1
|
Yang R, Ren L, Wang H, Guo L, Liu L, Chen M, Tian X. Extracorporeal shockwave therapy for the treatment of deep dermal burns of the hand: A preliminary study. J Plast Reconstr Aesthet Surg 2025; 102:185-194. [PMID: 39938458 DOI: 10.1016/j.bjps.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Extracorporeal shockwave therapy is used to treat chronic wounds; however, the effect on acute burn wounds of the hand has not been elucidated. We aimed to determine the healing effect of extracorporeal shockwave therapy on the wounds of patients with deep dermal hand burns, and preliminarily explore the mechanism thereof. We recruited 40 patients with deep dermal hand burns who were randomly divided into a routine dressing treatment group (n = 20) and an extracorporeal shockwave therapy group (n = 20). The wounds of the extracorporeal shockwave group were treated on days 3, 5, and 7 after injury. Percentage of wound healing, blood perfusion, infection, pain scores, and Vancouver Scar Scale of scars from 6 months after patient discharge were recorded and compared between the groups. Our method enabled us to find that the percentage of wound healing in the extracorporeal shockwave group was significantly better than that in the routine dressing treatment group. The immediate blood perfusion of wounds in the extracorporeal shockwave group after extracorporeal shockwave therapy increased significantly, and with the increase of time and treatment frequency, the wounds in the extracorporeal shockwave group reached peak blood perfusion earlier than that in the routine dressing treatment group. In conclusion, extracorporeal shockwave therapy can effectively shorten the healing time of deep dermal burns of the hand. The mechanism of action may be related to the immediate and long-term effects of increasing blood perfusion in burn wounds, while effectively reducing wound pain and controlling the spread of inflammation in the acute phase.
Collapse
Affiliation(s)
- Ruqian Yang
- Women's Health Guidance Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Ren
- Women's Health Guidance Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huarong Wang
- Women's Health Guidance Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Guo
- Women's Health Guidance Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Liu
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng Chen
- Women's Health Guidance Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xinli Tian
- Department of Plastic and Burn Surgery, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Cha J, Thibeault SL. Biophysical aspects of mechanotransduction in cells and their physiological/biological implications in vocal fold vibration: a narrative review. Front Cell Dev Biol 2025; 13:1501341. [PMID: 39931244 PMCID: PMC11808007 DOI: 10.3389/fcell.2025.1501341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Mechanotransduction is a crucial property in all organisms, modulating cellular behaviors in response to external mechanical stimuli. Given the high mobility of vocal folds, it is hypothesized that mechanotransduction significantly contributes to their tissue homeostasis. Recent studies have identified mechanosensitive proteins in vocal fold epithelia, supporting this hypothesis. Voice therapy, which, involves the mobilization of vocal folds, aims to rehabilitate vocal function and restore homeostasis. However, establishing a direct causal link between specific mechanical stimuli and therapeutic benefits is challenging due to the variability in voice therapy techniques. This challenge is further compounded when investigating biological benefits in humans. Vocal fold tissue cannot be biopsied without significant impairment of the vibratory characteristics of the vocal folds. Conversely, studies using vocal fold mimetic bioreactors have demonstrated that mechanical stimulation of vocal fold fibroblasts can lead to highly heterogeneous responses, depending on the nature and parameters of the induced vibration. These responses can either aid or impede vocal fold vibration at the physiological level. Future research is needed to determine the specific mechanical parameters that are biologically beneficial for vocal fold function.
Collapse
Affiliation(s)
| | - Susan L. Thibeault
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
3
|
Geng C, Wang X, Chen J, Sun N, Wang Y, Li Z, Han L, Hou S, Fan H, Li N, Gong Y. Repetitive Low-Level Blast Exposure via Akt/NF-κB Signaling Pathway Mediates the M1 Polarization of Mouse Alveolar Macrophage MH-S Cells. Int J Mol Sci 2023; 24:10596. [PMID: 37445774 DOI: 10.3390/ijms241310596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/15/2023] Open
Abstract
Repetitive low-level blast (rLLB) exposure is a potential risk factor for the health of soldiers or workers who are exposed to it as an occupational characteristic. Alveolar macrophages (AMs) are susceptible to external blast waves and produce pro-inflammatory or anti-inflammatory effects. However, the effect of rLLB exposure on AMs is still unclear. Here, we generated rLLB waves through a miniature manual Reddy-tube and explored their effects on MH-S cell morphology, phenotype transformation, oxidative stress status, and apoptosis by immunofluorescence, real-time quantitative PCR (qPCR), western blotting (WB) and flow cytometry. Ipatasertib (GDC-0068) or PDTC was used to verify the role of the Akt/NF-κB signaling pathway in these processes. Results showed that rLLB treatment could cause morphological irregularities and cytoskeletal disorders in MH-S cells and promote their polarization to the M1 phenotype by increasing iNOS, CD86 and IL-6 expression. The molecular mechanism is through the Akt/NF-κB signaling pathway. Moreover, we found reactive oxygen species (ROS) burst, Ca2+ accumulation, mitochondrial membrane potential reduction, and early apoptosis of MH-S cells. Taken together, our findings suggest rLLB exposure may cause M1 polarization and early apoptosis of AMs. Fortunately, it is blocked by specific inhibitors GDC-0068 or PDTC. This study provides a new treatment strategy for preventing and alleviating health damage in the occupational population caused by rLLB exposure.
Collapse
Affiliation(s)
- Chenhao Geng
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jiale Chen
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Na Sun
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Zizheng Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
4
|
Yao H, Wang X, Liu H, Sun F, Tang G, Bao X, Wu J, Zhou Z, Ma J. Systematic Review and Meta-Analysis of 16 Randomized Controlled Trials of Clinical Outcomes of Low-Intensity Extracorporeal Shock Wave Therapy in Treating Erectile Dysfunction. Am J Mens Health 2022; 16:15579883221087532. [PMID: 35319291 PMCID: PMC8949743 DOI: 10.1177/15579883221087532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/23/2022] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
We conducted a meta-analysis to evaluate the efficacy of low-intensity extracorporeal shock wave therapy (LI-ESWT) in the treatment of erectile dysfunction (ED). From July 2011 to June 2021, we finally selected 16 randomized controlled trials (RCTs) including 1,064 participants to evaluate the efficacy of LI-ESWT in the treatment of ED from PubMed, EMBASE, and Cochrane databases. The data are analyzed by Review Manager Version 5.4. Fifteen articles mentioned International Index of Erectile Function (IIEF), in the follow-up of 1 month (mean difference [MD] = 3.18, 95% confidence interval [CI] = [1.38, 4.98], p = .0005), 3 months (MD = 3.01, 95% CI = [2.04, 3.98], p < .00001), and 6 months (MD = 3.20, 95% CI = [2.49, 3.92], p < .00001). After treatment, the improvement of IIEF in the LI-ESWT group was better than that in the control group. Besides, eight of the 16 trials provided data on the proportion of patients with baseline Erectile Hardness Score (EHS) ≤ 2 improved to EHS ≥ 3. The LI-ESWT group was also significantly better than the placebo group (odds ratio [OR] = 5.07, 95% CI = [1.78, 14.44], p = .002). The positive response rate of Questions 2 and 3 of the Sexual Encounter Profile (SEP) was not statistically significant (SEP2: OR = 1.27, 95% CI = [0.70, 2.30], p = .43; SEP3: OR = 4.24, 95% CI = [0.67, 26.83], p = .13). The results of this meta-analysis suggest that treatment plans with an energy density of 0.09 mJ/mm2 and pulses number of 1,500 to 2,000 are more beneficial to IIEF in ED patients. In addition, IIEF improvement was more pronounced in patients with moderate ED after extracorporeal shockwave therapy.
Collapse
Affiliation(s)
- Huibao Yao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaofeng Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongquan Liu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Fengze Sun
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Gonglin Tang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xingjun Bao
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhongbao Zhou
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Fengtai District, Beijing, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
5
|
Quan R, Liang W, Li H, Ning Q, Shang D. Silencing of miR-10b-5p alleviates the mechanical stretch-induced proliferation of HASMCs. Tissue Cell 2021; 74:101700. [PMID: 34871825 DOI: 10.1016/j.tice.2021.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are important mediators to human airway smooth muscle cells (HASMCs) phenotype remodeling and airway diseases. MicroRNA-10b-5p (miR-10b-5p) has been extensively studied in different fields. This study set out to probe into the effect of miR-10b-5p in cyclic mechanical stretch-induced apoptosis in HASMCs. The results showed that after 15 % deformation, 0.5 s stretching and 0.5 s cyclic mechanical stretching relaxation (0.5 Hz) occurred to HASMCs, miR-10b-5p showed up-regulation without inducing significant apoptosis. Moreover, the mRNA and protein expressions of FLT1 were reduced. Then, dual-luciferase reporter assay verified that FLT1 was targeted by miR-10b-5p, and miR-10b-5p silencing increased FLT1 expression, leading to a prolonged arrest of stretch-treated HASMCs at the G1/S stage, and increased cell apoptosis compared with control group. Furthermore, the activity of Caspase-3 was reinforced, and the ratio of Bcl-2 to Bax was markedly reduced after miR-10b-5p silencing. The current study proved that expression levels of p-PI3K and p-Akt in stretch-treated HASMCs of the inhibition group were significantly inhibited in comparison to those of the controls. The effects of miR-10b-5p overexpression are opposite to that of inhibition of miR-10b-5p in stretched HASMCs. In conclusion, this study showed that miR-10b-5p silencing could weaken the hypertrophy of HASMCs. MiR-10b-5p negatively regulated FLT1 expression, but positively regulated the PI3K/Akt pathway in HASMCs. By referring to other previous studies, we concluded that miR-10b-5p might be a potent target in the treatment of airway diseases.
Collapse
Affiliation(s)
- Rongxi Quan
- Department of Intensive Care Unit, Affiliated Tumor Hospital of Xinjiang Medical University, China
| | - Wei Liang
- Department of Intensive Care Unit, Affiliated Tumor Hospital of Xinjiang Medical University, China
| | - Hong Li
- Department of Respiration, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Qian Ning
- Department of Respiration, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Dong Shang
- Department of Intensive Care Unit, Affiliated Tumor Hospital of Xinjiang Medical University, China; Department of Respiration, The First Affiliated Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|
6
|
Morbidelli L, Genah S, Cialdai F. Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Front Bioeng Biotechnol 2021; 9:720091. [PMID: 34631676 PMCID: PMC8493071 DOI: 10.3389/fbioe.2021.720091] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM). Physiological angiogenesis occurs in the granulation tissue during wound healing to allow oxygen and nutrient supply and waste product removal. Angiogenesis output comes from a balance between pro- and antiangiogenic factors, which is finely regulated in a spatial and time-dependent manner, in order to avoid insufficient or excessive nonreparative neovascularization. The understanding of the factors and mechanisms that control angiogenesis and their change following unloading conditions (in a real or simulated space environment) will allow to optimize the tissue response in case of traumatic injury or medical intervention. The potential countermeasures under development to optimize the reparative angiogenesis that contributes to tissue healing on Earth will be discussed in relation to their exploitability in space.
Collapse
Affiliation(s)
| | - Shirley Genah
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
7
|
Effect of extracorporeal shock waves on inflammation and angiogenesis of integumentary tissue in obese individuals: stimulating repair and regeneration. Lasers Med Sci 2021; 37:1289-1297. [PMID: 34365545 DOI: 10.1007/s10103-021-03387-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The technology of extracorporeal shock wave therapy (ESWT) has been studied around the world for its possible benefits in the treatment and rehabilitation of aesthetic disorders. To better elucidate its real physiological effect on the integumentary tissue, this study was proposed aimed at evaluating whether ESWT can act to stimulate the inflammatory process and angiogenesis in the dermis and epidermis of obese individuals. This is an immunohistological study that evaluated a set of samples of the integumentary tissue of women with grade II obesity with weight loss of 10% of the initial weight undergoing ESWT treatment; the collection of biological material was performed at the time of surgery of bariatric surgery. For immunohistochemical evaluation, the markers to assess the presence and distribution of inflammatory cells, anti-COX-2, CD3, CD20, CD163, and NK were used. For physiological stimulus pathways for blood vessel angiogenesis, markers CD 34, CD 105 and VEGF were used. Fourteen obese women were included in the study. Positivity was evidenced in the epidermal expression of markers of the inflammatory process COX-2, CD3, CD20, NK cells, CD68, and CD163 (p < 0.0001) in the intervention sample when compared to controls. There was a positive expression for the angiogenesis markers CD105 and VEGF (p < 0.0001) when comparing the intervention group with the control group. It was concluded that ESWT can stimulate a local inflammatory process, mediating and modulating important growth factors to act in the repair process and skin tissue regeneration, being considered a promising treatment for skin diseases related to weight gain or loss.
Collapse
|
8
|
Qi Z, Wu D, Li M, Yan Z, Yang X, Ji N, Wang Y, Zhang J. The pluripotent role of exosomes in mediating non-coding RNA in ventricular remodeling after myocardial infarction. Life Sci 2020; 254:117761. [PMID: 32413403 DOI: 10.1016/j.lfs.2020.117761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
With the increase of an aging population and the rising incidence of cardiovascular diseases, heart failure (HF) patients are on the rise every year. Myocardial infarction (MI) is the leading cause of HF in patients among cardiovascular diseases. In clinic, patients with MI are often assessed by biochemical indicators, electrocardiography, brain natriuretic peptide levels, myocardial enzymology, echocardiography and other means to predict the occurrence of HF and ventricular remodeling (VR). But there is still a lack of more accurate evaluation. VR is the basic mechanism of HF. In recent years, the molecular mechanism of VR has been studied mainly from the aspects of myocardial hypertrophy, myocardial fibrosis, inflammation, myocardial energy disorder, apoptosis, autophagy and pyroptosis. Exosomes are considered as the main mediators of intercellular information transmission. In addition, exosomes can promote the migration and transformation of intercellular RNAs, which are highly conserved non-coding RNAs. They can mediate the process of cell proliferation and differentiation of the target cell membrane. Exosomes have protective effects on VR after MI by inhibiting fibrosis, promoting angiogenesis and inhibiting inflammation and pyroptosis. We reviewed the specific protective mechanisms of exosomes for VR after MI. In addition, we discussed the formation of targeted exosomes and the role of non-coding RNAs in VR.
Collapse
Affiliation(s)
- Zhongwen Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China
| | - Dan Wu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China
| | - Zhipeng Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiaoya Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Nan Ji
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yueyao Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China.
| |
Collapse
|