1
|
Luo Y, Li M, You J, Jiang J, Zeng M, Luo M. Regulation of vascular smooth muscle cells phenotype by metformin up-regulated miR-1/ CCND1 axis via targeting AMPK/TGF-β signaling pathway. Mol Biol Rep 2025; 52:437. [PMID: 40299098 DOI: 10.1007/s11033-025-10532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs), characterized by the tissue-specific expression of certain microRNAs (miRNAs), is a critical factor in the development of diabetic vascular diseases. Metformin, a widely prescribed anti-diabetic medication for type 2 diabetes treatment, activates the adenosine monophosphate-activated protein kinase (AMPK) pathway and exerts a protective effect on vascular endothelium. Although the regulatory effects of metformin on the switch of the vascular smooth muscle cell phenotype have been identified, the specific role of miRNAs in this process remains unclear. We identified a specific miR-1 in response to metformin treatment and determined its effects on both miR-1 and its targets. Subsequently, we investigated the influence of these factors on the metformin-induced phenotype switch in vascular smooth muscle cells, specifically focusing on proliferation and migration, as well as activation of the AMPK/Transforming Growth Factor (TGF-β) axis. This was achieved using various methodologies, including bioinformatics analysis, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot analysis, wound scratch assays, and Cell Counting Kit-8 assays. Our findings showed that metformin upregulated miR-1, which directly targets cyclin D1 (CCND1) in VSMCs. Metformin was observed to enhance the expression of contractile phenotype proteins, including α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SMMHC), while simultaneously reducing the expression of proliferative phenotype proteins such as CCND1 and proliferating cell nuclear antigen (PCNA). The inhibition of miR-1 was found to reverse the effects of metformin on the phenotypic switch of VSMCs. This occurs partly through the AMPK/TGF-β signaling pathway and inhibits the migration and proliferation of VSMCs.
Collapse
Affiliation(s)
- Yulin Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengting Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Xia Z, Zhou C, Hong Y, Li F, Zhang W, Ji H, Xiao Y, Li S, Li S, Lu X, Li S, Tan K, Xin H, Wang Z, Lian Z, Guo M. TFPI2 hypermethylation promotes diabetic atherosclerosis progression through the Ap2α/PPARγ axis. J Mol Cell Cardiol 2025; 198:45-59. [PMID: 39631358 DOI: 10.1016/j.yjmcc.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Diabetes mellitus significantly escalates the risk of accelerated atherosclerosis (AS), severely affecting cardiovascular health. Our research, leveraging Gene Expression Omnibus (GEO) database analysis (GSE118481), revealed diminished TFPI2 expression in diabetic patients' atherosclerotic plaques. Further validation in carotid artery plaques and an AS mouse model confirmed TFPI2's reduced expression in diabetes. Through TFPI2 knockdown in non-diabetic mice, we observed aggravated plaque burden and increased inflammatory M1 macrophage polarization. Conversely, TFPI2 overexpression in diabetic mice improved plaque stability and induced reparative M2 macrophage polarization, countering hyperglycemia's negative effects. Mechanistically, transcription factor activator protein 2α (AP-2α) is a repressor of PPPARg transcription, and the interaction of TFPI2 with the transcription factor AP-2α blocks AP-2α binding to the PPARγ gene promoter, which is essential for PPARγ-mediated transcription and the transition from M1 to M2 macrophages. Additionally, hyperglycemia-induced DNA methyltransferase 1 (DNMT1) upregulation heightens TFPI2 methylation, reducing its expression. Our findings spotlight the TFPI2/AP-2α/PPARγ axis as crucial in diabetic AS modulation, proposing its targeting as a new therapeutic strategy to halt diabetes-driven AS progression, highlighting TFPI2's therapeutic promise in addressing diabetes-related cardiovascular issues.
Collapse
Affiliation(s)
- Zongyi Xia
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Chi Zhou
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yefeng Hong
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Fuhai Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Wenzhong Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Hongwei Ji
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Yu Xiao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Shifang Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Shufa Li
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Xiaohong Lu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Shaohua Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Kai Tan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhenxun Lian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, Shandong, China.
| |
Collapse
|
3
|
Bakhashab S, Barber R, O’Neill J, Arden C, Weaver JU. Overexpression of miR-199b-5p in Colony Forming Unit-Hill's Colonies Positively Mediates the Inflammatory Response in Subclinical Cardiovascular Disease Model: Metformin Therapy Attenuates Its Expression. Int J Mol Sci 2024; 25:8087. [PMID: 39125657 PMCID: PMC11311364 DOI: 10.3390/ijms25158087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Well-controlled type 1 diabetes (T1DM) is characterized by inflammation and endothelial dysfunction, thus constituting a suitable model of subclinical cardiovascular disease (CVD). miR-199b-5p overexpression in murine CVD has shown proatherosclerotic effects. We hypothesized that miR-199b-5p would be overexpressed in subclinical CVD yet downregulated following metformin therapy. Inflammatory and vascular markers were measured in 29 individuals with T1DM and 20 matched healthy controls (HCs). miR-199b-5p expression in CFU-Hill's colonies was analyzed from each study group, and correlations with inflammatory/vascular health indices were evaluated. Significant upregulation of miR-199b-5p was observed in T1DM, which was significantly downregulated by metformin. miR-199b-5p correlated positively with vascular endothelial growth factor-D and c-reactive protein (CRP: nonsignificant). ROC analysis determined miR-199b-5p to define subclinical CVD by discriminating between HCs and T1DM individuals. ROC analyses of HbA1c and CRP showed that the upregulation of miR-199b-5p in T1DM individuals defined subclinical CVD at HbA1c > 44.25 mmol and CRP > 4.35 × 106 pg/mL. Ingenuity pathway analysis predicted miR-199b-5p to inhibit the target genes SIRT1, ETS1, and JAG1. Metformin was predicted to downregulate miR-199b-5p via NFATC2 and STAT3 and reverse its downstream effects. This study validated the antiangiogenic properties of miR-199b-5p and substantiated miR-199b-5p overexpression as a biomarker of subclinical CVD. The downregulation of miR-199b-5p by metformin confirmed its cardio-protective effect.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia;
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK (J.O.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Rosie Barber
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK (J.O.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Josie O’Neill
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK (J.O.)
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Catherine Arden
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK (J.O.)
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
4
|
Teuwen JTJ, van der Vorst EPC, Maas SL. Navigating the Maze of Kinases: CaMK-like Family Protein Kinases and Their Role in Atherosclerosis. Int J Mol Sci 2024; 25:6213. [PMID: 38892400 PMCID: PMC11172518 DOI: 10.3390/ijms25116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Circulating low-density lipoprotein (LDL) levels are a major risk factor for cardiovascular diseases (CVD), and even though current treatment strategies focusing on lowering lipid levels are effective, CVD remains the primary cause of death worldwide. Atherosclerosis is the major cause of CVD and is a chronic inflammatory condition in which various cell types and protein kinases play a crucial role. However, the underlying mechanisms of atherosclerosis are not entirely understood yet. Notably, protein kinases are highly druggable targets and represent, therefore, a novel way to target atherosclerosis. In this review, the potential role of the calcium/calmodulin-dependent protein kinase-like (CaMKL) family and its role in atherosclerosis will be discussed. This family consists of 12 subfamilies, among which are the well-described and conserved liver kinase B1 (LKB1) and 5' adenosine monophosphate-activated protein kinase (AMPK) subfamilies. Interestingly, LKB1 plays a key role and is considered a master kinase within the CaMKL family. It has been shown that LKB1 signaling leads to atheroprotective effects, while, for example, members of the microtubule affinity-regulating kinase (MARK) subfamily have been described to aggravate atherosclerosis development. These observations highlight the importance of studying kinases and their signaling pathways in atherosclerosis, bringing us a step closer to unraveling the underlying mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Jules T. J. Teuwen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Yu J, Liu H, Chen Y, Wang L, Chen P, Zhao Y, Ou C, Chen W, Hu J, Wang Y, Wang Y. miR-449a disturbs atherosclerotic plaque stability in streptozotocin and high-fat diet-induced diabetic mice by targeting CEACAM1. Diabetol Metab Syndr 2024; 16:98. [PMID: 38715117 PMCID: PMC11077876 DOI: 10.1186/s13098-024-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Emerging evidence indicates carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is involved in the development of atherosclerosis (AS). However, the roles and functions of CEACAM1 in AS remain unknown. Therefore, this study aims to investigate the roles and molecular functions of CEACAM1 in AS. METHODS We constructed a diabetes mellitus (DM) + high-fat diet (HFD) mouse model based on the streptozotocin (STZ)-induced apolipoprotein E-knockdown (ApopE-/-) mouse to investigate the roles and regulatory mechanism of miR-449a/CEACAM1 axis. The mRNA expression and protein levels in this study were examined using quantity PCR, western blot, immunofluorescence (IF), enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC), respectively. And the lipid deposition and collagen content were detected using Oil Red O and Sirius Red staining. Cell apoptosis, migration, invasion, and tuber formation were detected by Annexin-V FITC/PI, wound healing, transwell, and tuber formation assays, respectively. The relationship between miR-449a and CEACAM1 was determined by a dual-luciferase reporter gene assay. RESULTS miR-449a and MMP-9 were upregulated, and CEACAM1 was downregulated in the DM + HFD MOUSE model. Upregulation of CEACAM1 promoted atherosclerotic plaque stability and inhibited inflammation in the DM + HFD mouse model. And miR-449a directly targeted CEACAM1. Besides, miR-449a interacted with CEACAM1 to regulate atherosclerotic plaque stability and inflammation in DM-associated AS mice. In vitro, the rescue experiments showed miR-449a interacted with CEACAM1 to affect apoptosis, migration, invasion, and tuber formation ability in high glucose (HG)-induced HUVECs. CONCLUSION These results demonstrated that miR-449a promoted plaque instability and inflammation in DM and HFD-induced mice by targeting CEACAM1.
Collapse
Affiliation(s)
- Jie Yu
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Rd, Kunming, Yunnan, 650032, China
| | - Han Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Yu Chen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, No.212 Daguan Rd, Kunming, Yunnan, 650032, China
| | - Ling Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Peng Chen
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Yue Zhao
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Chunxia Ou
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Wei Chen
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Jie Hu
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China
| | - Yu Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China.
| | - Yan Wang
- Laboratory of Molecular Cardiology, Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Rd, Kunming, Yunnan, 650032, China.
| |
Collapse
|
6
|
Qiu Y, Zhang X, Li SS, Li YL, Mao BY, Fan JX, Shuang-Guo, Yin YL, Li P. Citronellal can alleviate vascular endothelial dysfunction by reducing ectopic miR-133a expression. Life Sci 2024; 339:122382. [PMID: 38154610 DOI: 10.1016/j.lfs.2023.122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
AIMS Endothelial dysfunction (ED) is the initial cause of atherosclerosis (AS) and an early marker of many cardiovascular diseases (CVD). Citronellal (CT), a monoterpenoid natural product extracted from grass plant Citronella, has been shown to have anti-thrombotic, anti-hypertensive and anti-diabetic cardiomyopathy activities. The aim of this study is to investigate the effects of citronellal on vascular endothelial dysfunction and the underlying mechanisms. MATERIALS AND METHODS The left common carotid artery was subjected to one-time balloon injury to cause vascular endothelial injury, and the AS model was established by feeding with high-fat diet. Use of HUVECs H2O2 treatment induced HUVECs oxidative stress damage model. The blood lipid level, histopathology, Western blot, immunohistochemistry, RT-PCR, ELISA and in situ fluorescence hybridization of common carotid artery tissues and HUVECs were studied. KEY FINDINGS CT significantly reduced vascular plate area and endothelial lipid and cholesterol deposition in the common carotid artery of mice in a dose-dependent manner. CT increased the expression of activated protein 2α (AP-2α/TFAP2A) and circRNA_102979, and inhibited the ectopic expression level of miR-133a. However, the constructed lentivirus with AP-2α silencing and circRNA_102979 silencing reversed this phenomenon. SIGNIFICANCE The current study verifies CT can increase the expression levels of AP-2α and circRNA_102979 in vascular endothelium, increase the adsorption effect of circRNA_102979 on miR-133a and relieve the inhibitory effect of miR-133a on target genes, thereby alleviating AS-induced ED.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Pharmacy, Beijing Renhe Hospital, Beijing 102600, China; Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Xue Zhang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shan-Shan Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Yin-Lan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang 150040, China
| | - Bing-Yan Mao
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Jia-Xin Fan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Guo
- Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Ya-Ling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Department of Pharmacy, Beijing Renhe Hospital, Beijing 102600, China; Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
7
|
Bai W, Guo T, Wang H, Li B, Sun Q, Wu W, Zhang J, Zhou J, Luo J, Zhu M, Lu J, Li P, Dong B, Han S, Pang X, Zhang G, Bai Y, Wang S. S-nitrosylation of AMPKγ impairs coronary collateral circulation and disrupts VSMC reprogramming. EMBO Rep 2024; 25:128-143. [PMID: 38177907 PMCID: PMC10897329 DOI: 10.1038/s44319-023-00015-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
Collateral circulation is essential for blood resupply to the ischemic heart, which is dictated by the contractile phenotypic restoration of vascular smooth muscle cells (VSMC). Here we investigate whether S-nitrosylation of AMP-activated protein kinase (AMPK), a key regulator of the VSMC phenotype, impairs collateral circulation. In rats with collateral growth and development, nitroglycerin decreases coronary collateral blood flow (CCBF), inhibits vascular contractile phenotypic restoration, and increases myocardial infarct size, accompanied by reduced AMPK activity in the collateral zone. Nitric oxide (NO) S-nitrosylates human recombinant AMPKγ1 at cysteine 131 and decreases AMP sensitivity of AMPK. In VSMCs, exogenous expression of S-nitrosylation-resistant AMPKγ1 or deficient NO synthase (iNOS) prevents the disruption of VSMC reprogramming. Finally, hyperhomocysteinemia or hyperglycemia increases AMPKγ1 S-nitrosylation, prevents vascular contractile phenotypic restoration, reduces CCBF, and increases the infarct size of the heart in Apoe-/- mice, all of which is rescued in Apoe-/-/iNOSsm-/- mice or Apoe-/- mice with enforced expression of the AMPKγ1-C130A mutant following RI/MI. We conclude that nitrosative stress disrupts coronary collateral circulation during hyperhomocysteinemia or hyperglycemia through AMPK S-nitrosylation.
Collapse
Affiliation(s)
- Wenwu Bai
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Guo
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Han Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Li
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Quan Sun
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wanzhou Wu
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxiong Zhang
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jipeng Zhou
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingmin Luo
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Moli Zhu
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China
| | - Junxiu Lu
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Shufang Han
- Department of Cardiology, The 960th Hospital of PLA Joint Logistics Support Force, Jinan, China
| | - Xinyan Pang
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Guogang Zhang
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongping Bai
- Department of Geriatric Medicine and Coronary Circulation Center, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shuangxi Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
8
|
Bakhashab S, Megantara HP, Mahaputra DK, O’Neill J, Phowira J, Weaver JU. Decoding of miR-7-5p in Colony Forming Unit-Hill Colonies as a Biomarker of Subclinical Cardiovascular Disease-A MERIT Study. Int J Mol Sci 2023; 24:11977. [PMID: 37569355 PMCID: PMC10418446 DOI: 10.3390/ijms241511977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Colony forming unit-Hill (CFU-Hill) colonies were established to serve as a sensitive biomarker for vascular health. In animals, the overexpression of miR-7-5p was shown to be pro-atherogenic and associated with increased cardiovascular disease (CVD) risk. In a MERIT study, we aimed to explore the role of miR-7-5p expression in CFU-Hill colonies in type 1 diabetes mellitus (T1DM) and the effect of metformin in subclinical CVD. The expression of miR-7-5p in CFU-Hill colonies in 29 T1DM subjects without CVD and 20 healthy controls (HC) was measured. Metformin was administered to T1DM subjects for eight weeks. MiR-7-5p was upregulated in T1DM whereas metformin reduced it to HC levels. MiR-7-5p was positively correlated with c-reactive protein, and C-X-C motif chemokine ligand 10. The receiver operating characteristic curve revealed miR-7-5p as a biomarker of CVD, and upregulated miR-7-5p, defining subclinical CVD at a HbA1c level of 44.3 mmol/mol. Ingenuity pathway analysis predicted miR-7-5p to inhibit the mRNA expression of Krüppel-like factor 4, epidermal growth factor receptor, insulin-like growth factor 1 receptor, v-raf-1 murine leukemia viral oncogene homolog 1 and insulin receptor substrate ½, and insulin receptor, while metformin activated these miRNAs via transforming growth factor-β1 and Smad2/3. We proved the pro-atherogenic effect of miR-7-5p that maybe used as a prognostic biomarker.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 2189, Saudi Arabia
| | - Hamzah Pratama Megantara
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Dimas Kirana Mahaputra
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Josie O’Neill
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
| | - Jason Phowira
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Jolanta U. Weaver
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (H.P.M.); (D.K.M.); j.o' (J.O.); (J.P.)
- Department of Diabetes, Queen Elizabeth Hospital, Gateshead, Newcastle Upon Tyne NE9 6SH, UK
- Vascular Biology and Medicine Theme, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
9
|
Zhou NQ, Song YT, Liu WZ, Yue RZ, Tian XQ, Yang SC, Yin YL, Li P. Diagnostic ultrasound-mediated microbubble cavitation dose-dependently improves diabetic cardiomyopathy through angiogenesis. Cell Biol Int 2023; 47:178-187. [PMID: 36183368 DOI: 10.1002/cbin.11918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 01/19/2023]
Abstract
Ultrasound-mediated microbubble cavitation (UMMC) induces therapeutic angiogenesis to treat ischemic diseases. This study aimed to investigate whether diagnostic UMMC alleviates diabetic cardiomyopathy (DCM) and, if so, through which mechanisms. DCM model was established by injecting streptozocin into rats to induce hyperglycemia, followed by a high-fat diet. The combined therapy of cation microbubble with low-intensity diagnostic ultrasound (frequency = 4 MHz), with a pulse frequency of 20 Hz and pulse length (PL) of 8, 18, 26, or 36 cycles, was given to rats twice a week for 8 consecutive weeks. Diagnostic UMMC therapy with PL at 8, 18, and 26 cycles, but not 36 cycles, dramatically prevented myocardial fibrosis, improved heart functions, and increased angiogenesis, accompanied by increased levels of PI3K, Akt, and eNOS proteins in the DCM model of rats. In cultured endothelial cells, low-intensity UMMC treatment (PL = 3 cycles, sound pressure level = 50%, mechanical index = 0.82) increased cell viability and activated PI3K-Akt-eNOS signaling. The combination of diagnostic ultrasound with microbubble destruction dose-dependently promoted angiogenesis, thus improving heart function through PI3K-Akt-eNOS signaling in diabetes. Accordingly, diagnostic UMMC therapy should be considered to protect the heart in patients with diabetes.
Collapse
Affiliation(s)
- Nan-Qian Zhou
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Yu-Ting Song
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang, Henan, China.,Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei-Zhen Liu
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui-Zhu Yue
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin-Qiao Tian
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, Henan, China
| | - Shi-Chang Yang
- Department of Neurology, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ya-Ling Yin
- Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, College of Pharmacy, Xinxiang, Henan, China
| |
Collapse
|
10
|
Bu Y, Peng M, Tang X, Xu X, Wu Y, Chen AF, Yang X. Protective effects of metformin in various cardiovascular diseases: Clinical evidence and AMPK-dependent mechanisms. J Cell Mol Med 2022; 26:4886-4903. [PMID: 36052760 PMCID: PMC9549498 DOI: 10.1111/jcmm.17519] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin, a well-known AMPK agonist, has been widely used as the first-line drug for treating type 2 diabetes. There had been a significant concern regarding the use of metformin in people with cardiovascular diseases (CVDs) due to its potential lactic acidosis side effect. Currently growing clinical and preclinical evidence indicates that metformin can lower the incidence of cardiovascular events in diabetic patients or even non-diabetic patients beyond its hypoglycaemic effects. The underlying mechanisms of cardiovascular benefits of metformin largely involve the cellular energy sensor, AMPK, of which activation corrects endothelial dysfunction, reduces oxidative stress and improves inflammatory response. In this minireview, we summarized the clinical evidence of metformin benefits in several widely studied cardiovascular diseases, such as atherosclerosis, ischaemic/reperfusion injury and arrhythmia, both in patients with or without diabetes. Meanwhile, we highlighted the potential AMPK-dependent mechanisms in in vitro and/or in vivo models.
Collapse
Affiliation(s)
- Yizhi Bu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Mei Peng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xinyi Tang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xu Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Yifeng Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Alex F Chen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
11
|
miR-146a contributes to atherosclerotic plaque stability by regulating the expression of TRAF6 and IRAK-1. Mol Biol Rep 2022; 49:4205-4216. [PMID: 35195809 DOI: 10.1007/s11033-022-07253-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease. The vulnerable plaque of atherosclerotic can lead to the development of many diseases including acute coronary syndrome and coronary heart disease. It is well known that miR-146a is the key brake miRNA of the inflammatory signal transduction pathway. However, the effect of miR-146a on the stability of atherosclerotic plaque remains to be elucidated. METHODS AND RESULTS We constructed animal models of atherosclerosis and foam cell models, and overexpressed and knocked-down miR-146a in models. After staining with Hematoxylin-Eosin (HE), Oil Red O, immunocytochemistry (IHC) and Sirius Red, we used the proportion of (Lipids area + Macrophage area) and (SMCs area + collagen area) to evaluate atherosclerotic plaque stability. TUNEL and flow cytometry were performed to detect the apoptosis level of macrophages. Levels of inflammatory factors were detected via ELISA assay. The results showed that miR-146a, IRAK1 and TRAF6 were abnormally expressed in plaques of atherosclerotic animals. Overexpression of miR-146a contributed to the stability of plaques that inhibited plaque formation, macrophage apoptosis and levels of pro-inflammatory factors. The Dual-luciferase reporter gene assay, IF and FISH were used to verify the regulatory mechanism of miR-146a on IRAK1 and TRAF6. We found that IRAK1 and TRAF6 promoted lipid uptake, apoptosis, and release of pro-inflammatory factors of RAW264.7 macrophages, whereas miR-146a restored RAW264.7 macrophages phenotype by inhibiting IRAK1 and TRAF6 expression. CONCLUSIONS We display for the first time that miR-146a inhibits the formation of foam cells, RAW264.7 macrophage apoptosis and pro-inflammatory reaction through negative regulation of IRAK1 and TRAF6 expression, thereby enhancing the stability of atherosclerotic plaques.
Collapse
|
12
|
Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: Mechanism, regulation, possibilities, and limitations. Int J Biol Sci 2021; 17:3413-3427. [PMID: 34512156 PMCID: PMC8416736 DOI: 10.7150/ijbs.62506] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) caused by arteriosclerosis are the leading cause of death and disability worldwide. In the late stages of atherosclerosis, the atherosclerotic plaque gradually expands in the blood vessels, resulting in vascular stenosis. When the unstable plaque ruptures and falls off, it blocks the vessel causing vascular thrombosis, leading to strokes, myocardial infarctions, and a series of other serious diseases that endanger people's lives. Therefore, regulating plaque stability is the main means used to address the high mortality associated with CVDs. The progression of the atherosclerotic plaque is a complex integration of vascular cell apoptosis, lipid metabolism disorders, inflammatory cell infiltration, vascular smooth muscle cell migration, and neovascular infiltration. More recently, emerging evidence has demonstrated that non-coding RNAs (ncRNAs) play a significant role in regulating the pathophysiological process of atherosclerotic plaque formation by affecting the biological functions of the vasculature and its associated cells. The purpose of this paper is to comprehensively review the regulatory mechanisms involved in the susceptibility of atherosclerotic plaque rupture, discuss the limitations of current approaches to treat plaque instability, and highlight the potential clinical value of ncRNAs as novel diagnostic biomarkers and potential therapeutic strategies to improve plaque stability and reduce the risk of major cardiovascular events.
Collapse
Affiliation(s)
- Xiaoxin Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Yanyan Yang
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lu Zou
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Min Li
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China
| | - Tao Yu
- Institute for translational medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
13
|
Liu X, Xu Y, Cheng S, Zhou X, Zhou F, He P, Hu F, Zhang L, Chen Y, Jia Y. Geniposide Combined With Notoginsenoside R1 Attenuates Inflammation and Apoptosis in Atherosclerosis via the AMPK/mTOR/Nrf2 Signaling Pathway. Front Pharmacol 2021; 12:687394. [PMID: 34305600 PMCID: PMC8293676 DOI: 10.3389/fphar.2021.687394] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Inflammation and apoptosis of vascular endothelial cells play a key role in the occurrence and development of atherosclerosis (AS), and the AMPK/mTOR/Nrf2 signaling pathway plays an important role in alleviating the symptoms of AS. Geniposide combined with notoginsenoside R1 (GN combination) is a patented supplement for the prevention and treatment of AS. It has been proven to improve blood lipid levels and inhibit the formation of AS plaques; however, it is still unclear whether GN combination can inhibit inflammation and apoptosis in AS by regulating the AMPK/mTOR/Nrf2 signaling pathway and its downstream signals. Our results confirmed that the GN combination could improve blood lipid levels and plaque formation in ApoE−/− mice fed with a high-fat diet (HFD), inhibit the secretion of serum inflammatory factors and oxidative stress factors. It also decreased the expression of pyrin domain containing protein 3 (NLRP3) inflammasome-related protein and Bax/Bcl2/caspase-3 pathway-related proteins. At the same time, the GN combination could also inhibit the H2O2-induced inflammatory response and apoptosis of human umbilical vein endothelial cells (HUVECs), which is mainly related to the activation of the AMPK/mTOR pathway by GN combination, which in turn induces the activation of Nrf2/HO-1 signal. In addition, the above phenomenon could be significantly reversed by dorsomorphin. Therefore, our experiments proved for the first time that the GN combination can effectively inhibit AS inflammation and apoptosis by activating the AMPK/mTOR/Nrf2 signaling pathway to inhibit the NLRP3 inflammasome and Bax/Bcl2/caspase-3 pathway.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuling Xu
- College of Health, Fujian Medical University, Fuzhou, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peikun He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fang Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lifang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Zhao L, Zhang S, Su Q, Li S. Effects of withdrawing an atherogenic diet on the atherosclerotic plaque in rabbits. Exp Ther Med 2021; 22:751. [PMID: 34035848 PMCID: PMC8135140 DOI: 10.3892/etm.2021.10183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023] Open
Abstract
Lifestyle interventions and pharmacotherapy are the most common of non-invasive treatments for atherosclerosis, but the individual effect of diet on plaques remains unclear. The current study aimed to investigate the effect of withdrawing the atherogenic diet on plaque in the aortas of rabbits. Experimental atheroma was induced in 33 rabbits using a 1% high cholesterol diet for 30 days (H-30 d) or 90 days (H-90 d, baseline group). After 90 days of the atherogenic diet, the remaining animals were divided into four groups: A total of 10 rabbits continued to consume the atherogenic diet for 50 days (H-90 d & H-50 d; n=5) or 140 days (H-90 d & H-140 d; n=5). Another 13 rabbits were switched to a chow diet for 50 days (H-90 d & C-50 d; n=7) or 140 days (H-90 d & C-140 d; n=6). A total of 10 age-matched rabbits in the control groups were fed a chow diet for 90 and 230 days, respectively. The en face or cross-sectional plaque areas were determined using oil red O staining and elastic van Gieson staining. Immunohistochemistry analyses were used to assess the macrophages or smooth muscle cell contents. When fed an atherogenic diet for 90 days, the rabbits' abdominal aortas exhibited severe atherosclerotic lesions (the median en face plaque area was 63.6%). After withdrawing the atherogenic diet, the plaque area did not shrink with feeding the chow diet compared with the baseline, but increased to 71.8 or 80.5% after 50 or 140 days, respectively. After removing cholesterol from the diet, the lipids content in the plaques increased during the first 50 days, and then decreased compared with the baseline group. Furthermore, withdrawing the atherogenic diet increased the total collagen content and the percentage of the smooth muscle cells, alleviated macrophage infiltration, decreased the vulnerable index and promoted the cross-linking of collagen. Feeding the rabbits an atherogenic diet followed by removal of cholesterol from the diet did not lead to the regression of established lesions but instead delayed the progression of the lesions and promoted the stabilization of the plaque.
Collapse
Affiliation(s)
- Lijun Zhao
- Department of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shifang Zhang
- Department of Pulmonary Disease, Institute of Respiratory Disease, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Qiaoli Su
- Department of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuangqing Li
- Department of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Alimoradi N, Firouzabadi N, Fatehi R. Metformin and insulin-resistant related diseases: Emphasis on the role of microRNAs. Biomed Pharmacother 2021; 139:111662. [PMID: 34243629 DOI: 10.1016/j.biopha.2021.111662] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is one of the most prescribed drugs in type II diabetes (T2DM) which has recently found new applications in the prevention and treatment of various illnesses, from metabolic disorders to cardiovascular and age-related diseases. Metformin improves insulin resistance (IR) by modulating metabolic mechanisms and mitochondrial biogenesis. Alternation of microRNAs (miRs) in the treatment of IR-related illnesses has been observed by metformin therapy. MiRs are small non-coding RNAs that play important roles in RNA silencing, targeting the 3'untranslated region (3'UTR) of most mRNAs and inhibiting the translation of related proteins. As a result, their dysregulation is associated with many diseases. Metformin may alter miRs levels in the treatment of various diseases by AMPK-dependent or AMPK-independent mechanisms. Here, we summarized the therapeutic role of metformin by modifying the aberrant expression of miRs as potential biomarkers or therapeutic targets in diseases in which IR plays a key role.
Collapse
Affiliation(s)
- Nahid Alimoradi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Shi X, Zhang Y, Han J, Peng W, Fang Z, Qin Y, Xu X, Lin J, Xiao F, Zhao L, Lin Y. Tryptanthrin Regulates Vascular Smooth Muscle Cell Phenotypic Switching in Atherosclerosis by AMP-Activated Protein Kinase/Acetyl-CoA Carboxylase Signaling Pathway. J Cardiovasc Pharmacol 2021; 77:642-649. [PMID: 33951699 DOI: 10.1097/fjc.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Atherosclerosis (AS) is one of the most severe cardiovascular diseases involved in the phenotypic switching of vascular smooth muscle cells (VSMCs). Tryptanthrin is a natural product with broad biological activities. However, the effect of tryptanthrin on atherosclerotic progression is unclear. The aim of this study was to determine the role of tryptanthrin in AS and explore the potential mechanism. In vitro, primary VSMCs were stimulated with platelet-derived growth factor-BB (PDGF) to induce cell dedifferentiation. Treatment with tryptanthrin (5 μM or 10 μM) suppressed the proliferation and recovered the contractility of VSMCs in the presence of PDGF. The contractile proteins (α-smooth muscle actin, calponin, and SM22α) were increased, and the synthetic protein vimentin was decreased by tryptanthrin in PDGF-induced VSMCs. ApoE-/- mice fed with high-fat diet were used as an in vivo model of AS. Similarly, gavage administration of tryptanthrin (50 mg/kg or 100 mg/kg) attenuated VSMC phenotypic changes from a contractile to a synthetic state in aortic tissues of AS mice. The serum lipid level, atherosclerotic plaque formation, and arterial intimal hyperplasia were attenuated by tryptanthrin. Furthermore, tryptanthrin increased the expression levels of phosphorylated AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) both in vitro and in vivo. Administration of compound C, an AMPK inhibitor, reversed the inhibitory effect of tryptanthrin on VSMC dedifferentiation in vitro. Thus, we demonstrate that tryptanthrin protects against AS progression through the inhibition of VSMC switching from a contractile to a pathological synthetic phenotype by the activation of AMPK/ACC pathway. It provides novel insights into AS prevention and treatment.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Acetyl-CoA Carboxylase/metabolism
- Animals
- Atherosclerosis/drug therapy
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Becaplermin/pharmacology
- Cell Plasticity/drug effects
- Cells, Cultured
- Disease Models, Animal
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- Phosphorylation
- Plaque, Atherosclerotic
- Quinazolines/pharmacology
- Signal Transduction
- Mice
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Lin
- Endocrinology and Metabolism, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Atherosclerosis, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; and
| | - Fucheng Xiao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Limin Zhao
- Department of Atherosclerosis, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; and
| | | |
Collapse
|
17
|
Kowara M, Cudnoch-Jedrzejewska A. Different Approaches in Therapy Aiming to Stabilize an Unstable Atherosclerotic Plaque. Int J Mol Sci 2021; 22:ijms22094354. [PMID: 33919446 PMCID: PMC8122261 DOI: 10.3390/ijms22094354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic plaque vulnerability is a vital clinical problem as vulnerable plaques tend to rupture, which results in atherosclerosis complications—myocardial infarctions and subsequent cardiovascular deaths. Therefore, methods aiming to stabilize such plaques are in great demand. In this brief review, the idea of atherosclerotic plaque stabilization and five main approaches—towards the regulation of metabolism, macrophages and cellular death, inflammation, reactive oxygen species, and extracellular matrix remodeling have been presented. Moreover, apart from classical approaches (targeted at the general mechanisms of plaque destabilization), there are also alternative approaches targeted either at certain plaques which have just become vulnerable or targeted at the minimization of the consequences of atherosclerotic plaque erosion or rupture. These alternative approaches have also been briefly mentioned in this review.
Collapse
|
18
|
Fu CN, Song JW, Song ZP, Wang QW, Bai WW, Guo T, Li P, Liu C, Wang SX, Dong B. Excessive expression of miR-1a by statin causes skeletal injury through targeting mitogen-activated protein kinase kinase kinase 1. Aging (Albany NY) 2021; 13:11470-11490. [PMID: 33864447 PMCID: PMC8109097 DOI: 10.18632/aging.202839] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022]
Abstract
Backgrounds: A major side effect of statin, a widely used drug to treat hyperlipidemia, is skeletal myopathy through cell apoptosis. The aim of this study is to investigate the roles of microRNA in statin-induced injury. Methods: Apolipoprotein E knockout (ApoE-/-) mice were administered with simvastatin (20 mg/kg/day) for 8 weeks. Exercise capacity was evaluated by hanging grid test, forelimb grip strength, and running tolerance test. Results: In cultured skeletal muscle cells, statin increased the levels of miR-1a but decreased the levels of mitogen-activated protein kinase kinase kinase 1 (MAP3K1) in a time or dose dependent manner. Both computational target-scan analysis and luciferase gene reporter assay indicated that MAP3K1 is the target gene of miR-1a. Statin induced cell apoptosis of skeletal muscle cells, but abolished by downregulating of miR-1a or upregulation of MAP3K1. Further, the effects of miR-1a inhibition on statin-induced cell apoptosis were ablated by MAP3K1 siRNA. In ApoE-/- mice, statin induced cell apoptosis of skeletal muscle cells and decreased exercise capacity in mice infected with vector, but not in mice with lentivirus-mediated miR-1a gene silence. Conclusion: Statin causes skeletal injury through induction of miR-1a excessive expression to decrease MAP3K1 gene expression.
Collapse
Affiliation(s)
- Chang-Ning Fu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Peng Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian-Wen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Wu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
19
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
20
|
Hu DJ, Li ZY, Zhu YT, Li CC. Overexpression of long noncoding RNA ANRIL inhibits phenotypic switching of vascular smooth muscle cells to prevent atherosclerotic plaque development in vivo. Aging (Albany NY) 2020; 13:4299-4316. [PMID: 33411680 PMCID: PMC7906209 DOI: 10.18632/aging.202392] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023]
Abstract
Background: Phenotypic switching of vascular smooth muscle cells (VSMCs) plays a key role in atherosclerosis. Long noncoding RNA ANRIL (lncRNA-ANRIL) is critical in vascular homeostasis. Metformin produces multiple beneficial effects in atherosclerosis. However, the underlying mechanisms need to be elucidated. Methods and Results: Metformin increased lncRNA-ANRIL expression and AMPK activity in cultured VSMCs, and inhibited the phenotypic switching of VSMCs to the synthetic phenotype induced by platelet-derived growth factor (PDGF). Overexpression of lncRNA-ANRIL inhibited phenotypic switching and reversed the reduction of AMPK activity in PDGF-treated VSMCs. While, gene knockdown of lncRNA-ANRIL by adenovirus or silence of AMPKγ through siRNA abolished AMPK activation induced by metformin in VSMCs. RNA-immunoprecipitation analysis indicated that the affinity of lncRNA-ANRIL to AMPKγ subunit was increased by metformin. In vivo, administration of metformin increased the levels of lncRNA-ANRIL, suppressed VSMC phenotypic switching, and prevented the development of atherosclerotic plaque in Apoe-/- mice fed with western diet. These protective effects of metformin were abolished by infecting Apoe-/- mice with adenovirus expressing lncRNA-ANRIL shRNA. The levels of AMPK phosphorylation, AMPK activity, and lncRNA-ANRIL expression were decreased in human atherosclerotic lesions. Conclusion: Metformin activates AMPK to suppress the formation of atherosclerotic plaque through upregulation of lncRNA-ANRIL.
Collapse
Affiliation(s)
- Da-Jun Hu
- Department of Cardiology, The First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Zhen-Yu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan-Ting Zhu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
21
|
Zhu ML, Gao ZT, Lu JX, Wang Y, Wang G, Zhu TT, Li P, Liu C, Wang SX, Yang L. Amorphous nano-selenium quantum dots prevent pulmonary arterial hypertension through recoupling endothelial nitric oxide synthase. Aging (Albany NY) 2020; 13:3368-3385. [PMID: 33323558 PMCID: PMC7906187 DOI: 10.18632/aging.202215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/29/2020] [Indexed: 04/28/2023]
Abstract
AIMS We have previously reported that nano-selenium quantum dots (SeQDs) prevented endothelial dysfunction in atherosclerosis. This study is to investigate whether amorphous SeQDs (A-SeQDs) increase endogenous tetrahydrobiopterin biosynthesis to alleviate pulmonary arterial hypertension. RESULTS Both A-SeQDs and C-SeQDs were stable under physiological conditions, while the size of A-SeQDs was smaller than C-SeQDs by high resolution-transmission electron microscopy scanning. In monocrotaline-injected mice, oral administration of A-SeQDs was more effective to decrease pulmonary arterial pressure, compared to C-SeQDs and organic selenium. Further, A-SeQDs increased both nitric oxide productions and intracellular BH4 levels, upregulated dihydrofolate reductase activity in lungs, and improved pulmonary arterial remodeling. Gene deletion of dihydrofolate reductase abolished these effects produced by A-SeQDs in mice. Finally, the blood levels of tetrahydrobiopterin and selenium were decreased in patients with pulmonary arterial hypertension. CONCLUSION A-SeQDs increase intracellular tetrahydrobiopterin to prevent pulmonary arterial hypertension through recoupling endothelial nitric oxide synthase. METHODS Two polymorphs of SeQDs and A-SeQDs, and a crystalline form of SeQDs (C-SeQDs) were prepared through self-redox decomposition of selenosulfate precursor. Mice were injected with monocrotaline to induce pulmonary arterial hypertension in vivo. Pulmonary arterial pressure was measured.
Collapse
Affiliation(s)
- Mo-Li Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhi-Tao Gao
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jun-Xiu Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yang Wang
- Department of Pharmacy, The 3rd Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Ge Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Tian-Tian Zhu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Shuang-Xi Wang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, Hubei, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
22
|
Tao J, Xia L, Cai Z, Liang L, Chen Y, Meng J, Wang Z. Interaction Between microRNA and DNA Methylation in Atherosclerosis. DNA Cell Biol 2020; 40:101-115. [PMID: 33259723 DOI: 10.1089/dna.2020.6138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease accompanied by complex pathological changes, such as endothelial dysfunction, foam cell formation, and vascular smooth muscle cell proliferation. Many approaches, including regulating AS-related gene expression in the transcriptional or post-transcriptional level, contribute to alleviating AS development. The DNA methylation is a crucial epigenetic modification in regulating cell function by silencing the relative gene expression. The microRNA (miRNA) is a type of noncoding RNA that plays an important role in gene post-transcriptional regulation and disease development. The DNA methylation and the miRNA are important epigenetic factors in AS. However, recent studies have found a mutual regulation between these two factors in AS development. In this study, recent insights into the roles of miRNA and DNA methylation and their interaction in the AS progression are reviewed.
Collapse
Affiliation(s)
- Jun Tao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Linzhen Xia
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Zemin Cai
- Department of Pediatrics and The First Affiliated Hospital of University of South China, Hengyang, China
| | - Lingli Liang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Yanjun Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
23
|
Li XY, Zhang HM, An GP, Liu MY, Han SF, Jin Q, Song Y, Lin YM, Dong B, Wang SX, Meng LB. S-Nitrosylation of Akt by organic nitrate delays revascularization and the recovery of cardiac function in mice following myocardial infarction. J Cell Mol Med 2020; 25:27-36. [PMID: 33128338 PMCID: PMC7810919 DOI: 10.1111/jcmm.15263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/29/2020] [Accepted: 03/20/2020] [Indexed: 12/26/2022] Open
Abstract
The effects of long‐term nitrate therapy are compromised due to protein S‐Nitrosylation, which is mediated by nitric oxide (NO). This study is to determine the role of Akt S‐Nitrosylation in the recovery of heart functions after ischaemia. In recombinant Akt protein and in HEK293 cells, NO donor decreased Akt activity and induced Akt S‐Nitrosylation, but was abolished if Akt protein was mutated by replacing cysteine 296/344 with alanine (Akt‐C296/344A). In endothelial cells, NO induced Akt S‐Nitrosylation, reduced Akt activity and damaged multiple cellular functions including proliferation, migration and tube formation. These alterations were ablated if cells expressed Akt‐C296/344A mutant. In Apoe−/− mice, nitroglycerine infusion increased both Akt S‐Nitrosylation and infarct size, reduced Akt activity and capillary density, and delayed the recovery of cardiac function in ischaemic hearts, compared with mice infused with vehicle. Importantly, these in vivo effects of nitroglycerine in Apoe−/− mice were remarkably prevented by adenovirus‐mediated enforced expression of Akt‐C296/344A mutant. In conclusion, long‐term usage of organic nitrate may inactivate Akt to delay ischaemia‐induced revascularization and the recovery of cardiac function through NO‐mediated S‐Nitrosylation.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Hong-Ming Zhang
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Gui-Peng An
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mo-Yan Liu
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Shu-Fang Han
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Qun Jin
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Ying Song
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Yi-Meng Lin
- Department of Cardiology, the 960thHospital of Chinese People's Liberation Army, Jinan, China
| | - Bo Dong
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuang-Xi Wang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ling-Bo Meng
- Department of Cardiology, The Second Hospital affiliated to Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Shan MR, Zhou SN, Fu CN, Song JW, Wang XQ, Bai WW, Li P, Song P, Zhu ML, Ma ZM, Liu Z, Xu J, Dong B, Liu C, Guo T, Zhang C, Wang SX. Vitamin B6 inhibits macrophage activation to prevent lipopolysaccharide-induced acute pneumonia in mice. J Cell Mol Med 2020; 24:3139-3148. [PMID: 31970902 PMCID: PMC7077594 DOI: 10.1111/jcmm.14983] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP‐activated protein kinase (AMPK) produces anti‐inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin‐1 beta (IL‐1β), IL‐6 and tumour necrosis factor alpha (TNF‐α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP‐activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose‐dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL‐1β, IL‐6 and TNF‐α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5‐aminoimidazole‐4‐carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS‐induced macrophage activation if AMPK was in deficient through siRNA‐mediated approaches. Further, the anti‐inflammatory effects produced by VitB6 or AICAR in LPS‐treated macrophages were abolished in DOK3 gene knockout (DOK3−/−) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS‐induced both systemic inflammation and acute pneumonia in wild‐type mice, but not in DOK3−/− mice. VitB6 prevents LPS‐induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.
Collapse
Affiliation(s)
- Mei-Rong Shan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Sheng-Nan Zhou
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Chang-Ning Fu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jia-Wen Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Qing Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Wen-Wu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.,Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Zhi-Min Ma
- Department of Endocrinology, Suzhou Science & Technology Town Hospital, Suzhou, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China.,College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
25
|
Solly EL, Dimasi CG, Bursill CA, Psaltis PJ, Tan JTM. MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis. J Clin Med 2019; 8:E2199. [PMID: 31847094 PMCID: PMC6947565 DOI: 10.3390/jcm8122199] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L. Solly
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Catherine G. Dimasi
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
| | - Christina A. Bursill
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Peter J. Psaltis
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Joanne T. M. Tan
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
26
|
Song Z, Li H, Liang J, Xu Y, Zhu L, Ye X, Wu J, Li W, Xiong Q, Li S. Sulfated polysaccharide from Undaria pinnatifida stabilizes the atherosclerotic plaque via enhancing the dominance of the stabilizing components. Int J Biol Macromol 2019; 140:621-630. [PMID: 31445148 DOI: 10.1016/j.ijbiomac.2019.08.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate the stable effect and mechanism of sulfated polysaccharide from Undaria pinnatifida (SPUP) on atherosclerotic plaque. The results showed that atherosclerotic plaques in the ApoE-/- mice of high-fat diet model group increased significantly without drug intervention. The content of vulnerable components (lipid, inflammatory macrophage) increased significantly, and the content of stability components (smooth muscle cell, collagen) reduced significantly. However, it could find that atherosclerotic plaque areas were decreased in a dose-dependent manner after SPUP intervention. SPUP could enhance the dominance of the stability components in plaque, and reduce the content of vulnerable component. Furthermore, SPUP could significantly reduce the matrix metalloprotein-9 content in atherosclerotic plaque. These results suggested that SPUP could stabilize atherosclerotic plaque by enhancing the dominance of the stability components content, reducing the vulnerability components content, and lowering the vulnerability index value.
Collapse
Affiliation(s)
- Zhuoyue Song
- School of Pharmaceutical Science, Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Hailun Li
- Department of Geriatric Medicine, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223002, Jiangsu, PR China
| | - Jian Liang
- School of Pharmaceutical Science, Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Yingtao Xu
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai 264199, Shangdong, PR China
| | - Lijun Zhu
- School of Pharmaceutical Science, Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Xianying Ye
- School of Pharmaceutical Science, Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Jun Wu
- School of Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai 264199, Shangdong, PR China
| | - Wei Li
- School of Pharmaceutical Science, Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China
| | - Qingping Xiong
- School of Pharmaceutical Science, Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China; Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China.
| | - Shijie Li
- School of Pharmaceutical Science, Mathematical Engineering Academy of Chinese Medicine, Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
27
|
Inflammation‐regulatory microRNAs: Valuable targets for intracranial atherosclerosis. J Neurosci Res 2019; 97:1242-1252. [DOI: 10.1002/jnr.24487] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
|
28
|
Jia L, Zhang Y, Qu YJ, Huai J, Wei H, Yue SW. Gene therapy by lentivirus-mediated RNA interference targeting extracellular-regulated kinase alleviates neuropathic pain in vivo. J Cell Biochem 2019; 120:8110-8119. [PMID: 30426552 DOI: 10.1002/jcb.28090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUNDS Neuropathic pain is an abnormal pain, which is related to the activation of extracellular-regulated kinase (ERK) signaling. This study was to investigate the effects of ERK knockdown via lentivirus-mediated RNA interference on allodynia in rats with chronic compression of the dorsal root ganglia (DRG) and to uncover the potential mechanisms. METHODS The model of chronic compression of the dorsal root ganglia (CCD) was established in rats by surgery. Gene silence was induced by injecting rats with lentivirus expressing ERK short hairpin RNA (shRNA). Behavioral test was performed by calculating paw withdrawal mechanical threshold (PWMT) and thermal paw withdrawal latency (TPWL). RESULTS We firstly generated lentivirus expressing ERK shRNA to downregulate ERK gene expression both in vitro and in vivo by using Western blot analysis and quantitative reverse transcription polymerase chain reaction. In CCD, ERK mRNA, and protein levels in DRG neurons were dramatically increased, accompanied with decreased PWMT and TPWL. Lentivirus-mediated RNA interference decreased ERK gene expression in DRG neurons and normalized the PWMT and TPWL in CCD rats, but not in rats infected with lentivirus expressing negative control shRNA. Further, calcium responses of DRG neurons to the hypotonic solution and 4α-phorbol 12,13-didecanoate were enhanced in CCD rats, which were suppressed by lentivirus-mediated ERK gene silence. Finally, the levels of transient receptor potential vanilloid 4 gene expressions in DRG neurons and L4 to L5 spinal cord isolated from CCD rats were dramatically upregulated, which were reversed by lentivirus-mediated ERK gene knockdown. CONCLUSION Lentivirus-mediated RNA interference (RNAi) silencing targeting ERK might reverse CCD-induced neuropathic pain in rats through transient receptor potential vanilloid 4.
Collapse
Affiliation(s)
- Lei Jia
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Yang Zhang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Juan Qu
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Juan Huai
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Wei
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| | - Shou-Wei Yue
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
29
|
Zhang Y, Liu S, Feng Q, Huang X, Wang X, Peng Y, Zhao Z, Liu Z. Perilaldehyde activates AMP-activated protein kinase to suppress the growth of gastric cancer via induction of autophagy. J Cell Biochem 2019; 120:1716-1725. [PMID: 30378150 DOI: 10.1002/jcb.27491] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIM Perillaldehyde (PAH), one of the major oil components in Perilla frutescens, is very critical to health maintenance, for a wide range of human chronic diseases, including cancers. AMP-activated protein kinase (AMPK) has been implicated in the activation of autophagy in distinct tissues. This study was designed to explore whether PAH prevents gastric cancer growth and to investigate the molecular mechanism. METHODS AND RESULTS In cultured mouse gastric cancer cell line MFCs and human gastric cancer cell lines GC9811-P, PAH activated AMPK by increasing the Thr172 phosphorylation and activity in a time-/concentration-dependent manner. Furthermore, incubation of MFCs with PAH also increased autophagy as determined by monodansylcadaverine (MDC) staining, which was reversed by AMPK inhibitor compound C. PAH further decreased MFCs cell survival, which was abolished by compound C or autophagy inhibitor 3-Methyladenine (3-MA). In vivo studies indicated that 4-week administration of PAH (100 mg/kg/day) suppressed the growth of gastric cancer and increased the levels of autophagy-related proteins, including beclin-1, LC3-II, cathepsin, caspase-3, p53, and cathepsin in tumors isolated from the xenograft model of gastric cancer in mice. Moreover, these anticancer effects produced by PAH were abolished by coadministration of compound C or 3-MA in vivo. CONCLUSIONS PAH increases AMPK phosphorylation and activity to induce gastric cancer cell autophagy to inhibit the growth of gastric cancer. In perspective, therapy of PAH should be applied to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Suosi Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Qin Feng
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Xiuyun Huang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Xiangyang Wang
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Ya Peng
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
30
|
Zhu ML, Wang G, Wang H, Guo YM, Song P, Xu J, Li P, Wang S, Yang L. Amorphous nano-selenium quantum dots improve endothelial dysfunction in rats and prevent atherosclerosis in mice through Na +/H + exchanger 1 inhibition. Vascul Pharmacol 2019; 115:26-32. [PMID: 30695730 DOI: 10.1016/j.vph.2019.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/08/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
AIM Selenium, a trace element involved in important enzymatic activities inside the body, has protective effects against cardiovascular diseases including atherosclerosis. The safe dose of selenium in the organism is very narrow, limiting the supplementation of selenium in diet. The aim of this study is to explore whether selenium quantum dots (SeQDs) prevent atherosclerosis and to investigate the potential mechanisms. METHODS An amorphous form of SeQDs (A-SeQDs) and a crystalline form of SeQDs (C-SeQDs) were prepared through self-redox decomposition of selenosulfate precursor. Endothelial dysfunction was induced by balloon injury plus high fat diet (HFD) in rats. Atherosclerotic model was established by feeding Apoe-/- mice with HFD. RESULTS Administrations of A-SeQDs but not C-SeQDs dramatically improved endothelium-dependent relaxation, and accelerated would healing in primary endothelial cells isolated from rats, which was comprised by co-treatment of LiCl. Lentivirus-mediated knockdown of Na+/H+ exchanger 1 (NHE1) abolished LiCl-induced endothelial dysfunction in rats. In cultured endothelial cells, A-SeQDs, as well as cariporide, inhibited NHE1 activities, decreased intracellular pH value and Ca2+ concentration, and reduced calpain activity increased by ox-LDL. These protective effects of A-SeQDs were reversed by LiCl treatment in endothelial cells. In Apoe-/- mice feeding with HFD, A-SeQDs prevented endothelial dysfunction and reduced the size of atherosclerotic plaque in aortic arteries. Further, lentivirus-mediated NHE1 gene overexpression abolished the protective effects of A-SeQDs against endothelial dysfunction and atherosclerosis in Apoe-/- mice. CONCLUSION A-SeQDs prevents endothelial dysfunction and the growth of atherosclerotic plaque through NHE1 inhibition and subsequent inactivation of Ca2+/calpain signaling. Clinically, the administration of A-SeQDs is an effective approach to treat atherosclerosis.
Collapse
Affiliation(s)
- Mo-Li Zhu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ge Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China; School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - He Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Yu-Ming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Ping Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jian Xu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Peng Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Shuangxi Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
31
|
Yin S, Bai W, Li P, Jian X, Shan T, Tang Z, Jing X, Ping S, Li Q, Miao Z, Wang S, Ou W, Fei J, Guo T. Berberine suppresses the ectopic expression of miR-133a in endothelial cells to improve vascular dementia in diabetic rats. Clin Exp Hypertens 2018; 41:708-716. [PMID: 30472896 DOI: 10.1080/10641963.2018.1545846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sen Yin
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenwu Bai
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Tichao Shan
- Department of Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Zhenyu Tang
- Department of Intensive Care Unit, Qilu Hospital, Shandong University, Jinan, China
| | - Xuejiao Jing
- Department of Healthcare, Qilu Hospital, Shandong University, Jinan, China
| | - Song Ping
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quanzhong Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhang Miao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Shuangxi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wensheng Ou
- Department of Liver Disease, Chenzhou NO. 1 People’s Hospital, Chenzhou, China
| | - Jianchun Fei
- Department of Anaesthesia, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
32
|
He L, Zhou Q, Huang Z, Xu J, Zhou H, Lv D, Lu L, Huang S, Tang M, Zhong J, Chen JX, Luo X, Li L, Chen L. PINK1/Parkin-mediated mitophagy promotes apelin-13-induced vascular smooth muscle cell proliferation by AMPKα and exacerbates atherosclerotic lesions. J Cell Physiol 2018; 234:8668-8682. [PMID: 30456860 DOI: 10.1002/jcp.27527] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
Aberrant proliferation of vascular smooth muscle cells (VSMC) is a critical contributor to the pathogenesis of atherosclerosis (AS). Our previous studies have demonstrated that apelin-13/APJ confers a proliferative response in VSMC, however, its underlying mechanism remains elusive. In this study, we aimed to investigate the role of mitophagy in apelin-13-induced VSMC proliferation and atherosclerotic lesions in apolipoprotein E knockout (ApoE-/-) mice. Apelin-13 enhances human aortic VSMC proliferation and proliferative regulator proliferating cell nuclear antigen expression in dose and time-dependent manner, while is abolished by APJ antagonist F13A. We observe the engulfment of damage mitochondria by autophagosomes (mitophagy) of human aortic VSMC in apelin-13 stimulation. Mechanistically, apelin-13 increases p-AMPKα and promotes mitophagic activity such as the LC3I to LC3II ratio, the increase of Beclin-1 level and the decrease of p62 level. Importantly, the expressions of PINK1, Parkin, VDAC1, and Tom20 are induced by apelin-13. Conversely, blockade of APJ by F13A abolishes these stimulatory effects. Human aortic VSMC transfected with AMPKα, PINK1, or Parkin and subjected to apelin-13 impairs mitophagy and prevents proliferation. Additional, apelin-13 not only increases the expression of Drp1 but also reduces the expressions of Mfn1, Mfn2, and OPA1. Remarkably, the mitochondrial division inhibitor-1(Mdivi-1), the pharmacological inhibition of Drp1, attenuates human aortic VSMC proliferation. Treatment of ApoE-/- mice with apelin-13 accelerates atherosclerotic lesions, increases p-AMPKα and mitophagy in aortic wall in vivo. Finally, PINK1-/- mutant mice with apelin-13 attenuates atherosclerotic lesions along with defective in mitophagy. PINK1/Parkin-mediated mitophagy promotes apelin-13-evoked human aortic VSMC proliferation by activating p-AMPKα and exacerbates the progression of atherosclerotic lesions.
Collapse
Affiliation(s)
- Lu He
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China.,Department of Neurosurgery, First Affiliated Hospital, University of South China, Hengyang, China
| | - Qionglin Zhou
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Zheng Huang
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Jin Xu
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Hong Zhou
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Deguan Lv
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Liqun Lu
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Shifang Huang
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, China
| |
Collapse
|
33
|
Li CC, Qiu XT, Sun Q, Zhou JP, Yang HJ, Wu WZ, He LF, Tang CE, Zhang GG, Bai YP. Endogenous reduction of miR-185 accelerates cardiac function recovery in mice following myocardial infarction via targeting of cathepsin K. J Cell Mol Med 2018; 23:1164-1173. [PMID: 30450725 PMCID: PMC6349160 DOI: 10.1111/jcmm.14016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/27/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI) in patients with acute coronary syndrome (ACS). MicroRNAs are recognised as important epigenetic regulators of endothelial function. The aim of this study was to determine the roles of microRNAs in angiogenesis. Eighteen circulating microRNAs including miR‐185‐5p were differently expressed in plasma from patients with ACS by high‐throughput RNA sequencing. The expressional levels of miR‐185‐5p were dramatically reduced in hearts isolated from mice following MI and cultured human umbilical vein endothelial cells (HUVECs) under hypoxia, as determined by fluorescence in situ hybridisation and quantitative RT‐PCR. Evidence from computational prediction and luciferase reporter gene activity indicated that cathepsin K (CatK) mRNA is a target of miR‐185‐5p. In HUVECs, miR‐185‐5p mimics inhibited cell proliferations, migrations and tube formations under hypoxia, while miR‐185‐5p inhibitors performed the opposites. Further, the inhibitory effects of miR‐185‐5p up‐regulation on cellular functions of HUVECs were abolished by CatK gene overexpression, and adenovirus‐mediated CatK gene silencing ablated these enhancive effects in HUVECs under hypoxia. In vivo studies indicated that gain‐function of miR‐185‐5p by agomir infusion down‐regulated CatK gene expression, impaired angiogenesis and delayed the recovery of cardiac functions in mice following MI. These actions of miR‐185‐5p agonists were mirrored by in vivo knockdown of CatK in mice with MI. Endogenous reductions of miR‐185‐5p in endothelial cells induced by hypoxia increase CatK gene expression to promote angiogenesis and to accelerate the recovery of cardiac function in mice following MI.
Collapse
Affiliation(s)
- Chuan-Chang Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ting Qiu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Sun
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Peng Zhou
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Jun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Wan-Zhou Wu
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Fang He
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Can-E Tang
- Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Gang Zhang
- National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Ping Bai
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Sun Q, Wang K, Pan M, Zhou J, Qiu X, Wang Z, Yang Z, Chen Y, Shen H, Gu Q, Fang L, Zhang G, Bai Y. A minimally invasive approach to induce myocardial infarction in mice without thoracotomy. J Cell Mol Med 2018; 22:5208-5219. [PMID: 30589494 PMCID: PMC6201221 DOI: 10.1111/jcmm.13708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of morbidity and mortality in the world. Traditional method to induce MI by left coronary artery (LCA) ligation is typically performed by an invasive approach that requires ventilation and thoracotomy, causing serious injuries in animals undergoing this surgery. We attempted to develop a minimally invasive method (MIM) to induce MI in mice. Under the guide of ultrasound, LCA ligation was performed in mice without ventilation and chest-opening. Compared to sham mice, MIM induced MI in mice as determined by triphenyltetrazolium chloride staining and Masson staining. Mice with MIM surgery revealed the reductions of LVEF, LVFS, E/A and ascending aorta (AAO) blood flow, and the elevations of S-T segment and serum cTn-I levels at 24 post-operative hours. The effects of MI induced by MIM were comparable to the effects of MI produced by traditional method in mice. Importantly, MIM increased the survival rates and caused less inflammation after the surgery of LCA ligation, compared to the surgery of traditional method. Further, MIM induced angiogenesis and apoptosis in ischaemic hearts from mice at postoperative 28 days as similarly as traditional method did. Finally, the MIM model was able to develop into the myocardial ischaemia/reperfusion model by using a balloon catheter with minor modifications. The MI model is able to be efficiently induced by a minimally invasive approach in mice without ventilation and chest-opening. This new model is potentially to be used in studying ischaemia-related heart diseases.
Collapse
Affiliation(s)
- Quan Sun
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Kang‐Kai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Miao Pan
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Ji‐Peng Zhou
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Xue‐Ting Qiu
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen‐Yu Wang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Zhen Yang
- Department of Hypertension and Vascular Diseasethe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yan Chen
- Department of HematologyXiangya HospitalCentral South UniversityChangshaChina
| | - Hong Shen
- Institute of Medical SciencesXiangya HospitalCentral South UniversityChangshaChina
| | - Qi‐Lin Gu
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Long‐Hou Fang
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTXUSA
| | - Guo‐Gang Zhang
- Department of Cardiovascular MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Yong‐Ping Bai
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| |
Collapse
|
35
|
Lu JX, Guo C, Ou WS, Jing Y, Niu HF, Song P, Li QZ, Liu Z, Xu J, Li P, Zhu ML, Yin YL. Citronellal prevents endothelial dysfunction and atherosclerosis in rats. J Cell Biochem 2018; 120:3790-3800. [PMID: 30367511 DOI: 10.1002/jcb.27660] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Atherosclerosis is a chronical inflammatory disease in arterial walls, which is involved in oxidative stress and endothelial dysfunction. Aromatherapy is one of the complementary therapies that use essential oils as the major therapeutic agents to treat several diseases. Citronellal (CT) is a monoterpene predominantly formed by the secondary metabolism of plants, producing antithrombotic, antiplatelet, and antihypertensive activities. AIM The aim of the present study is to explore whether aromatherapy with CT improves endothelial function to prevent the formation of atherosclerotic plaque in vivo. METHODS An AS model in carotid artery was induced by balloon injury and vitamin D3 injection in rats fed with a high-fat diet. The size of the carotid atherosclerotic plaque was determined by ultrasound, oil red, and hematoxylin-eosin staining. Endothelial function was assessed by measuring acetylcholine-induced vessel relaxation in an organ chamber. RESULTS Administrations of CT (50, 100, and 150 mg/kg) as well as lovastatin dramatically reduced the size of carotid atherosclerotic plaque in rats in a dose-dependent manner, compared with atherosclerotic rats fed with a high-fat diet plus balloon injury and vitamin D3. Mechanically, CT improved endothelial dysfunction, increased cell migration, and suppressed oxidative stress and inflammation in vascular endothelium in rats feeding on the high-fat diet plus balloon injury. Further, CT downregulated the protein levels of sodium-hydrogen exchanger 1 in rats with atherosclerosis. CONCLUSION CT improves endothelial dysfunction and prevents the growth of atherosclerosis in rats by reducing oxidative stress. Clinically, CT is potentially considered as a medicine to treat patients with atherosclerosis.
Collapse
Affiliation(s)
- Jun-X Lu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wen-S Ou
- Department of Gastroenterology, Chenzhou No.1 People's Hospital, Chenzhou, China
| | - Yun Jing
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Hui-F Niu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ping Song
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Quan-Z Li
- Department of Cardiology, Affiliated Hospital, Guilin Medical University, Guilin, China
| | - Zhan Liu
- Department of Clinical Nutrition, The Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jian Xu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-L Zhu
- Department of Clinical Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-L Yin
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
36
|
Zhang ZM, Wang BX, Ou WS, Lv YH, Li MM, Miao Z, Wang SX, Fei JC, Guo T. Administration of losartan improves aortic arterial stiffness and reduces the occurrence of acute coronary syndrome in aged patients with essential hypertension. J Cell Biochem 2018; 120:5713-5721. [PMID: 30362602 DOI: 10.1002/jcb.27856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUNDS AND AIMS Increased arterial stiffness may increase cardiovascular morbidity and mortality. Angiotensin II type 1 receptor blocker losartan is potentially useful in controlling the central blood pressure and arterial stiffness in mild to moderate essential hypertension, while the effects of losartan in aged patients with essential hypertension are not entirely investigated. METHODS The carotid-femoral arterial pulse wave velocity (PWV) was measured in aged patients with essential hypertension. RESULTS In a cross-sectional study, PWV value was significantly higher in these old patients with essential hypertension, compared with patients without essential hypertension. Logistic regression analysis indicated that age, hypertension duration, and losartan treatment are risk factors of arterial stiffness. In a perspective study, long-term administration of losartan (50 mg/d) remarkably reduced PWV in aged patients with essential hypertension. In a longitudinal study, PWV is an independent predictor of the occurrence of acute coronary syndrome (ACS) in elderly patients with essential hypertension by using multivariate analysis. Further, the ACS occurrence was reduced by long-term administration of losartan in aged patients with essential hypertension, compared with the old hypertensive patients without taking losartan. CONCLUSION Losartan treatment is a negative risk factor of arterial stiffness and reduces the risk of ACS in aged patients with essential hypertension.
Collapse
Affiliation(s)
- Zhi-Mian Zhang
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Bing-Xiang Wang
- Department of Orthopedics, Provincial Hospital of Shandong, Jinan, China
| | - Wen-Sheng Ou
- Department of Liver Disease, Chenzhou No.1 People s Hospital, Chenzhou, China
| | - Yan-Hong Lv
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Ming-Min Li
- Department of Cardiology, The Center of Health Examination, Qilu Hospital, Shandong University, Jinan, China
| | - Zhang Miao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Shuang-Xi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jian-Chun Fei
- Department of Anaesthesia, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Guo
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
37
|
Hang W, He B, Chen J, Xia L, Wen B, Liang T, Wang X, Zhang Q, Wu Y, Chen Q, Chen J. Berberine Ameliorates High Glucose-Induced Cardiomyocyte Injury via AMPK Signaling Activation to Stimulate Mitochondrial Biogenesis and Restore Autophagic Flux. Front Pharmacol 2018; 9:1121. [PMID: 30337876 PMCID: PMC6178920 DOI: 10.3389/fphar.2018.01121] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Type II diabetes (T2D)-induced cardiomyocyte hypertrophy is closely linked to the impairment of mitochondrial function. Berberine has been shown to be a promising effect for hypoglycemia in T2D models. High glucose-induced cardiomyocyte hypertrophy in vitro has been reported. The present study investigated the protective effect and the underlying mechanism of berberine on high glucose-induced H9C2 cell line. Methods: High glucose-induced H9C2 cell line was used to mimic the hyperglycemia resulting in cardiomyocyte hypertrophy. Berberine was used to rescue in this model and explore the mechanism in it. Confocal microscopy, immunofluorescence, RT-PCR, and western blot analysis were performed to evaluate the protective effects of berberine in high glucose-induced H9C2 cell line. Results: Berberine dramatically alleviated hypertrophy of H9C2 cell line and significantly ameliorated mitochondrial function by rectifying the imbalance of fusion and fission in mitochondrial dynamics. Furthermore, berberine further promoted mitogenesis and cleared the damaged mitochondria via mitophagy. In addition, berberine also restored autophagic flux in high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation. Conclusion: Berberine ameliorates high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation to stimulate mitochondrial biogenesis and restore autophagicflux in H9C2 cell line.
Collapse
Affiliation(s)
- Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangtao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,New Products of TCM Senile Diseases Co-Innovation Center of Hubei, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Yu L, Liu H. Perillaldehyde prevents the formations of atherosclerotic plaques through recoupling endothelial nitric oxide synthase. J Cell Biochem 2018; 119:10204-10215. [DOI: 10.1002/jcb.27362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/26/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Li Yu
- Department of Physiology, School of Basic Medical Sciences Jinzhou Medical University Jinzhou China
- Institue of Eyes Jinzhou Medical University Jinzhou China
| | - Hua Liu
- Institue of Eyes Jinzhou Medical University Jinzhou China
| |
Collapse
|
39
|
Zhang HM, Liu MY, Lu JX, Zhu ML, Jin Q, Ping S, Li P, Jian X, Han YL, Wang SX, Li XY. Intracellular acidosis via activation of Akt-Girdin signaling promotes post ischemic angiogenesis during hyperglycemia. Int J Cardiol 2018; 277:205-211. [PMID: 30316647 DOI: 10.1016/j.ijcard.2018.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
AIMS The impaired angiogenesis is the major cause of diabetic delayed wound healing. The molecular insight remains unknown. Previous study has shown that high glucose (HG) activates Na+/H+ exchanger 1 (NHE1) and induces intracellular alkalinization, resulting in endothelial dysfunction. The aim of this study is to investigate whether activation of NHE1 in endothelial cells by HG damages the angiogenesis in vitro and in vivo. METHODS AND RESULTS We used western blot to detect the phosphorylations of both Akt and Girdin, and pH-sensitive BCECF fluorescence to assay NHE1 activity and pHi value, respectively. The angiogenesis was evaluated by measuring the number of tube formation in vitro, and blood perfusion by laser doppler and neovascularization by staining CD31 in vivo. Our results indicated that induction of intracellular acidosis (IA) increased p-Akt and p-Girdin in human umbilical vein endothelial cells (HUVEC). HG activated NHE1 and increased pHi value in a time-dependent manner, associated with the decreased phosphorylations of both Akt and Gridin, while inhibition of NHE1 by amiloride abolished the HG-induced reductions of p-Akt and p-Girdin. However, silence of Akt by siRNA transfection or pharmacological inhibitors (wortmannin and LY294002) bypassed IA-induced Girdin phosphorylation. Overexpression of constitutively active Akt abolished HG-reduced Girdin phosphorylation. In addition, upregulation of Akt or inhibition of NHE1 remarkably attenuated HG-impaired tube formation in HUVEC. In vivo study revealed that amiloride dramatically rescued hyperglycemia-delayed blood perfusion and neovascularization by augmenting ischemia-induced angiogenesis. CONCLUSION IA promotes ischemia-induced angiogenesis via Akt-dependent Girdin phosphorylation in diabetic mice.
Collapse
Affiliation(s)
- Hong-Ming Zhang
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Mo-Yan Liu
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Jun-Xiu Lu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Mo-Li Zhu
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Qun Jin
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China
| | - Song Ping
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Xu Jian
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-Ling Han
- Department of Cardiology, General Hospital of Shenyang Military Command, Shenyang, China.
| | - Shuang-Xi Wang
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Xiao-Yan Li
- Department of Cardiology, General Hospital of Jinan Military Command, Jinan, China.
| |
Collapse
|