki Nishi
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Kozo Yoshikawa
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | - Hideya Kashihara
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| | | | - Mitsuo Shimada
- Department of Surgery, The University of Tokushima, Tokushima, Japan
| |
Collapse
|
14
|
Zadka Ł, Grybowski DJ, Dzięgiel P. Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43:539-575. [PMID: 32488850 PMCID: PMC7363737 DOI: 10.1007/s13402-020-00519-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor initiation and subsequent progression are usually long-term processes, spread over time and conditioned by diverse aspects. Many cancers develop on the basis of chronic inflammation; however, despite dozens of years of research, little is known about the factors triggering neoplastic transformation under these conditions. Molecular characterization of both pathogenetic states, i.e., similarities and differences between chronic inflammation and cancer, is also poorly defined. The secretory activity of tumor cells may change the immunophenotype of immune cells and modify the extracellular microenvironment, which allows the bypass of host defense mechanisms and seems to have diagnostic and prognostic value. The phenomenon of immunosuppression is also present during chronic inflammation, and the development of cancer, due to its duration, predisposes patients to the promotion of chronic inflammation. The aim of our work was to discuss the above issues based on the latest scientific insights. A theoretical mechanism of cancer immunosuppression is also proposed. CONCLUSIONS Development of solid tumors may occur both during acute and chronic phases of inflammation. Differences in the regulation of immune responses between precancerous states and the cancers resulting from them emphasize the importance of immunosuppressive factors in oncogenesis. Cancer cells may, through their secretory activity and extracellular transport mechanisms, enhance deterioration of the immune system which, in turn, may have prognostic implications.
Collapse
Affiliation(s)
- Łukasz Zadka
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Damian J Grybowski
- Orthopedic Surgery, University of Illinois, 900 S. Ashland Avenue (MC944) Room 3356, Molecular Biology Research Building Chicago, Chicago, IL, 60607, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, ul. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| |
Collapse
|
15
|
Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. Int J Mol Sci 2020; 21:ijms21114030. [PMID: 32512898 PMCID: PMC7312891 DOI: 10.3390/ijms21114030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the relatively short history of anti-tumor treatment, numerous medications have been developed against a variety of targets. Intriguingly, although many anti-tumor strategies have failed in their clinical trials, metformin, an anti-diabetic medication, demonstrated anti-tumor effects in observational studies and even showed its synergistic potential with immune checkpoint inhibitors (ICIs) in subsequent clinical studies. Looking back from bedside-to-bench, it may not be surprising that the anti-tumor effect of metformin derives largely from its ability to rewire aberrant metabolic pathways within the tumor microenvironment. As one of the most promising breakthroughs in oncology, ICIs were also found to exert their immune-stimulatory effects at least partly via rewiring metabolic pathways. These findings underscore the importance of correcting metabolic pathways to achieve sufficient anti-tumor immunity. Herein, we start by introducing the tumor microenvironment, and then we review the implications of metabolic syndrome and treatments for targeting metabolic pathways in anti-tumor therapies. We further summarize the close associations of certain aberrant metabolic pathways with impaired anti-tumor immunity and introduce the therapeutic effects of targeting these routes. Lastly, we go through the metabolic effects of ICIs and conclude an overall direction to manipulate metabolic pathways in favor of anti-tumor responses.
Collapse
|
16
|
Hope JL, Spantidea PI, Kiernan CH, Stairiker CJ, Rijsbergen LC, van Meurs M, Brouwers-Haspels I, Mueller YM, Nelson DJ, Bradley LM, Aerts JGJV, Katsikis PD. Microenvironment-Dependent Gradient of CTL Exhaustion in the AE17sOVA Murine Mesothelioma Tumor Model. Front Immunol 2020; 10:3074. [PMID: 31998326 PMCID: PMC6968785 DOI: 10.3389/fimmu.2019.03074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023] Open
Abstract
The immune system, and in particular, cytotoxic CD8+ T cells (CTLs), plays a vital part in the prevention and elimination of tumors. In many patients, however, CTL-mediated tumor killing ultimately fails in the clearance of cancer cells resulting in disease progression, in large part due to the progression of effector CTL into exhausted CTL. While there have been major breakthroughs in the development of CTL-mediated “reinvigoration”-driven immunotherapies such as checkpoint blockade therapy, there remains a need to better understand the drivers behind the development of T cell exhaustion. Our study highlights the unique differences in T cell exhaustion development in tumor-specific CTL which arises over time in a mouse model of mesothelioma. Importantly, we also show that peripheral tumor-specific T cells have a unique expression profile compared to exhausted tumor-infiltrating CTL at a late-stage of tumor progression in mice. Together, these data suggest that greater emphasis should be placed on understanding contributions of individual microenvironments in the development of T cell exhaustion.
Collapse
Affiliation(s)
- Jennifer L Hope
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Cancer Immunology and Tumor Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Panagiota I Spantidea
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Laurine C Rijsbergen
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marjan van Meurs
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Delia J Nelson
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Linda M Bradley
- Cancer Immunology and Tumor Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
Johnston MP, Khakoo SI. Immunotherapy for hepatocellular carcinoma: Current and future. World J Gastroenterol 2019; 25:2977-2989. [PMID: 31293335 PMCID: PMC6603808 DOI: 10.3748/wjg.v25.i24.2977] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) arises on the background of chronic liver disease. Despite the development of effective anti-viral therapeutics HCC is continuing to rise, in part driven by the epidemic of non-alcoholic fatty liver disease. Many patients present with advanced disease out with the criteria for transplant, resection or even locoregional therapy. Currently available therapeutics for HCC are effective in a small minority of individuals. However, there has been a major global interest in immunotherapies for cancer and although HCC has lagged behind other cancers, great opportunities now exist for treating HCC with newer and more sophisticated agents. Whilst checkpoint inhibitors are at the forefront of this revolution, other therapeutics such as inhibitory cytokine blockade, oncolytic viruses, adoptive cellular therapies and vaccines are emerging. Broadly these may be categorized as either boosting existing immune response or stimulating de novo immune response. Although some of these agents have shown promising results as monotherapy in early phase trials it may well be that their future role will be as combination therapy, either in combination with one another or in combination with treatment modalities such as locoregional therapy. Together these agents are likely to generate new and exciting opportunities for treating HCC, which are summarized in this review.
Collapse
Affiliation(s)
- Michael P Johnston
- Department of Hepatology, Southampton General Hospital, University Hospital Southampton, Southampton SO16 6YD, United Kingdom
| | - Salim I Khakoo
- Department of Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
18
|
Liang J, Tian C, Zeng Y, Yang Q, Liu Y, Liu Y, Wu J, Hu Y, Gu F, Zhang K, Wang Y, Zhang Y, Liu L. FOXA1 + regulatory T cells: A novel T cell subset that suppresses antitumor immunity in lung cancer. Biochem Biophys Res Commun 2019; 514:308-315. [PMID: 31036318 DOI: 10.1016/j.bbrc.2019.04.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Regulatory T cells (Tregs) are important in the tumor microenvironment. Many subpopulations of Tregs have participated in suppressing antitumor immunity. Recently, FOXA1+ Tregs were reported as a novel subset of Tregs that control autoimmune diseases. However, their clinical value in lung cancer is unknown. METHODS We included 92 subjects in this study. Peripheral blood samples were collected from 15 lung cancer patients. Another 45 advanced stage lung cancer patients with malignant pleural effusion were enrolled for the analysis of FOXA1+ Tregs in pleural effusions. Lung cancer tissues were collected from 3 patients. In vitro experiments were conducted to ascertain the influence of FOXA1+ Tregs on T cells. Tumor-bearing mice model was utilized to explore the effects of Foxa1+ Treg on tumor growth and the prognoses. RESULTS Our data demonstrated that FOXA1+ Tregs were increased in lung cancer. Moreover, patients with more FOXA1+ Tregs showed more liver metastases and poorer treatment responses. In vitro assays revealed that FOXA1+ Tregs inhibited the proliferation of T cells, the production of IFN-γ and IL-2 by T cells. FOXA1+ Tregs promoted tumor growth and indicated poor prognosis in the mice model of lung cancer. DISCUSSION Collectively, our study is the first to investigate the suppressive function of FOXA1+ Tregs against T cells in lung cancer, and the results showed that FOXA1+ Tregs are markers of poor treatment responses in lung cancer patients. The inhibition of FOXA1+ Tregs represents a promising new strategy to enhance antitumor immunity.
Collapse
Affiliation(s)
- Jinyan Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qifan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yangyang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingjing Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Wang
- Institute of Hydro Biololgy, Chinese Academy of Sciences, Analysis and Testing Center, Wuhan, China
| | - Yong Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Silymarin Restores Regulatory T Cells (Tregs) Function in Multiple Sclerosis (MS) Patients In Vitro. Inflammation 2019; 42:1203-1214. [DOI: 10.1007/s10753-019-00980-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Obeid JM, Kunk PR, Zaydfudim VM, Bullock TN, Slingluff CL, Rahma OE. Immunotherapy for hepatocellular carcinoma patients: is it ready for prime time? Cancer Immunol Immunother 2018; 67:161-174. [PMID: 29052780 PMCID: PMC11028155 DOI: 10.1007/s00262-017-2082-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the second most common cause of cancer death worldwide. Current treatment options for patients with intermediate and advanced HCC are limited, and there is an unmet need for novel therapeutic approaches. HCC is an attractive target for immunomodulation therapy, since it arises in an inflammatory milieu due to hepatitis B and C infections and cirrhosis. However, a major barrier to the development and success of immunotherapy in patients with HCC is the liver's inherent immunosuppressive function. Recent advances in the field of cancer immunology allowed further characterization of immune cell subsets and function, and created new opportunities for therapeutic modulation of the immune system. In this review, we present the different immune cell subsets involved in potential immune modulation of HCC, discuss their function and clinical relevance, review the variety of immune therapeutic agents currently under investigation in clinical trials, and outline future research directions.
Collapse
Affiliation(s)
- Joseph M Obeid
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Paul R Kunk
- Division of Hematology-Oncology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | - Timothy N Bullock
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Osama E Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute Harvard Medical School, 450 Brookline Avenue, M1B13, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Liu D, Li G, Avella DM, Kimchi ET, Kaifi JT, Rubinstein MP, Camp ER, Rockey DC, Schell TD, Staveley-O'Carroll KF. Sunitinib represses regulatory T cells to overcome immunotolerance in a murine model of hepatocellular cancer. Oncoimmunology 2017; 7:e1372079. [PMID: 29296523 DOI: 10.1080/2162402x.2017.1372079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Successful development of immunotherapeutic strategies for hepatocellular cancer (HCC) has been impeded by limited understanding of tumor-induced profound tolerance and lack of a clinically faithful HCC model. Recently, we developed a novel model that recapitulates typical features of human HCC. Using this clinically relevant model, we demonstrate that tumor growth impairs host immunity and causes a profound exhaustion of tumor antigen-specific (TAS) CD8+ T cells. Increase in frequency and suppressive function of regulatory T cells (Tregs) is critically involved in this tumor-induced immune dysfunction. We further demonstrate that sunitinib suppresses Tregs and prevents tumor-induced immune tolerance, allowing TAS immunization to activate endogenous CD8+ T cells. As a result, this combinational strategy delays tumor growth. Importantly, the additional integration of exogenous naïve TAS CD8+ T cells by adoptive cell transfer (ACT) leads to the elimination of the established tumors without recurrence and promotes long-term survival of the treated mice. Mechanistically, sunitinib treatment primes the antitumor immune response by significantly decreasing Treg frequency, reducing TGF-β and IL-10 production by Tregs, and also protecting TAS CD8+ T cells from tumor-induced deletion in the setting of HCC. Taken together, sunitinib quantitatively and qualitatively modifies Tregs to overcome tumor-induced immune deficiency, suggesting the potential of sunitinib as a therapeutic immune activator for HCC control.
Collapse
Affiliation(s)
- Dai Liu
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, USA.,Department of Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, USA
| | | | - Eric T Kimchi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, USA.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Jussuf T Kaifi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, USA.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Mark P Rubinstein
- Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, USA
| | - E Ramsay Camp
- Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Don C Rockey
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA; Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, USA.,Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
22
|
Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol Cell Biochem 2017; 437:13-36. [PMID: 28593566 DOI: 10.1007/s11010-017-3092-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
23
|
Inflammation-induced CD69 + Kupffer cell feedback inhibits T cell proliferation via membrane-bound TGF-β1. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1259-1269. [PMID: 27933593 DOI: 10.1007/s11427-016-0357-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023]
Abstract
Kupffer cells, tissue-resident macrophage lineage cell, are enriched in vertebrate liver. The mouse F4/80+ Kupffer cells have been subclassified into two subpopulations according to their phenotype and function: CD68+ subpopulation with potent reactive oxygen species (ROS) production and phagocytic capacities, and CD11b+ subpopulation with a potent capacity to produce T helper 1 cytokines. In addition, CD11b+ Kupffer cells/macrophages may be migrated from the bone marrow or spleen, especially in inflammatory conditions of the liver. For analyzing diverse Kupffer cell subsets, we infected mice with Listeria monocytogenes and analyzed the phenotype variations of hepatic Kupffer cells. During L. monocytogenes infection, hepatic CD69+ Kupffer cells were significantly induced and expanded, and CD69+ Kupffer cells expressed higher level of CD11b, and particularly high level of membrane-bound TGF-β1 (mTGF-β1) but lower level of F4/80. We also found that clodronate liposome administration did not eliminate hepatic CD69+ Kupffer cell subset. We consider the hepatic CD69+ Kupffer cell population corresponds to CD11b+ Kupffer cells, the bone marrow-derived population. Hepatic CD69+ Kupffer cells suppressed Ag-nonspecific and OVA-specific CD4 T cell proliferation through mTGF-β1 both in vitro and in vivo, meanwhile, they did not interfere with activation of CD4 T cells. Thus, we have identified a new subset of inflammation-induced CD69+ Kupffer cells which can feedback inhibit CD4 T cell response via cell surface TGF-β1 at the late stage of immune response against infection. CD69+ Kupffer cells may contribute to protect host from pathological injure by preventing overactivation of immune response.
Collapse
|
24
|
Vitales-Noyola M, Martínez-Martínez R, Loyola-Rodríguez JP, Baranda L, Niño-Moreno P, González-Amaro R. Quantitative and functional analysis of CD69 + T regulatory lymphocytes in patients with periodontal disease. J Oral Pathol Med 2016; 46:549-557. [PMID: 27759906 DOI: 10.1111/jop.12514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Periodontal disease is chronic inflammatory process that affects the attachment structures of the teeth and constitutes a significant cause of tooth loss in adults. Although different bacteria play an important role in the triggering of this condition, the progression and severity of the disease are strongly affected by the host immune response, which is under the control of different immune regulatory mechanisms, including T regulatory (Treg) cells. The aim of this study was to assess the frequency and function of CD69+ Treg lymphocytes in patients with chronic periodontal disease. METHODS Peripheral blood samples (n = 33) and gingival tissue (n = 9) were obtained from patients with chronic periodontal disease. Blood samples from 25 healthy individuals were also studied. Levels of CD69+ Treg lymphocytes in peripheral blood and gingival tissue were determined by six-color multiparametric flow cytometry, immunofluorescence, and immunohistochemistry. The immune regulatory function of CD69+ Treg cells was tested by an in vitro assay of inhibition of lymphocyte activation. RESULTS Percentages of CD69+ Treg cells were significantly higher in the peripheral blood from patients with active periodontal disease compared to healthy controls, and these percentages inversely correlated with the periodontal attachment loss. Increased numbers of these Treg cells were detected in the gingival tissue from active PD patients compared to their peripheral blood. However, the suppressive function of CD69+ Treg cells was significantly diminished in patients with periodontal disease compared to healthy controls. CONCLUSIONS Our data suggest that CD69+ Treg cells seem to be another important piece in the complex immunopathogenesis of periodontal disease.
Collapse
Affiliation(s)
| | - Rita Martínez-Martínez
- Postgraduate Dental Science Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - Juan P Loyola-Rodríguez
- Postgraduate Dental Science Program, Faculty of Dentistry, UASLP, San Luis Potosí, SLP, México
| | - Lourdes Baranda
- Department of Immunology, School of Medicine, UASLP, San Luis Potosí, SLP, México
| | - Perla Niño-Moreno
- Laboratory of Genetics and Molecular Diagnostic, Faculty of Chemical Sciences, UASLP, San Luis Potosí, SLP, Mexico
| | | |
Collapse
|
25
|
Regulatory T-cells promote hepatitis B virus infection and hepatocellular carcinoma progression. Chronic Dis Transl Med 2016; 2:67-80. [PMID: 29063027 PMCID: PMC5643754 DOI: 10.1016/j.cdtm.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 02/08/2023] Open
Abstract
Regulatory T-cells (Tregs), known for their immune suppressive function, have been reported in higher numbers, with activated phenotypes and greater potency, in hepatitis B virus (HBV)-related liver diseases than in normal conditions. The numbers, phenotypes, and function of intrahepatic and/or tumor-infiltrating Tregs in HBV-related liver diseases also differ from those of Tregs in the peripheral blood. By inhibiting the function of effector T-cells (Teffs), Tregs play a substantial role in the formation and maintenance of the liver's suppressive microenvironment, which might account for the progression of HBV-related hepatitis and hepatocellular carcinoma (HCC). In acute hepatitis B virus infection, Tregs can safeguard the liver from damage at the cost of prolonged antiviral processes, which results in chronic HBV infection in the liver. Furthermore, Tregs play a role in the development of cirrhosis, the transformation of cirrhosis to HCC, and the progression and metastasis of HCC. Higher levels of Tregs in the peripheral blood and/or tumor sites signify a poorer prognosis in HBV-related liver conditions, and observational data from mouse models and human patients support the theory that depleting Tregs may be therapeutic in HBV-related liver diseases by inducing antiviral and antitumor immunity.
Collapse
|
26
|
Velázquez KT, Enos RT, Carson MS, Cranford TL, Bader JE, Chatzistamou I, Singh UP, Nagarkatti PS, Nagarkatti M, Davis JM, Carson JA, Murphy EA. Weight loss following diet-induced obesity does not alter colon tumorigenesis in the AOM mouse model. Am J Physiol Gastrointest Liver Physiol 2016; 311:G699-G712. [PMID: 27609769 PMCID: PMC5142197 DOI: 10.1152/ajpgi.00207.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
Abstract
Obesity presents a significant public health concern given its association with increased cancer incidence, unfavorable prognosis, and metastasis. However, there is very little literature on the effects of weight loss, following obesity, on risk for colon cancer or liver cancer. Therefore, we sought to study whether intentional weight loss through diet manipulation was capable of mitigating colon and liver cancer in mice. We fed mice with a high-fat diet (HFD) comprised of 47% carbohydrates, 40% fat, and 13% protein for 20 wk to mimic human obesity. Subsequently, azoxymethane (AOM) was used to promote colon and liver carcinogenesis. A subset of obese mice was then switched to a low-fat diet (LFD) containing 67.5% carbohydrate, 12.2% fat, and 20% protein to promote intentional weight loss. Body weight loss and excess fat reduction did not protect mice from colon cancer progression and liver dysplastic lesion in the AOM-chemical-cancer model even though these mice had improved blood glucose and leptin levels. Intentional weight loss in AOM-treated mice actually produced histological changes that resemble dysplastic alterations in the liver and presented a higher percentage of F4/80+CD206+ macrophages and activated T cells (CD4+CD69+) in the spleen and lymph nodes, respectively. In addition, the liver of AOM-treated mice exposed to a HFD during the entire period of the experiment exhibited a marked increase in proliferation and pNF-κB activation. Altogether, these data suggest that intentional weight loss following chemical-induced carcinogenesis does not affect colon tumorigenesis but may in fact negatively impact liver repair mechanisms.
Collapse
Affiliation(s)
- Kandy T. Velázquez
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Reilly T. Enos
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Meredith S. Carson
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Taryn L. Cranford
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Jackie E. Bader
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Ioulia Chatzistamou
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Udai P. Singh
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Prakash S. Nagarkatti
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - Mitzi Nagarkatti
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| | - J. Mark Davis
- 2Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - James A. Carson
- 2Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - E. Angela Murphy
- 1Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina; and
| |
Collapse
|
27
|
Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting. Vaccines (Basel) 2016; 4:vaccines4030028. [PMID: 27509527 PMCID: PMC5041022 DOI: 10.3390/vaccines4030028] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023] Open
Abstract
Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits.
Collapse
|
28
|
Programmed cell death protein 1 expression is an independent prognostic factor in gastric cancer after curative resection. Gastric Cancer 2016. [PMID: 26210691 DOI: 10.1007/s10120-015-0519-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) and its ligand PD-L1 downregulate T cell activation and are related to immune tolerance. The aim of this study was to clarify the significance of PD-1 and PD-L1 expression and to analyze the relationships among PD-1, PD-L1, and Foxp3 expression in gastric cancer. METHODS A total of 105 patients who underwent curative gastrectomy for stage II/III gastric cancer were included in this study. PD-1, PD-L1, and Foxp3 expression were examined by immunohistochemistry and related to prognostic factors by univariate and multivariate analyses. RESULTS PD-1 expression was correlated with both PD-L1 and Foxp3 expression. Disease-free survival (DFS) was significantly poorer in PD-1-positive patients than in PD-1-negative patients (3-year DFS, 36.1 % vs. 64.7 %, respectively; p < 0.05). Overall survival also tended to be poorer in PD-L1-positive patients than in PD-L1-negative patients. Univariate analysis identified sex, T factor, lymphatic invasion, and PD-1 positivity as significant predictors of poor DFS. Multivariate analysis confirmed male sex, lymphatic invasion, and positive PD-1 expression as independent prognostic indicators. CONCLUSIONS PD-1 expression is associated with a poor prognosis and is correlated with PD-L1 and Foxp3 expression in patients with gastric cancer.
Collapse
|
29
|
Yeh CY, Lin CL, Chang MC, Chen HM, Kok SH, Chang SH, Kuo YS, Hahn LJ, Chan CP, Lee JJ, Jeng JH. Differences in oral habit and lymphocyte subpopulation affect malignant transformation of patients with oral precancer. J Formos Med Assoc 2016; 115:263-268. [PMID: 26412231 DOI: 10.1016/j.jfma.2015.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/PURPOSE In Taiwan, the combination of betel quid chewing, alcohol consumption, and smoking habits increases oral cancer risk by 123-fold compared to persons without these habits. Lymphocyte populations in patients may potentially affect the malignant transformation of oral precancer. METHODS A total of 28 patients with oral precancer from our previous cohort were enrolled in this study, and their personal information and oral habits were documented. Their lymphocyte populations (CD4+, CD8+, CD19+, and CD56+) and activation markers (CD25 and CD69) were determined by flow cytometry from 1999 to 2004. After follow up till December 2014, data of patients with/without malignant transformation were recorded, and the relation between oral habits and percentage of initial lymphocyte markers was evaluated using the Student t test and Fisher's exact test. RESULTS Ten precancer patients developed oral squamous cell carcinoma with a mean period of malignant transformation of 6.8 ± 2.1 years. Patients with malignant transformation had a mean age of 48.4 ± 5.0 years (n = 10), relatively more than that of patients without malignant transformation (41.6 ± 6.3 years, n = 18) (p < 0.05). An increase was noted in the population of peripheral blood mononuclear cells expressing CD4+CD69+, CD19+CD69+, and CD56+CD69+ (p < 0.05) in precancer patients with malignant transformation. Alcohol consumption showed an association with the malignant transformation of patients with precancer (p = 0.030), whereas betel quid and smoking showed little effect. CONCLUSION These results suggest that age, alcohol consumption, and early activation of T cells, B cells, and natural killer cells are crucial in the malignant transformation of oral precancer. Analysis of patient's lymphocyte populations may help predict the malignant transformation of oral precancer.
Collapse
Affiliation(s)
- Chien-Yang Yeh
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ling Lin
- Department of Dentistry, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Mei-Chi Chang
- Biomedical Science Team and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-Shan, Taoyuan, Taiwan; Chang Gung Memorial Hospital, Taiwan.
| | - Hsin-Ming Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Seng-Heng Kok
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Hui Chang
- Biostatistic Laboratory, School of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Shiung Kuo
- Department of Dentistry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Liang-Jiunn Hahn
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jang-Jaer Lee
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
30
|
Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl) 2015; 94:509-22. [PMID: 26689709 DOI: 10.1007/s00109-015-1376-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Liu
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xuetao Cao
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
31
|
Cryoablation induced the change of TGF-β pathway in CWR-22RV prostate cancer cell line. Cryobiology 2015; 71:130-4. [PMID: 25952505 DOI: 10.1016/j.cryobiol.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/21/2015] [Accepted: 04/21/2015] [Indexed: 11/24/2022]
Abstract
PURPOSE To assess the efficacy of TGF-β pathway in the CWR-22RV prostate cancer cell line induced by cryoablation. MATERIALS AND METHODS According to the district in the tumor following cryoablation, the CWR-22RV prostate cancer cells were divided into four groups to construct the freezing model of prostate cancer in cell level: Group A, control cells (the uncovered district), Group B, freezing cells (sub-lethal district away from necrosis), Group C, control cells cultured with 1640 and necrosis supernatant and Group D, freezing cells cultured with 1640 and necrosis supernatant (sub-lethal district close to necrosis). Cell apoptosis was observed by flow cytometry analysis 24 h later. Then supernatant in four groups was extracted to test the concentration of TGF-β by ELISA at the time points of 5, 10, 20, 36, and 48 h. At the same time, intracellular TGF-β, Smad2/3, Smad4 of four groups were detected by Western blot at the time point of 10 h. RESULTS In aspect of apoptosis, groups B-D have higher apoptosis rate than group A, group D has more apoptosis cells than group B and C. This was verified that the model was successful. Moreover, we found that group C has higher delayed apoptosis rate than group A, and group D has higher early apoptosis rate than other groups (P<0.05); compared with group A, C, D, group B has less TGF-β (P<0.05). Group C secrets more TGF-β than that in group A (P<0.05) and group D secrets more TGF-β than that in group C at the time points of 20, 36, 48 h (P<0.05); Group C and D expressed more Smad2, Smad3 and Smad4 than group A and B at the time point of 10 h after treatment. Meanwhile, cells in group D expressed more Smads than group C. CONCLUSION Cryoablation could promote TGF-β and its pathway, and the more close to the center of the ice ball, this effect is more apparent.
Collapse
|