1
|
Bhattacharyya S, Tobacman JK. SARS-CoV-2 spike protein-ACE2 interaction increases carbohydrate sulfotransferases and reduces N-acetylgalactosamine-4-sulfatase by p38 MAPK. Signal Transduct Target Ther 2024; 9:39. [PMID: 38355690 PMCID: PMC10866996 DOI: 10.1038/s41392-024-01741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Immunostaining in lungs of patients who died with COVID-19 infection showed increased intensity and distribution of chondroitin sulfate and decline in N-acetylgalactostamine-4-sulfatase (Arylsulfatase B; ARSB). To explain these findings, human small airway epithelial cells were exposed to the SARS-CoV-2 spike protein receptor binding domain (SPRBD) and transcriptional mechanisms were investigated. Phospho-p38 MAPK and phospho-SMAD3 increased following exposure to the SPRBD, and their inhibition suppressed the promoter activation of the carbohydrate sulfotransferases CHST15 and CHST11, which contributed to chondroitin sulfate biosynthesis. Decline in ARSB was mediated by phospho-38 MAPK-induced N-terminal Rb phosphorylation and an associated increase in Rb-E2F1 binding and decline in E2F1 binding to the ARSB promoter. The increases in chondroitin sulfotransferases were inhibited when treated with phospho-p38-MAPK inhibitors, SMAD3 (SIS3) inhibitors, as well as antihistamine desloratadine and antibiotic monensin. In the mouse model of carrageenan-induced systemic inflammation, increases in phospho-p38 MAPK and expression of CHST15 and CHST11 and declines in DNA-E2F binding and ARSB expression occurred in the lung, similar to the observed effects in this SPRBD model of COVID-19 infection. Since accumulation of chondroitin sulfates is associated with fibrotic lung conditions and diffuse alveolar damage, increased attention to p38-MAPK inhibition may be beneficial in ameliorating Covid-19 infections.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joanne K Tobacman
- Jesse Brown VA Medical Center and University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Huang Y, Xu J, Ma G, Wang S, Yan X, Jin Y, He J. Omics methods predict the prognosis and treatment efficacy of chronic obstructive pulmonary disease. Chin Med J (Engl) 2024; 137:356-358. [PMID: 38214333 PMCID: PMC10836873 DOI: 10.1097/cm9.0000000000002929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 01/13/2024] Open
Affiliation(s)
- Yan Huang
- Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Juanjuan Xu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guanzhou Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaojuan Yan
- Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jiafu He
- Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, China
| |
Collapse
|
3
|
Moll M, Silverman EK. Precision Approaches to Chronic Obstructive Pulmonary Disease Management. Annu Rev Med 2024; 75:247-262. [PMID: 37827193 DOI: 10.1146/annurev-med-060622-101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. COPD heterogeneity has hampered progress in developing pharmacotherapies that affect disease progression. This issue can be addressed by precision medicine approaches, which focus on understanding an individual's disease risk, and tailoring management based on pathobiology, environmental exposures, and psychosocial issues. There is an urgent need to identify COPD patients at high risk for poor outcomes and to understand at a mechanistic level why certain individuals are at high risk. Genetics, omics, and network analytic techniques have started to dissect COPD heterogeneity and identify patients with specific pathobiology. Drug repurposing approaches based on biomarkers of specific inflammatory processes (i.e., type 2 inflammation) are promising. As larger data sets, additional omics, and new analytical approaches become available, there will be enormous opportunities to identify high-risk individuals and treat COPD patients based on their specific pathophysiological derangements. These approaches show great promise for risk stratification, early intervention, drug repurposing, and developing novel therapeutic approaches for COPD.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary, Critical Care, Sleep and Allergy, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Negewo NA, Gibson PG, Simpson JL, McDonald VM, Baines KJ. Severity of Lung Function Impairment Drives Transcriptional Phenotypes of COPD and Relates to Immune and Metabolic Processes. Int J Chron Obstruct Pulmon Dis 2023; 18:273-287. [PMID: 36942279 PMCID: PMC10024507 DOI: 10.2147/copd.s388297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Purpose This study sought to characterize transcriptional phenotypes of COPD through unsupervised clustering of sputum gene expression profiles, and further investigate mechanisms underlying the characteristics of these clusters. Patients and methods Induced sputum samples were collected from patients with stable COPD (n = 72) and healthy controls (n = 15). Induced sputum was collected for inflammatory cell counts, and RNA extracted. Transcriptional profiles were generated (Illumina Humanref-8 V2) and analyzed by GeneSpring GX14.9.1. Unsupervised hierarchical clustering and differential gene expression analysis were performed, and gene alterations validated in the ECLIPSE dataset (GSE22148). Results We identified 2 main clusters (Cluster 1 [n = 35] and Cluster 2 [n = 37]), which further divided into 4 sub-clusters (Sub-clusters 1.1 [n = 14], 1.2 [n = 21], 2.1 [n = 20] and 2.2 [n = 17]). Compared with Cluster 1, Cluster 2 was associated with significantly lower lung function (p = 0.014), more severe disease (p = 0.009) and breathlessness (p = 0.035), and increased sputum neutrophils (p = 0.031). Sub-cluster 1.1 had significantly higher proportion of people with comorbid cardiovascular disease compared to the other 3 sub-clusters (92.5% vs 57.1%, 50% and 52.9%, p < 0.013). Through supervised analysis we determined that degree of airflow limitation (GOLD stage) was the predominant factor driving gene expression differences in our transcriptional clusters. There were 452 genes (adjusted p < 0.05 and ≥2 fold) altered in GOLD stage 3 and 4 versus 1 and 2, of which 281 (62%) were also found to be significantly expressed between these GOLD stages in the ECLIPSE data set (GSE22148). Differentially expressed genes were largely downregulated in GOLD stages 3 and 4 and connected in 5 networks relating to lipoprotein and cholesterol metabolism; metabolic processes in oxidation/reduction and mitochondrial function; antigen processing and presentation; regulation of complement activation and innate immune responses; and immune and metabolic processes. Conclusion Severity of lung function drives 2 distinct transcriptional phenotypes of COPD and relates to immune and metabolic processes.
Collapse
Affiliation(s)
- Netsanet A Negewo
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Peter G Gibson
- Centre of Excellence in Treatable Traits, University of Newcastle, New Lambton Heights, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
- Asthma and Breathing Research Centre, Hunter Medical Research Centre, New Lambton Heights, NSW, Australia
| | - Jodie L Simpson
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vanessa M McDonald
- Centre of Excellence in Treatable Traits, University of Newcastle, New Lambton Heights, NSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
- Asthma and Breathing Research Centre, Hunter Medical Research Centre, New Lambton Heights, NSW, Australia
- School of Nursing and Midwifery, The University of Newcastle, Callaghan, NSW, Australia
| | - Katherine J Baines
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Correspondence: Katherine J Baines, Hunter Medical Research Institute, Level 2 East Wing, Locked Bag 1000, New Lambton Heights, NSW, 2305, Australia, Tel +61 2 40420090, Fax +61 2 40420046, Email
| |
Collapse
|
5
|
Gouveia D, Chichorro M, Cardoso A, Carvalho C, Silva C, Coelho T, Dias I, Ferreira A, Martins Â. Hyperbaric Oxygen Therapy in Systemic Inflammatory Response Syndrome. Vet Sci 2022; 9:vetsci9020033. [PMID: 35202287 PMCID: PMC8880592 DOI: 10.3390/vetsci9020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Systemic inflammatory response syndrome (SIRS) can occur due to a large number of traumatic or non-traumatic diseases. Hyperbaric oxygen therapy (HBOT) may be used as a main or adjuvant treatment for inflammation, leading to the main aim of this study, which was to verify the applicability of HBOT as a safe and tolerable tool in SIRS-positive dogs. (2) Methods: This prospective cohort study included 49 dogs who showed two or more parameters of SIRS, divided into the Traumatic Study Group (n = 32) and the Non-Traumatic Study Group (n = 17). All dogs were submitted to HBOT for 60–90 min sessions, with 2.4–2.8 ATA. (3) Results: This study revealed that 73.5% (36/49) of dogs showed improvement, and the minimum number of HBOT sessions was two, with a mean of 12.73. The number of days between diagnosis and the beginning of HBOT showed statistical significance (p = 0.031) relative to the clinical outcome. No dogs showed any major side effects. (4) Conclusions: We concluded that HBOT may be safe and tolerable for SIRS-positive dogs, and that it should be applied as early as possible.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Lisbon Animal Regenerative and Rehabilitation Center, 2675-655 Odivelas, Portugal; (A.C.); (C.C.); (C.S.); (T.C.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Correspondence:
| | - Mariana Chichorro
- School of Agrarian and Veterinary Sciences, Department of Veterinary Science, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (M.C.); (I.D.)
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Lisbon Animal Regenerative and Rehabilitation Center, 2675-655 Odivelas, Portugal; (A.C.); (C.C.); (C.S.); (T.C.); (Â.M.)
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Lisbon Animal Regenerative and Rehabilitation Center, 2675-655 Odivelas, Portugal; (A.C.); (C.C.); (C.S.); (T.C.); (Â.M.)
| | - Cátia Silva
- Arrábida Veterinary Hospital—Lisbon Animal Regenerative and Rehabilitation Center, 2675-655 Odivelas, Portugal; (A.C.); (C.C.); (C.S.); (T.C.); (Â.M.)
| | - Tiago Coelho
- Arrábida Veterinary Hospital—Lisbon Animal Regenerative and Rehabilitation Center, 2675-655 Odivelas, Portugal; (A.C.); (C.C.); (C.S.); (T.C.); (Â.M.)
| | - Isabel Dias
- School of Agrarian and Veterinary Sciences, Department of Veterinary Science, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (M.C.); (I.D.)
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Lisbon Animal Regenerative and Rehabilitation Center, 2675-655 Odivelas, Portugal; (A.C.); (C.C.); (C.S.); (T.C.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
| |
Collapse
|
6
|
Tzankov A, Bhattacharyya S, Kotlo K, Tobacman JK. Increase in Chondroitin Sulfate and Decline in Arylsulfatase B May Contribute to Pathophysiology of COVID-19 Respiratory Failure. Pathobiology 2021; 89:81-91. [PMID: 34788765 DOI: 10.1159/000519542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The potential role of accumulation of chondroitin sulfates (CSs) in the pathobiology of COVID-19 has not been examined. Accumulation may occur by increased synthesis or by decline in activity of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) which requires oxygen for activity. METHODS Immunostaining of lung tissue from 28 patients who died due to COVID-19 infection was performed for CS, ARSB, and carbohydrate sulfotransferase (CHST)15. Measurements of mRNA expression of CHST15 and CHST11, sulfotransferase activity, and total sulfated glycosaminoglycans (GAGs) were determined in human vascular smooth muscle cells following angiotensin (Ang) II treatment. RESULTS CS immunostaining showed increase in intensity and distribution, and immunostaining of ARSB was diminished in COVID-19 compared to normal lung tissue. CHST15 immunostaining was prominent in vascular smooth muscle cells associated with diffuse alveolar damage due to COVID-19 or other causes. Expression of CHST15 and CHST11 which are required for synthesis of CSE and chondroitin 4-sulfate, total sulfated GAGs, and sulfotransferase activity was significantly increased following AngII exposure in vascular smooth muscle cells. Expression of Interleukin-6 (IL-6), a mediator of cytokine storm in COVID-19, was inversely associated with ARSB expression. DISCUSSION/CONCLUSION Decline in ARSB and resulting increases in CS may contribute to the pathobiology of COVID-19, as IL-6 does. Increased expression of CHSTs following activation of Ang-converting enzyme 2 may lead to buildup of CSs.
Collapse
Affiliation(s)
- Alexandar Tzankov
- Pathology, University Hospital Basel, Institute of Medical Genetics and Pathology, University of Basel, Basel, Switzerland
| | - Sumit Bhattacharyya
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Kumar Kotlo
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Joanne K Tobacman
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.,Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Cade BE, Lee J, Sofer T, Wang H, Zhang M, Chen H, Gharib SA, Gottlieb DJ, Guo X, Lane JM, Liang J, Lin X, Mei H, Patel SR, Purcell SM, Saxena R, Shah NA, Evans DS, Hanis CL, Hillman DR, Mukherjee S, Palmer LJ, Stone KL, Tranah GJ, Abecasis GR, Boerwinkle EA, Correa A, Cupples LA, Kaplan RC, Nickerson DA, North KE, Psaty BM, Rotter JI, Rich SS, Tracy RP, Vasan RS, Wilson JG, Zhu X, Redline S, TOPMed Sleep Working Group CadeBrianChenHanGharibSinaGoodmanMatthewGottliebDanielHaleLaurenKnutsonKristenLauderdaleDianeLaneJacquelineLeeJiwonLiangJingjingLinXihongLiuYaowuMeiHaoMitchellBraxtonNgoDebbyO’ConnellJeffOchs-BalcomHeatherPatelSanjayPurcellShaunRedlineSusanRhodesJessicaSaxenaRichaShahNeomiSoferTamarSulJae HoonSunyaevShamilWangHemingWilsonJamesZhangManZhouHufengZhuXiaofeng. Whole-genome association analyses of sleep-disordered breathing phenotypes in the NHLBI TOPMed program. Genome Med 2021; 13:136. [PMID: 34446064 PMCID: PMC8394596 DOI: 10.1186/s13073-021-00917-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sleep-disordered breathing is a common disorder associated with significant morbidity. The genetic architecture of sleep-disordered breathing remains poorly understood. Through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we performed the first whole-genome sequence analysis of sleep-disordered breathing. METHODS The study sample was comprised of 7988 individuals of diverse ancestry. Common-variant and pathway analyses included an additional 13,257 individuals. We examined five complementary traits describing different aspects of sleep-disordered breathing: the apnea-hypopnea index, average oxyhemoglobin desaturation per event, average and minimum oxyhemoglobin saturation across the sleep episode, and the percentage of sleep with oxyhemoglobin saturation < 90%. We adjusted for age, sex, BMI, study, and family structure using MMSKAT and EMMAX mixed linear model approaches. Additional bioinformatics analyses were performed with MetaXcan, GIGSEA, and ReMap. RESULTS We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10-8) on chromosome X with ARMCX3. Additional rare-variant associations include ARMCX3-AS1, MRPS33, and C16orf90. Novel common-variant loci were identified in the NRG1 and SLC45A2 regions, and previously associated loci in the IL18RAP and ATP2B4 regions were associated with novel phenotypes. Transcription factor binding site enrichment identified associations with genes implicated with respiratory and craniofacial traits. Additional analyses identified significantly associated pathways. CONCLUSIONS We have identified the first gene-based rare-variant associations with objectively measured sleep-disordered breathing traits. Our results increase the understanding of the genetic architecture of sleep-disordered breathing and highlight associations in genes that modulate lung development, inflammation, respiratory rhythmogenesis, and HIF1A-mediated hypoxic response.
Collapse
Affiliation(s)
- Brian E. Cade
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Jiwon Lee
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA
| | - Tamar Sofer
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA
| | - Heming Wang
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Man Zhang
- grid.411024.20000 0001 2175 4264Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Han Chen
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Sina A. Gharib
- grid.34477.330000000122986657Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98195 USA
| | - Daniel J. Gottlieb
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, Boston, MA 02132 USA
| | - Xiuqing Guo
- grid.239844.00000 0001 0157 6501The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Jacqueline M. Lane
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Jingjing Liang
- grid.67105.350000 0001 2164 3847Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Xihong Lin
- grid.38142.3c000000041936754XDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Hao Mei
- grid.410721.10000 0004 1937 0407Department of Data Science, University of Mississippi Medical Center, Jackson, MS 29216 USA
| | - Sanjay R. Patel
- grid.21925.3d0000 0004 1936 9000Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Shaun M. Purcell
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Richa Saxena
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.66859.34Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Neomi A. Shah
- grid.59734.3c0000 0001 0670 2351Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Daniel S. Evans
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | - Craig L. Hanis
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - David R. Hillman
- grid.3521.50000 0004 0437 5942Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia 6009 Australia
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, South Australia Australia ,grid.1014.40000 0004 0367 2697Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia Australia
| | - Lyle J. Palmer
- grid.1010.00000 0004 1936 7304School of Public Health, University of Adelaide, Adelaide, South Australia 5000 Australia
| | - Katie L. Stone
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | - Gregory J. Tranah
- grid.17866.3e0000000098234542California Pacific Medical Center Research Institute, San Francisco, CA 94107 USA
| | | | - Gonçalo R. Abecasis
- grid.214458.e0000000086837370Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109 USA
| | - Eric A. Boerwinkle
- grid.267308.80000 0000 9206 2401Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030 USA
| | - Adolfo Correa
- grid.410721.10000 0004 1937 0407Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216 USA ,Jackson Heart Study, Jackson, MS 39216 USA
| | - L. Adrienne Cupples
- grid.189504.10000 0004 1936 7558Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118 USA ,grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA 01702 USA
| | - Robert C. Kaplan
- grid.251993.50000000121791997Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, 10461 USA
| | - Deborah A. Nickerson
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA ,grid.34477.330000000122986657Northwest Genomics Center, Seattle, WA 98105 USA
| | - Kari E. North
- grid.410711.20000 0001 1034 1720Department of Epidemiology and Carolina Center of Genome Sciences, University of North Carolina, Chapel Hill, NC 27514 USA
| | - Bruce M. Psaty
- grid.34477.330000000122986657Cardiovascular Health Study, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA 98101 USA ,grid.488833.c0000 0004 0615 7519Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101 USA
| | - Jerome I. Rotter
- grid.239844.00000 0001 0157 6501The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Stephen S. Rich
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 USA
| | - Russell P. Tracy
- grid.59062.380000 0004 1936 7689Department of Pathology, University of Vermont, Colchester, VT 05405 USA
| | - Ramachandran S. Vasan
- grid.510954.c0000 0004 0444 3861Framingham Heart Study, Framingham, MA 01702 USA ,grid.189504.10000 0004 1936 7558Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118 USA ,grid.189504.10000 0004 1936 7558Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118 USA
| | - James G. Wilson
- grid.410721.10000 0004 1937 0407Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216 USA
| | - Xiaofeng Zhu
- grid.67105.350000 0001 2164 3847Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Susan Redline
- grid.38142.3c000000041936754XDivision of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115 USA ,grid.38142.3c000000041936754XDivision of Sleep Medicine, Harvard Medical School, Boston, MA 02115 USA ,grid.239395.70000 0000 9011 8547Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215 USA
| | | |
Collapse
|
8
|
Kikas T, Inno R, Ratnik K, Rull K, Laan M. C-allele of rs4769613 Near FLT1 Represents a High-Confidence Placental Risk Factor for Preeclampsia. Hypertension 2020; 76:884-891. [PMID: 32755415 DOI: 10.1161/hypertensionaha.120.15346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The variant rs4769613 T/C within the enhancer element near FLT1, an acknowledged gene in preeclampsia, was previously identified as a risk factor for preeclampsia in the genome-wide association study (GWAS) targeting placental genotypes. We aimed to test the robustness of this association in 2 Estonian cohorts. Both placental sample sets HAPPY PREGNANCY (Development of novel non-invasive biomarkers for fertility and healthy pregnancy; preeclampsia, n=44 versus nonpreeclampsia, n=1724) and REPROMETA (REPROgrammed fetal and/or maternal METAbolism; 52/277) exhibited suggestive association between rs4769613[C] variant and preeclampsia (logistic regression adjusted for gestational age and fetal sex, nominal P<0.05). Meta-analysis across 2 samples (96/2001) replicated the genome-wide association study outcome (Bonferroni corrected P=4×10-3; odds ratio, 1.75 [95% CI, 1.23-2.49]). No association was detected with gestational diabetes mellitus, preterm birth, and newborn parameters. Also, neither maternal nor paternal rs4769613 genotypes predisposed to preeclampsia. The exact role of placental rs4769613 genotype in the preeclampsia pathogenesis is to be clarified as no effect was detected on maternal baseline serum sFlt-1 (soluble fms-related receptor tyrosine kinase 1) levels. However, when placental FLT1 gene expression and maternal serum sFlt-1 measurements were stratified by placental rs4769613 genotypes, significantly higher transcript and biomarker levels were detected in preeclampsia versus nonpreeclampsia cases in the CC- and CT- (Student t test, P≤0.02), but not in the TT-genotype subgroup. We suggest that rs4769613 represents a conditional expression Quantitative Trait Locus, whereby only the enhancer with the C-allele reacts to promote the FLT1 expression in unfavorable placental conditions. The study highlighted that the placental FLT1 rs4769613 C-allele is a preeclampsia-specific risk factor. It may contribute to early identification of high-risk women, for example, when genotyped in the cffDNA available in maternal blood plasma.
Collapse
Affiliation(s)
- Triin Kikas
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| | - Rain Inno
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| | - Kaspar Ratnik
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
- SYNLAB Estonia OÜ, Tallinn, Estonia (K. Ratnik)
| | - Kristiina Rull
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
- Department of Obstetrics and Gynaecology (K. Rull), University of Tartu, Tartu, Estonia
- Women's Clinic, Tartu University Hospital, Tartu, Estonia (K. Rull)
| | - Maris Laan
- From the Human Genetics Research Group, Institute of Biomedicine and Translational Medicine (T.K., R.I., K. Ratnik, K. Rull, M.L.), University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
García-Sanz MT, Martínez-Gestoso S, Calvo-Álvarez U, Doval-Oubiña L, Camba-Matos S, Rábade-Castedo C, Rodríguez-García C, González-Barcala FJ. Impact of Hyponatremia on COPD Exacerbation Prognosis. J Clin Med 2020; 9:jcm9020503. [PMID: 32059573 PMCID: PMC7074146 DOI: 10.3390/jcm9020503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/23/2022] Open
Abstract
The most common electrolyte disorder among hospitalized patients, hyponatremia is a predictor of poor prognosis in various diseases. The aim of this study was to establish the prevalence of hyponatremia in patients admitted for acute exacerbation of chronic obstructive pulmonary disease (AECOPD), as well as its association with poor clinical progress. Prospective observational study carried out from 1 October 2016 to 1 October 2018 in the following hospitals: Salnés in Vilagarcía de Arousa, Arquitecto Marcide in Ferrol, and the University Hospital Complex of Santiago de Compostela, Galicia, Spain, on patients admitted for AECOPD. Patient baseline treatment was identified, including hyponatremia-inducing drugs. Poor progress was defined as follows: prolonged stay, death during hospitalization, or readmission within one month after the index episode discharge. 602 patients were enrolled, 65 cases of hyponatremia (10.8%) were recorded, all of a mild nature (mean 131.6; SD 2.67). Of all the patients, 362 (60%) showed poor progress: 18 (3%) died at admission; 327 (54.3%) had a prolonged stay; and 91 (15.1%) were readmitted within one month after discharge. Patients with hyponatremia had a more frequent history of atrial fibrillation (AF) (p 0.005), pleural effusion (p 0.01), and prolonged stay (p 0.01). The factors independently associated with poor progress were hyponatremia, pneumonia, and not receiving home O2 treatment prior to admission. Hyponatremia is relatively frequent in patients admitted for AECOPD, and it has important prognostic implications, even when mild in nature.
Collapse
Affiliation(s)
- María-Teresa García-Sanz
- Emergency Department, Salnés County Hospital, 36600 Vilagarcía de Arousa, Spain; (S.M.-G.); (L.D.-O.); (S.C.-M.)
- Correspondence:
| | - Sandra Martínez-Gestoso
- Emergency Department, Salnés County Hospital, 36600 Vilagarcía de Arousa, Spain; (S.M.-G.); (L.D.-O.); (S.C.-M.)
| | - Uxío Calvo-Álvarez
- Respiratory Medicine Department, Hospital Arquitecto Marcide, 15405 Ferrol, Spain;
| | - Liliana Doval-Oubiña
- Emergency Department, Salnés County Hospital, 36600 Vilagarcía de Arousa, Spain; (S.M.-G.); (L.D.-O.); (S.C.-M.)
| | - Sandra Camba-Matos
- Emergency Department, Salnés County Hospital, 36600 Vilagarcía de Arousa, Spain; (S.M.-G.); (L.D.-O.); (S.C.-M.)
| | - Carlos Rábade-Castedo
- Respiratory Medicine Department, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (C.R.-C.); (C.R.-G.); (F.-J.G.-B.)
| | - Carlota Rodríguez-García
- Respiratory Medicine Department, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (C.R.-C.); (C.R.-G.); (F.-J.G.-B.)
| | - Francisco-Javier González-Barcala
- Respiratory Medicine Department, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain; (C.R.-C.); (C.R.-G.); (F.-J.G.-B.)
- Medicine Department, University Hospital Complex of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Christenson S, Hersh CP. Found in Translation: Multi-omics Assessment of the Chronic Obstructive Pulmonary Disease-Lung Cancer Interaction. Am J Respir Crit Care Med 2019; 200:276-277. [PMID: 30753788 PMCID: PMC6680298 DOI: 10.1164/rccm.201901-0156ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Stephanie Christenson
- 1Division of Pulmonary, Critical Care, Allergy and Sleep MedicineUniversity of California, San FranciscoSan Francisco, Californiaand
| | - Craig P Hersh
- 2Channing Division of Network MedicineBrigham and Women's HospitalBoston, Massachusetts
| |
Collapse
|
11
|
Bhattacharyya S, Feferman L, Tobacman JK. Dihydrotestosterone inhibits arylsulfatase B and Dickkopf Wnt signaling pathway inhibitor (DKK)-3 leading to enhanced Wnt signaling in prostate epithelium in response to stromal Wnt3A. Prostate 2019; 79:689-700. [PMID: 30801800 DOI: 10.1002/pros.23776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/23/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND In tissue microarrays, immunostaining of the enzyme arylsulfatase B (ARSB; N-acetylgalactosamine-4-sulfatase) was less in recurrent prostate cancers and in cancers with higher Gleason scores. In cultured prostate stem cells, decline in ARSB increased Wnt signaling through effects on Dickkopf Wnt Signaling Pathway Inhibitor (DKK)3. The effects of androgen exposure on ARSB and the impact of decline in ARSB on Wnt signaling in prostate tissue were unknown. METHODS Epithelial and stromal tissues from malignant and normal human prostate were obtained by laser capture microdissection. mRNA expression of ARSB, galactose-6-sulfate-sulfatase (GALNS) and Wnt-signaling targets was determined by QPCR. Non-malignant human epithelial and stromal prostate cells were grown in tissue culture, including two-cell layer cultures. ARSB was silenced by specific siRNA, and epithelial cells were treated with stromal spent media following treatment with IWP-2, an inhibitor of Wnt secretion, and by exogenous recombinant human Wnt3A. Promoter methylation was detected using specific DKK3 and ARSB promoter primers. The effects of DHT and of ARSB overexpression on DKK expression were determined. Cell proliferation was assessed by BrdU incorporation. RESULTS Normal stroma showed higher expression of vimentin, ARSB, and Wnt3A than epithelium. Normal epithelium had higher expression of E-cadherin, galactose 6-sulfate-sulfatase (GALNS), and DKK3 than stroma. In malignant epithelium, expression of ARSB and DKK3 declined, and expression of GALNS and Wnt signaling targets increased. In cultured prostate epithelial cells, Wnt-mediated signaling was greatest when ARSB was silenced and cells were exposed to exogenous Wnt3A. Exposure to 5α-dihydrotestosterone (DHT) increased ARSB and DKK3 promoter rmethylation, and effects of DHT on DKK3 expression were reversed when ARSB was overexpressed. CONCLUSIONS Androgen-induced declines in ARSB and DKK3 may contribute to prostate carcinogenesis by sustained activation of Wnt signaling in prostate epithelium in response to stromal Wnt3A.
Collapse
Affiliation(s)
- Sumit Bhattacharyya
- Department of Medicine, The University of Illinois at Chicago and Jesse Brown VAMC, Chicago, Illinois
| | - Leo Feferman
- Department of Medicine, The University of Illinois at Chicago and Jesse Brown VAMC, Chicago, Illinois
| | - Joanne K Tobacman
- Department of Medicine, The University of Illinois at Chicago and Jesse Brown VAMC, Chicago, Illinois
| |
Collapse
|
12
|
Hersh CP. Pharmacogenomics of chronic obstructive pulmonary disease. Expert Rev Respir Med 2019; 13:459-470. [PMID: 30925849 PMCID: PMC6482089 DOI: 10.1080/17476348.2019.1601559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition, which presents the opportunity for precision therapy based on genetics or other biomarkers. Areas covered: Alpha-1 antitrypsin deficiency, a genetic form of emphysema, provides an example of this precision approach to diagnosis and therapy. To date, research in COPD pharmacogenomics has been limited by small sample sizes, lack of accessible target tissue, failure to consider COPD subtypes, and different outcomes relevant for various medications. There have been several published genome-wide association studies and other omics studies in COPD pharmacogenomics; however, clinical implementation remains far away. There is a growing evidence base for precision prescription of inhaled corticosteroids in COPD, based on clinical phenotypes and blood biomarkers, but not yet based on pharmacogenomics. Expert opinion: At this time, there is insufficient evidence for clinical implementation of COPD pharmacogenomics. Additional genome-wide studies will be required to discover predictors of drug response and to identify genomic biomarkers of COPD subtypes, which could be targeted with subtype-directed therapies.
Collapse
Affiliation(s)
- Craig P Hersh
- a Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|