1
|
Shreya S, Dagar N, Gaikwad AB. Unlocking the therapeutic potential of the NFAT pathway in kidney diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04033-x. [PMID: 40088333 DOI: 10.1007/s00210-025-04033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
The nuclear factor of activated T cells (NFAT) is a novel renoprotective transcription factor in an inactive form in the cytoplasm and an active form in the nucleus. NFAT is expressed in T cells, heart, kidney and lymphocytes. NFAT plays an essential role in inducing apoptosis of renal tubular epithelial cells. NFAT levels have been observed to increase significantly during kidney diseases. Further, downregulation or silencing of endogenous NFAT mitigates kidney diseases. NFAT regulation depends upon the intricate interplay between calcium ions and calcineurin (CaN), thus orchestrating the NFAT/calcineurin signalling pathway. When CaN is activated, it induces dephosphorylation of NFAT and localises the active NFAT into the nucleus, which ultimately leads to inflammation, fibrosis and apoptosis of kidney cells. Further, the global incidence (> 800 million) due to kidney disease imposes a significant economic burden on the healthcare system. Therefore, it is crucial to comprehend the pathways involved in the pathophysiology of kidney diseases to develop targeted interventions. Ongoing studies indicate potential therapies, including anandamide, 11R-VIVIT and maxacalcitol to regulate NFAT levels in kidney disease. The present review discusses the role and regulation of NFAT in the pathogenesis of kidney diseases. This is focused on various preclinical studies that have shown NFAT downregulation as a potential therapeutic strategy against kidney disease setting the foundation for future clinical investigations.
Collapse
Affiliation(s)
- Shruti Shreya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Neha Dagar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
2
|
Huang Z, Peng Y, Ke G, Xiao Y, Chen Y. CaMKII may regulate renal tubular epithelial cell apoptosis through YAP/NFAT2 in acute kidney injury mice. Ren Fail 2023; 45:2172961. [PMID: 36718671 PMCID: PMC9891164 DOI: 10.1080/0886022x.2023.2172961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
AIM Renal tubular epithelial cell (RTEC) apoptosis is important in acute kidney injury (AKI). Calcium/calmodulin-dependent protein kinase II (CaMKII) plays an important role in cell apoptosis, but its potential role in AKI remains unknown. METHODS Using co-immunoprecipitation, immunofluorescence, immunohistochemistry, western blotting, flow cytometry, and cell transfection, this study aimed to verify whether CaMKII is involved in RTEC apoptosis and to explore the underlying mechanism. RESULTS We found that CaMKII was involved in RTEC apoptosis. In adriamycin-induced AKI mice, serum creatinine levels, cell apoptosis, CaMKII activity, and nuclear factor of activated T cells 2 (NFAT2) levels increased, whereas nuclear Yes-associated protein (YAP) expression decreased; inhibition of CaMKII activity reversed these changes. Phosphorylated CaMKII could bind to phosphorylated YAP in the cytoplasm and block it from entering the nucleus, thereby failing to inhibit NFAT2-mediated cell apoptosis. Sequestrated phosphorylated YAP in the RTEC cytoplasm was finally degraded by ubiquitination. CONCLUSION CaMKII may regulate RTEC apoptosis through YAP/NFAT2 in AKI mice. CaMKII may be a potent molecular target for AKI treatment.
Collapse
Affiliation(s)
- Zongshun Huang
- Department of Nephrology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yonghua Peng
- Department of Nephrology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yun Xiao
- Department of Nephrology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaqi Chen
- Department of Nephrology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Abdallah DM, Kamal MM, Aly NES, El-Abhar HS. Anandamide modulates WNT-5A/BCL-2, IP3/NFATc1, and HMGB1/NF-κB trajectories to protect against mercuric chloride-induced acute kidney injury. Sci Rep 2023; 13:11899. [PMID: 37488162 PMCID: PMC10366223 DOI: 10.1038/s41598-023-38659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
Endocannabinoid anandamide (AEA) has a physiological role in regulating renal blood flow, whereas its analogs ameliorated renal ischemia/reperfusion injury. Nonetheless, the role of AEA against mercuric chloride (HgCl2)-induced renal toxicity has not been unraveled. Rats were allocated into control, HgCl2, and HgCl2/AEA treated groups. The administration of AEA quelled the HgCl2-mediated increase in inositol trisphosphate (IP3) and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). The endocannabinoid also signified its anti-inflammatory potential by turning off the inflammatory cascade evidenced by the suppression of high mobility group box protein-1 (HMGB1), receptor of glycated end products (RAGE), nuclear factor-κB p65 (NF-κB), and unexpectedly PPAR-γ. Additionally, the aptitude of AEA to inhibit malondialdehyde and boost glutathione points to its antioxidant capacity. Moreover, AEA by enhancing the depleted renal WNT-5A and reducing cystatin-C and KIM-1 (two kidney function parameters) partly verified its anti-apoptotic capacity, confirmed by inhibiting caspase-3 and increasing B-cell lymphoma-2 (BCL-2). The beneficial effect of AEA was mirrored by the improved architecture and kidney function evidenced by the reduction in cystatin-C, KIM-1, creatinine, BUN, and caspase1-induced activated IL-18. In conclusion, our results verify the reno-protective potential of AEA against HgCl2-induced kidney injury by its anti-inflammatory, antioxidant, and anti-apoptotic capacities by modulating WNT-5A/BCL-2, IP3/NFATC1, HMGB-1/RAGE/NF-κB, caspase-1/IL-18, and caspase-3/BCL-2 cues.
Collapse
Affiliation(s)
- Dalaal M Abdallah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Mahmoud M Kamal
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Nour Eldin S Aly
- Research Institute of Medical Entomology, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, 11835, Egypt
| |
Collapse
|
4
|
Wang M, Zhao M, Xu S, Zheng Z, Zhang J, Pan W, Yin Z, Liu J, Wei C, Wan J, Xu Y. TRPA1 deficiency attenuates cardiac fibrosis via regulating GRK5/NFAT signaling in diabetic rats. Biochem Pharmacol 2023:115671. [PMID: 37380112 DOI: 10.1016/j.bcp.2023.115671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Transient receptor potential ankyrin 1 (TRPA1) has been linked to the development of various cardiovascular diseases, but its role in diabetic cardiomyopathy is not well understood. This study aimed to investigate the protective effects of TRPA1 deficiency on diabetic cardiomyopathy in rats with streptozotocin-induced diabetes and in neonatal rat cardiac fibroblasts (CFs) exposed to high glucose (HG). METHODS Cardiac TRPA1 expression levels were measured in diabetic rats. Cardiac function, remodeling, and fibrosis were analyzed in Sprague-Dawley (SD) rats and TRPA1-deficient rats with diabetic cardiomyopathy. In vitro, fibrosis was measured in CFs exposed to HG. Additionally, 1,8-cineole, a natural inhibitor of TRPA1, was used to treat SD rats with diabetic cardiomyopathy. RESULTS TRPA1 expression was increased in the heart tissue of diabetic rats and in CFs treated with HG. TRPA1 deficiency significantly improved cardiac function in diabetic rats, as evidenced by improved echocardiography and reduced cardiac hypertrophy and fibrosis. In vitro, TRPA1 deficiency suppressed the transformation of HG-induced CFs into myofibroblasts. The cardioprotective effect of TRPA1 deficiency was found to inhibit cardiac fibrosis by regulating GRK5/NFAT signaling. Furthermore, inhibition of GRK5/NFAT signaling abolished the promotion of CF transformation into myofibroblasts by TRPA1 activation. Inhibition of TRPA1 activation by 1,8-cineole reduced cardiac dysfunction and remodeling in diabetic rats by regulating GRK5/NFAT signaling. CONCLUSIONS TRPA1 deficiency reduced cardiac fibrosis in diabetic rats and inhibited HG-induced CF activation in vitro by regulating GRK5/NFAT signaling. The TRPA1 inhibitor 1,8-cineole may serve as a novel therapeutic agent for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
5
|
Sun Z, Zhang L, Yin K, Zang G, Qian Y, Mao X, Li L, Jing Q, Wang Z. SIRT3-and FAK-mediated acetylation-phosphorylation crosstalk of NFATc1 regulates N ε-carboxymethyl-lysine-induced vascular calcification in diabetes mellitus. Atherosclerosis 2023; 377:43-59. [PMID: 37392543 DOI: 10.1016/j.atherosclerosis.2023.06.969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND AND AIMS Arterial calcification is the predictor of cardiovascular risk in diabetic patients. Nε-carboxymethyl-lysine (CML), a toxic metabolite, is associated with accelerated vascular calcification in diabetes mellitus (DM). However, the mechanism remains elusive. This study aims to explore the key regulators involved in CML-induced vascular calcification in DM. METHODS We used Western blot and immuno-staining to test the expression and localization of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) in human samples, a diabetic apolipoprotein E-deficient (ApoE-/-) mouse model, and a vascular smooth muscle cells (VSMC) model. Further, we confirmed the regulator of NFATc1 phosphorylation and acetylation induced by CML. The role of NFATc1 in VSMCs calcification and osteogenic differentiation was explored in vivo and in vitro. RESULTS In diabetic patients, CML and NFATc1 levels increased in the severe calcified anterior tibial arteries. CML significantly promoted NFATc1 expression and nuclear translocation in VSMCs and mouse aorta. Knockdown of NFATc1 significantly inhibited CML-induced calcification. CML promoted NFATc1 acetylation at K549 by downregulating sirtuin 3 (SIRT3), which antagonized the focal adhesion kinase (FAK) induced NFATc1 phosphorylation at the Y270 site. FAK and SIRT3 affected the nuclear translocation of NFATc1 by regulating the acetylation-phosphorylation crosstalk. NFATc1 dephosphorylation mutant Y270F and deacetylation mutant K549R had opposite effects on VSMC calcification. SIRT3 overexpression and FAK inhibitor could reverse CML-promoted VSMC calcification. CONCLUSIONS CML enhances vascular calcification in DM through NFATc1. In this process, CML increases NFATc1 acetylation by downregulating SIRT3 to antagonize FAK-induced NFATc1 phosphorylation.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guangyao Zang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongjiang Qian
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
6
|
Guo F, Song Y, Wu L, Zhao Y, Ma X, Wang J, Shao M, Ji H, Huang F, Fan X, Wang S, Qin G, Yang B. SUMO specific peptidase 6 regulates the crosstalk between podocytes and glomerular endothelial cells in diabetic kidney disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166685. [PMID: 36889557 DOI: 10.1016/j.bbadis.2023.166685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
There is increasing evidence that the crosstalk between podocytes and glomerular endothelial cells (GECs) exacerbates the progression of diabetic kidney disease (DKD). Here, we investigated the underlying role of SUMO specific peptidase 6 (SENP6) in this crosstalk. In the diabetic mice, SENP6 was decreased in glomerular tissues and its knockdown further exacerbated glomerular filtration barrier injury. In the mouse podocyte cell line MPC5 cells, SENP6 overexpression reversed HG-induced podocyte loss by suppressing the activation of Notch1 signaling. Notch1 intracellular domain (N1ICD) is the active form of Notch1. SENP6 upregulated the ubiquitination of N1ICD by deSUMOylating Notch1, thereby reducing N1ICD and suppressing Notch1 signaling activation in MPC5 cells. Endothelin-1 (EDN1) is a protein produced by podocytes and has been reported to promote GEC dysfunction. The supernatant from HG-treated MPC5 cells induced mitochondrial dysfunction and surface layer injury in GECs, and the supernatant from SENP6-deficient podocytes further exacerbated the above GEC dysfunction, while this trend was reversed by an EDN1 antagonist. The following mechanism study showed that SENP6 deSUMOylated KDM6A (a histone lysine demethylase) and then decreased the binding potency of KDM6A to EDN1. The latter led to the upregulation of H3K27me2 or H3K27me3 of EDN1 and suppressed its expression in podocytes. Taken together, SENP6 suppressed the HG-induced podocyte loss and ameliorated GEC dysfunction caused by crosstalk between podocytes and GECs, and the protective effect of SENP6 on DKD is attributed to its deSUMOylation activity.
Collapse
Affiliation(s)
- Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lina Wu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojun Ma
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiao Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongfei Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fengjuan Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xunjie Fan
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shasha Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Baofeng Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
7
|
Yu C, Zhang H, Liu S, Li R, Zhao X, Chen Y, Li Z, Ma J, Wang W, Ye Z, Liang X, Zhang L, Shi W. Flot2 acts as a novel mediator of podocyte injury in proteinuric kidney disease. Int J Biol Sci 2023; 19:502-520. [PMID: 36632460 PMCID: PMC9830511 DOI: 10.7150/ijbs.78945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Podocyte injury is a common hallmark of chronic kidney disease (CKD). The podocin-nephrin complex localized in lipid rafts of podocyte is vital to reduce podocyte injury and proteinuria, however, the mechanism underlying its localization remains unclear. This study uncovers an important role of Flot2 in stabilizing the podocin-nephrin complex localized in lipid rafts. We first confirmed that Flot2 was expressed in podocyte and demenstrated that podocyte-specific Flot2 deletion worsen albuminuria, podocyte injury and glomerular pathology in LPS/ADR-induced nephropathy mouse models. Meanwhile, podocyte injury, albuminuria and pathologic aberrance were prevented in podocyte-specific Flot2 overexpression transgenic mice when challenged with LPS or ADR. Further found that Flot2 was vital to recruit podocin and nephrin into rafts and ameliorated podocyte injury. Flot2 and podocin directly interacted with each other via their SPFH domain. Meanwhile, we also showed that Flot-2 is a direct target of Krüppel-like factor (KLF15). Importanly, we observed that Flot2 was downregulated in renal biopsies from patients with podocytopathies and its expression negatively correlated with proteinuria and positively correlated with eGFR, indicating that Flot2 may be a novel therapeutic target for proteinuric kidney disease.
Collapse
Affiliation(s)
- Chunping Yu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zhuo Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Jianchao Ma
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Wenjian Wang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China.,✉ Corresponding authors: Xinling Liang, Li Zhang, or Wei Shi. Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China. E-mail: ; ; ; Phone: +86 13802793488; +86 13202067354; +86 13808819770; Fax: +86-20-83827812-62027
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China.,✉ Corresponding authors: Xinling Liang, Li Zhang, or Wei Shi. Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China. E-mail: ; ; ; Phone: +86 13802793488; +86 13202067354; +86 13808819770; Fax: +86-20-83827812-62027
| | - Wei Shi
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China.,Department of Nephrology, Gaozhou People's Hospital, Gaozhou, P. R. China.,✉ Corresponding authors: Xinling Liang, Li Zhang, or Wei Shi. Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080, China. E-mail: ; ; ; Phone: +86 13802793488; +86 13202067354; +86 13808819770; Fax: +86-20-83827812-62027
| |
Collapse
|
8
|
Wei R, Qiao J, Cui D, Pan Q, Guo L. Screening and Identification of Hub Genes in the Development of Early Diabetic Kidney Disease Based on Weighted Gene Co-Expression Network Analysis. Front Endocrinol (Lausanne) 2022; 13:883658. [PMID: 35721731 PMCID: PMC9204256 DOI: 10.3389/fendo.2022.883658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Objective The study aimed to screen key genes in early diabetic kidney disease (DKD) and predict their biological functions and signaling pathways using bioinformatics analysis of gene chips interrelated to early DKD in the Gene Expression Omnibus database. Methods Gene chip data for early DKD was obtained from the Gene Expression Omnibus expression profile database. We analyzed differentially expressed genes (DEGs) between patients with early DKD and healthy controls using the R language. For the screened DEGs, we predicted the biological functions and relevant signaling pathways by enrichment analysis of Gene Ontology (GO) biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways. Using the STRING database and Cytoscape software, we constructed a protein interaction network to screen hub pathogenic genes. Finally, we performed immunohistochemistry on kidney specimens from the Beijing Hospital to verify the above findings. Results A total of 267 differential genes were obtained using GSE142025, namely, 176 upregulated and 91 downregulated genes. GO functional annotation enrichment analysis indicated that the DEGs were mainly involved in immune inflammatory response and cytokine effects. KEGG pathway analysis indicated that C-C receptor interactions and the IL-17 signaling pathway are essential for early DKD. We identified FOS, EGR1, ATF3, and JUN as hub sites of protein interactions using a protein-protein interaction network and module analysis. We performed immunohistochemistry (IHC) on five samples of early DKD and three normal samples from the Beijing Hospital to label the proteins. This demonstrated that FOS, EGR1, ATF3, and JUN in the early DKD group were significantly downregulated. Conclusion The four hub genes FOS, EGR1, ATF3, and JUN were strongly associated with the infiltration of monocytes, M2 macrophages, and T regulatory cells in early DKD samples. We revealed that the expression of immune response or inflammatory genes was suppressed in early DKD. Meanwhile, the FOS group of low-expression genes showed that the activated biological functions included mRNA methylation, insulin receptor binding, and protein kinase A binding. These genes and pathways may serve as potential targets for treating early DKD.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrinology, Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Jingtao Qiao
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Di Cui
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Pan
- Department of Endocrinology, Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Lixin Guo
- Department of Endocrinology, Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
9
|
Zhu X, Tang L, Mao J, Hameed Y, Zhang J, Li N, Wu D, Huang Y, Li C. Decoding the Mechanism behind the Pathogenesis of the Focal Segmental Glomerulosclerosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1941038. [PMID: 35693262 PMCID: PMC9175094 DOI: 10.1155/2022/1941038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a chronic glomerular disease associated with podocyte injury which is named after the pathologic features of the kidney. The aim of this study is to decode the key changes in gene expression and regulatory network involved in the formation of FSGS. Integrated network analysis included Gene Expression Omnibus (GEO) datasets to identify differentially expressed genes (DEGs) between FSGS patients and healthy donors. Bioinformatics analysis was used to identify the roles of the DEGs and included the development of protein-protein interaction (PPI) networks, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the key modules were assured. The expression levels of DEGs were validated using the additional dataset. Eventually, transcription factors and ceRNA networks were established to illuminate the regulatory relationships in the formation of FSGS. 1130 DEGs including 475 upregulated genes and 655 downregulated genes with functional enrichment analysis were determined. Further analysis uncovered that the validated hub genes were defined as candidate genes, including Complement C3a Receptor 1 (C3AR1), C-C Motif Chemokine Receptor 1(CCR1), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), Melatonin Receptor 1A (MTNR1A), and Purinergic Receptor P2Y13 (P2RY13). More importantly, we identified transcription factors and mRNA-miRNA-lncRNA regulatory networks associated with the candidate genes. The candidate genes and regulatory networks discovered in this study can help to comprehend the molecular mechanism of FSGS and supply potential targets for the diagnosis and therapy of FSGS.
Collapse
Affiliation(s)
- Xiao Zhu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Liping Tang
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100091, China
| | - Jingxin Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jingyu Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Ning Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Danny Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Yongmei Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Guangdong Medical University, Zhanjiang 524024, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany
| |
Collapse
|
10
|
Joshi H, Vastrad B, Joshi N, Vastrad C. Integrated bioinformatics analysis reveals novel key biomarkers in diabetic nephropathy. SAGE Open Med 2022; 10:20503121221137005. [PMID: 36385790 PMCID: PMC9661593 DOI: 10.1177/20503121221137005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: The underlying molecular mechanisms of diabetic nephropathy have yet not been investigated clearly. In this investigation, we aimed to identify key genes involved in the pathogenesis and prognosis of diabetic nephropathy. Methods: We downloaded next-generation sequencing data set GSE142025 from Gene Expression Omnibus database having 28 diabetic nephropathy samples and nine normal control samples. The differentially expressed genes between diabetic nephropathy and normal control samples were analyzed. Biological function analysis of the differentially expressed genes was enriched by Gene Ontology and REACTOME pathways. Then, we established the protein–protein interaction network, modules, miRNA-differentially expressed gene regulatory network and transcription factor-differentially expressed gene regulatory network. Hub genes were validated by using receiver operating characteristic curve analysis. Results: A total of 549 differentially expressed genes were detected including 275 upregulated and 274 downregulated genes. The biological process analysis of functional enrichment showed that these differentially expressed genes were mainly enriched in cell activation, integral component of plasma membrane, lipid binding, and biological oxidations. Analyzing the protein–protein interaction network, miRNA-differentially expressed gene regulatory network and transcription factor-differentially expressed gene regulatory network, we screened hub genes MDFI, LCK, BTK, IRF4, PRKCB, EGR1, JUN, FOS, ALB, and NR4A1 by the Cytoscape software. The receiver operating characteristic curve analysis confirmed that hub genes were of diagnostic value. Conclusions: Taken above, using integrated bioinformatics analysis, we have identified key genes and pathways in diabetic nephropathy, which could improve our understanding of the cause and underlying molecular events, and these key genes and pathways might be therapeutic targets for diabetic nephropathy.
Collapse
Affiliation(s)
- Harish Joshi
- Endocrine and Diabetes Care Center, Hubbali, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, KLE Society’s College of Pharmacy, Gadag, India
| | - Nidhi Joshi
- Dr. D. Y. Patil Medical College, Kolhapur, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Dharwad, India
- Chanabasayya Vastrad, Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, India.
| |
Collapse
|
11
|
Li G, Zhang J, Liu D, Wei Q, Wang H, Lv Y, Ye Z, Liu G, Li L. Identification of Hub Genes and Potential ceRNA Networks of Diabetic Nephropathy by Weighted Gene Co-Expression Network Analysis. Front Genet 2021; 12:767654. [PMID: 34790229 PMCID: PMC8591079 DOI: 10.3389/fgene.2021.767654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetic patients, and is the main cause of end-stage renal disease. The exact molecular mechanism of DN is not fully understood. The aim of this study was to identify novel biomarkers and mechanisms for DN disease progression by weighted gene co-expression network analysis (WGCNA). From the GSE142153 dataset based on the peripheral blood monouclear cells (PBMC) of DN, we identified 234 genes through WGCNA and differential expression analysis. Gene Ontology (GO) annotations mainly included inflammatory response, leukocyte cell-cell adhesion, and positive regulation of proteolysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways mostly included IL-17 signaling pathway, MAPK signaling pathway, and PPAR signaling pathway in DN. A total of four hub genes (IL6, CXCL8, MMP9 and ATF3) were identified by cytoscape, and the relative expression levels of hub genes were also confirmed by RT-qPCR. ROC curve analysis determined that the expression of the four genes could distinguish DN from controls (the area under the curve is all greater than 0.8), and Pearson correlation coefficient analysis suggested that the expression of the four genes was related to estimated glomerular filtration rate (eGFR) of DN. Finally, through database prediction and literature screening, we constructed lncRNA-miRNA-mRNA network. We propose that NEAT1/XIST/KCNQ1T1-let-7b-5p-IL6, NEAT1/XIST-miR-93-5p-CXCL8 and NEAT1/XIST/KCNQ1T1-miR-27a-3p/miR-16-5p-ATF3 might be potential RNA regulatory pathways to regulate the disease progression of early DN. In conclusion, we identified four hub genes, namely, IL6, CXCL8, MMP9, and ATF3, as markers for early diagnosis of DN, and provided insight into the mechanisms of disease development in DN at the transcriptome level.
Collapse
Affiliation(s)
- Guoqing Li
- Department of Endocrinology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jun Zhang
- Department of Endocrinology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dechen Liu
- Department of Endocrinology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qiong Wei
- Department of Endocrinology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hui Wang
- Department of Endocrinology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yingqi Lv
- Department of Endocrinology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zheng Ye
- Department of Endocrinology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gaifang Liu
- Department of Gastroenterology, Hebei General Hospital, Hebei, China
| | - Ling Li
- Department of Endocrinology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
| |
Collapse
|
12
|
Nie X, Wei X, Ma H, Fan L, Chen WD. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med 2021; 25:6479-6495. [PMID: 34042263 PMCID: PMC8278111 DOI: 10.1111/jcmm.16663] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the major chronic diseases, whose prevalence is increasing dramatically worldwide and can lead to a range of serious complications. Wnt ligands (Wnts) and their activating Wnt signalling pathways are closely involved in the regulation of various processes that are important for the occurrence and progression of T2DM and related complications. However, our understanding of their roles in these diseases is quite rudimentary due to the numerous family members of Wnts and conflicting effects via activating the canonical and/or non-canonical Wnt signalling pathways. In this review, we summarize the current findings on the expression pattern and exact role of each human Wnt in T2DM and related complications, including Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11 and Wnt16. Moreover, the role of main antagonists (sFRPs and WIF-1) and coreceptor (LRP6) of Wnts in T2DM and related complications and main challenges in designing Wnt-based therapeutic approaches for these diseases are discussed. We hope a deep understanding of the mechanistic links between Wnt signalling pathways and diabetic-related diseases will ultimately result in a better management of these diseases.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Xiaoyun Wei
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Han Ma
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Lili Fan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
13
|
Cai Y, Yao H, Sun Z, Wang Y, Zhao Y, Wang Z, Li L. Role of NFAT in the Progression of Diabetic Atherosclerosis. Front Cardiovasc Med 2021; 8:635172. [PMID: 33791348 PMCID: PMC8006278 DOI: 10.3389/fcvm.2021.635172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) is a transcription factor with a multidirectional regulatory function, that is widely expressed in immune cells, including cells in the cardiovascular system, and non-immune cells. A large number of studies have confirmed that calcineurin/NFAT signal transduction is very important in the development of vascular system and cardiovascular system during embryonic development, and plays some role in the occurrence of vascular diseases such as atherosclerosis, vascular calcification, and hypertension. Recent in vitro and in vivo studies have shown that NFAT proteins and their activation in the nucleus and binding to DNA-related sites can easily ɨnduce the expression of downstream target genes that participate in the proliferation, migration, angiogenesis, and vascular inflammation of vascular wall related cells in various pathophysiological states. NFAT expression is regulated by various signaling pathways, including CD137-CD137L, and OX40-OX40L pathways. As a functionally diverse transcription factor, NFAT interacts with a large number of signaling molecules to modulate intracellular and extracellular signaling pathways. These NFAT-centered signaling pathways play important regulatory roles in the progression of atherosclerosis, such as in vascular smooth muscle cell phenotypic transition and migration, endothelial cell injury, macrophage-derived foam cell formation, and plaque calcification. NFAT and related signaling pathways provide new therapeutic targets for vascular diseases such as atherosclerosis. Hence, further studies of the mechanism of NFAT in the occurrence and evolution of atherosclerosis remain crucial.
Collapse
Affiliation(s)
- Yaoyao Cai
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haipeng Yao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yunyun Zhao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
The Krüppel-like factor 15-NFATc1 axis ameliorates podocyte injury: a novel rationale for using glucocorticoids in proteinuria diseases. Clin Sci (Lond) 2020; 134:1305-1318. [PMID: 32478397 DOI: 10.1042/cs20200075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/07/2020] [Accepted: 05/29/2020] [Indexed: 01/19/2023]
Abstract
Podocyte injury and loss contribute to proteinuria, glomerulosclerosis and eventually kidney failure. Recent studies have demonstrated that the loss of Kruppel-like factor 15 (KLF15) in podocytes increases the susceptibility to injury; however, the mechanism underlying the protective effects on podocyte injury remains incompletely understood. Herein, we showed that KLF15 ameliorates podocyte injury through suppressing NFAT signaling and the salutary effects of the synthetic glucocorticoid dexamethasone in podocyte were partially mediated by the KLF15-NFATc1 axis. We found that KLF15 was significantly reduced in glomerular cells of proteinuric patients and in ADR-, LPS- or HG-treated podocyets in vitro. Overexpression of KLF15 attenuated podocyte apoptosis induced by ADR, LPS or HG and resulted in decreased expression of pro-apoptotic Bax and increased expression of anti-apoptotic Bcl-2. Conversely, the flow cytometry analysis and TUNEl assay demonstrated that loss of KLF15 accelerated podocyte apoptosis and we further found that 11R-VIVIT, a specific NFAT inhibitor, and NFATc1-siRNA rescued KLF15-deficient induced podocyte apoptosis. Meanwhile, Western blot and RT-qPCR showed that the expression of NFATc1 was up-regulated in KLF15 silenced podocytes and reduced in KLF15 overexpressed podocytes. Mechanistically, ChIP analysis showed that KLF15 bound to the NFATc1 promoter region -1984 to -1861base pairs upstream of the transcription start site and the binding amount was decreased after treatment with LPS. The dual-luciferase reporter assay indicated that NFATc1 was a direct target of KLF15. In addition, we found that in vitro treatment with dexamethasone induced a decrease of NFATc1 expression in podocytes and was abrogated by knockdown of KLF15. Hence, our results identify the critical role of the KLF15-NFATc1 axis in podocyte injury and loss, which may be involved in mediating the salutary effects of dexamethasone in podocytes.
Collapse
|
15
|
Zhang Y, Li W, Zhou Y. Identification of hub genes in diabetic kidney disease via multiple-microarray analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:997. [PMID: 32953797 PMCID: PMC7475500 DOI: 10.21037/atm-20-5171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease; however, the underlying molecular mechanisms remain unclear. Recently, bioinformatics analysis has provided a comprehensive insight toward the molecular mechanisms of DKD. Here, we re-analyzed three mRNA microarray datasets including a single-cell RNA sequencing (scRNA-seq) dataset, with the aim of identifying crucial genes correlated with DKD and contribute to a better understanding of DKD pathogenesis. Methods Three datasets including GSE131882, GSE30122, and GSE30529 were utilized to find differentially expressed genes (DEGs). The potential functions of DEGs were analyzed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A protein-protein interaction (PPI) network was constructed, and hub genes were selected with the top three molecular complex detection (MCODE) score. A correlation analysis between hub genes and clinical indicators was also performed. Results In total, 84 upregulated DEGs and 49 downregulated DEGs were identified. Enriched pathways of the upregulated DEGs included extracellular matrix (ECM) receptor interaction, focal adhesion, human papillomavirus infection, malaria, and cell adhesion molecules. The downregulated DEGs were mainly enriched in ascorbate and aldarate metabolism, arginine and proline metabolism, endocrine- and other factor-regulated calcium reabsorption, mineral absorption and longevity regulating pathway, and multiple species signaling pathway. Seventeen hub genes were identified, and correlation analysis between unexplored hub genes and clinical features of DKD suggested that EGF, KNG1, GADD45B, and CDH2 might have reno-protective roles in DKD. Meanwhile, ATF3, B2M, VCAM1, CLDN4, SPP1, SOX9, JAG1, C3, and CD24 might promote the progression of DKD. Finally, most hub genes were found present in the immune cells of diabetic kidneys, which suggest the important role of inflammation infiltration in DKD pathogenesis. Conclusions In this study, we found seventeen hub genes using a scRNA-seq contained multiple-microarray analysis, which enriched the present understanding of molecular mechanisms underlying the pathogenesis of DKD in cells' level and provided candidate targets for diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Wei Li
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China.,Suzhou Hospital Affiliated To Anhui Medical University, Suzhou, China
| | - Yunting Zhou
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China.,Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Shen X, Weng C, Wang Y, Wang C, Feng S, Li X, Li H, Jiang H, Wang H, Chen J. Lipopolysaccharide-induced podocyte injury is regulated by calcineurin/NFAT and TLR4/MyD88/NF-κB signaling pathways through angiopoietin-like protein 4. Genes Dis 2020; 9:443-455. [PMID: 35224159 PMCID: PMC8843862 DOI: 10.1016/j.gendis.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Podocyte injury is an important cause of proteinuria. Angiopoietin-like protein 4 (Angptl4) is a secreted glycoprotein and has a role in proteinuria. However, the exact role of Angptl4 in podocyte injury and its upstream regulators has not been clarified. In this study, we used lipopolysaccharide (LPS)-induced mice and cultured podocytes as podocyte injury models. Our results indicated that LPS increased the expression of podocyte Angptl4 in vivo and in vitro. Furthermore, we showed that Angptl4 overexpression deteriorated LPS-induced podocyte injury by inducing podocyte cytoskeleton rearrangement, reducing the expression of synaptopodin while Angptl4 knockdown alleviated LPS-induced podocyte injury. In addition, we found that inhibitors and siRNA targeting TLR4/MyD88/NF-κB signaling inhibited the upregulation of Angptl4 in LPS-induced podocytes. Moreover, inhibitors and siRNA targeting calcineurin/NFAT signaling also relieved LPS-induced Angptl4 expression and podocyte injury in vivo and in vitro. Taken together, our study has elucidated that both of the TLR4/MyD88/NF-κB and calcineurin/NFAT signaling mediate the upregulation of Angptl4 in LPS-induced podocytes, which has important implications for further understanding the molecular mechanism of LPS-induced podocyte injury.
Collapse
|
17
|
Delitsikou V, Jarad G, Rajaram RD, Ino F, Rutkowski JM, Chen CD, Santos CXC, Scherer PE, Abraham CR, Shah AM, Feraille E, Miner JH, de Seigneux S. Klotho regulation by albuminuria is dependent on ATF3 and endoplasmic reticulum stress. FASEB J 2019; 34:2087-2104. [PMID: 31907991 DOI: 10.1096/fj.201900893r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Proteinuria is associated with renal function decline and cardiovascular mortality. This association may be attributed in part to alterations of Klotho expression induced by albuminuria, yet the underlying mechanisms are unclear. The presence of albumin decreased Klotho expression in the POD-ATTAC mouse model of proteinuric kidney disease as well as in kidney epithelial cell lines. This downregulation was related to both decreased Klotho transcription and diminished protein half-life, whereas cleavage by ADAM proteases was not modified. The regulation was albumin specific since it was neither observed in the analbuminemic Col4α3-/- Alport mice nor induced by exposure of kidney epithelial cells to purified immunoglobulins. Albumin induced features of ER stress in renal tubular cells with ATF3/ATF4 activation. ATF3 and ATF4 induction downregulated Klotho through altered transcription mediated by their binding on the Klotho promoter. Inhibiting ER stress with 4-PBA decreased the effect of albumin on Klotho protein levels without altering mRNA levels, thus mainly abrogating the increased protein degradation. Taken together, albuminuria decreases Klotho expression through increased protein degradation and decreased transcription mediated by ER stress induction. This implies that modulating ER stress may improve proteinuria-induced alterations of Klotho expression, and hence renal and extrarenal complications associated with Klotho loss.
Collapse
Affiliation(s)
- Vasiliki Delitsikou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland.,Laboratory of Nephrology, Department of Internal Medicine Specialties, HUG, Geneva, Switzerland
| | - George Jarad
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Renuga Devi Rajaram
- Department of Cell Physiology and Metabolism, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland.,Laboratory of Nephrology, Department of Internal Medicine Specialties, HUG, Geneva, Switzerland
| | - Frédérique Ino
- Department of Cell Physiology and Metabolism, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland.,Laboratory of Nephrology, Department of Internal Medicine Specialties, HUG, Geneva, Switzerland
| | - Joseph M Rutkowski
- Touchstone Diabetes Centre, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Medical Physiology, Texas A&M College of Medicine, College Station, Texas
| | - Ci-Di Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Celio X C Santos
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Philipp E Scherer
- Touchstone Diabetes Centre, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Eric Feraille
- Department of Cell Physiology and Metabolism, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sophie de Seigneux
- Department of Cell Physiology and Metabolism, Faculty of Medicine, CMU, University of Geneva, Geneva, Switzerland.,Laboratory of Nephrology, Department of Internal Medicine Specialties, HUG, Geneva, Switzerland
| |
Collapse
|
18
|
Fu R, Xia Y, Li M, Mao R, Guo C, Zhou M, Tan H, Liu M, Wang S, Yang N, Zhao J. Pim-1 as a Therapeutic Target in Lupus Nephritis. Arthritis Rheumatol 2019; 71:1308-1318. [PMID: 30791224 DOI: 10.1002/art.40863] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Lupus nephritis (LN) is a major determinant of morbidity and mortality in systemic lupus erythematosus (SLE). Pim-1 regulates lymphocyte proliferation and activation. The role of Pim-1 in autoimmune disease remains unclear. This study was undertaken to test the hypothesis that inhibition of Pim-1 would have therapeutic potential in patients with LN. METHODS Pim-1 expression was analyzed in lupus-prone (NZB × NZW)F1 mice (n = 6), human peripheral blood mononuclear cells (PBMCs) from SLE patients (n = 10), and glomeruli from patients with LN (n = 8). The therapeutic effect of the Pim-1 inhibitor AZD1208 was assessed in the same murine lupus model (n = 10 mice per group). In vitro analysis was conducted to explore the mechanisms of action of Pim-1 in mouse and human podocytes after Pim-1 expression had been induced by anti-double-stranded DNA (anti-dsDNA) antibody-positive serum. Finally, MRL/lpr mice were used to confirm the therapeutic effects of Pim-1 inhibition in vivo (n = 10 mice per group). RESULTS Up-regulation of Pim-1 was seen in renal lysates from diseased (NZB × NZW)F1 mice and in PBMCs from patients with SLE and renal biopsy tissue from patients with LN, relative to their control counterparts (each P < 0.05). The Pim-1 inhibitor AZD1208 reduced the severity of proteinuria, glomerulonephritis, renal immune complex deposits, and serum anti-dsDNA antibody levels, concomitant with the suppression of NFATc1 expression and NLRP3 inflammasome activation, in diseased (NZB × NZW)F1 mice (each P < 0.05 versus controls). Moreover, in mouse and human podocytes, Pim-1 knockdown with targeted small interfering RNA (siRNA) suppressed NFATc1 and NLRP3 inflammasome signaling in the presence of anti-dsDNA-positive serum (each P < 0.05 versus control siRNA). Mechanistically, Pim-1 modulated NLRP3 inflammasome activation through intracellular Ca2+ (P < 0.05 versus normal controls). The therapeutic effect of Pim-1 blockade was replicated in MRL/lpr mice. CONCLUSION These data identify Pim-1 as a critical regulator of LN pathogenesis in patients with SLE. Targeting of the Pim-1/NFATc1/NLRP3 pathway might therefore have therapeutic potential in human LN.
Collapse
Affiliation(s)
- Rong Fu
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Xia
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meirong Li
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Renxiang Mao
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaohuan Guo
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mianjing Zhou
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hechang Tan
- Fourth Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Meiling Liu
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Wang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Niansheng Yang
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jijun Zhao
- First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
19
|
He C, Shi W, Li R, Zhang L. [NFAT2 mediates high glucose-induced apoptosis in glomerular podocytes in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1270-1276. [PMID: 30377135 DOI: 10.3969/j.issn.1673-4254.2018.10.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine whether hyperglycemia activates NFAT2 in cultured podocytes to cause podocyte apoptosis and explore the role of NFAT2 in high glucose-induced podocyte apoptosis. METHODS Immortalized mouse podocytes were cultured in the presence of normal (5.3 mmol/L) or high glucose (10, 20, 30, and 40 mmol/L) or pretreated with 11R-vivit (100 nmol/L) or cyclosporine A (500 nmol/L) before exposure to 20 mmol/L glucose for different durations (0.5-48 h). The activation of NFAT2 in the podocytes was detected using Western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was explored by observing the inhibition of NFAT2 activation by 11R-vivit using flow cytometry. Intracellular Ca2+ was monitored in high glucose-treated podocytes using Fluo-3/AM. The mRNA and protein expressions of the apoptosis gene Bax were detected using real time-qPCR and Western blotting. RESULTS Exposure to high glucose in the medium time- and dose-dependently activated NFAT2 in cultured podocytes. Pretreatment with cyclosporine A or 11R- VIVIT completely blocked nuclear accumulation of NFAT2. Treatment with 11R- vivit also inhibited high glucoseinduced apoptosis in cultured podocytes. Exposure to high glucose obviously increased [Ca2 +]I in the podocytes to cause activation of calcineurin and the subsequent increment of nuclear accumulation of NFAT2 and Bax expression. CONCLUSIONS High glucose-induced apoptosis in podocytes is mediated by calcineurin/NFAT2/Bax signaling pathway, which may serve as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Chaosheng He
- Department of Nephrology, Guangdong General Hospital//Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Wei Shi
- Department of Nephrology, Guangdong General Hospital//Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong General Hospital//Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Li Zhang
- Department of Nephrology, Guangdong General Hospital//Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
20
|
Lei X, Zhang L, Li Z, Ren J. Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2785-2793. [PMID: 30233141 PMCID: PMC6132489 DOI: 10.2147/dddt.s166525] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective This study aims to figure out the mechanism of astragaloside IV (AS-IV) in the protection of podocyte apoptosis in diabetic nephropathy (DN) rats. Materials and methods Streptozotocin (STZ) was used to induce diabetes in rats, and the diabetic rats were treated with 5 mg/kg/d of AS-IV for 12 weeks. Albuminuria level, relative TUG1 and TRAF5 levels, and TRAF5 and cleaved-caspase-3 protein levels were examined by ELISA, quantitative reverse transcription (qRT)-PCR, and Western blot analyses, respectively. The interaction between TUG1 and TRAF5 was confirmed by RNA pull-down and RNA precipitation. TUNEL assay was used to detect podocyte apoptosis. Results Compared with control rats, DN rats had higher albuminuria and TRAF5 levels and lower TUG1 level. AS-IV treatment attenuated albuminuria and TRAF5 levels and improved TUG1 level in DN rats. TUG1 was downregulated and TRAF5 was upregulated in high-glucose-treated MPC5 cells, and AS-IV ameliorated the TUG1 level. In addition, TUG1 interacted with TRAF5, and TUG1 overexpression promoted degradation of TRAF5 protein. Besides, AS-IV modulated TRAF5 expression through regulating TUG1. AS-IV decreased podocyte apoptosis via the TUG1/TRAF5 pathway. Finally, in vivo experiment proved that si-TUG1 abrogated the protective effect of AS-IV on DN. Conclusion AS-IV attenuated podocyte apoptosis and protected diabetic rats from DN via the lncRNA-TUG1/TRAF5 pathway.
Collapse
Affiliation(s)
- Xiao Lei
- Traditional Chinese Medicine Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, People's Republic of China,
| | - Limei Zhang
- Traditional Chinese Medicine Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, People's Republic of China,
| | - Zonglin Li
- Traditional Chinese Medicine Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, People's Republic of China,
| | - Jigang Ren
- Traditional Chinese Medicine Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, People's Republic of China,
| |
Collapse
|