1
|
Hu C, Wang L. Advances in the treatment of liver injury based on mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 2024; 15:474. [PMID: 39696473 DOI: 10.1186/s13287-024-04087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown a great potential role in treating liver injury. MSCs can promote liver regeneration by differentiating into hepatocytes, and can also secrete exosomes to participate in the repair of liver injury. Increasing evidence has shown that mesenchymal stem cell-derived exosomes (MSC-EXOs) play an important role in treating liver injury. In this review, the biogenesis and function of exosomes and the characteristics of MSC-EXOs were analyzed based on recent research results. MSC-EXOs are significant in liver injuries such as liver fibrosis, liver failure, hepatocellular carcinoma, oxidative stress, and lipid steatosis, and participate in the process of liver regeneration.
Collapse
Affiliation(s)
- Changlong Hu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, 710000, China.
| |
Collapse
|
2
|
Akabane M, Imaoka Y, Kawashima J, Endo Y, Schenk A, Sasaki K, Pawlik TM. Innovative Strategies for Liver Transplantation: The Role of Mesenchymal Stem Cells and Their Cell-Free Derivatives. Cells 2024; 13:1604. [PMID: 39404368 PMCID: PMC11475694 DOI: 10.3390/cells13191604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Despite being the standard treatment for end-stage liver disease, liver transplantation has limitations like donor scarcity, high surgical costs, and immune rejection risks. Mesenchymal stem cells (MSCs) and their derivatives offer potential for liver regeneration and transplantation. MSCs, known for their multipotency, low immunogenicity, and ease of obtainability, can differentiate into hepatocyte-like cells and secrete bioactive factors that promote liver repair and reduce immune rejection. However, the clinical application of MSCs is limited by risks such as aberrant differentiation and low engraftment rates. As a safer alternative, MSC-derived secretomes and extracellular vesicles (EVs) offer promising therapeutic benefits, including enhanced graft survival, immunomodulation, and reduced ischemia-reperfusion injury. Current research highlights the efficacy of MSC-derived therapies in improving liver transplant outcomes, but further studies are necessary to standardize clinical applications. This review highlights the potential of MSCs and EVs to address key challenges in liver transplantation, paving the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Miho Akabane
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yuki Imaoka
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Jun Kawashima
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Yutaka Endo
- Department of Transplant Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Austin Schenk
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (Y.I.); (K.S.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (M.A.); (J.K.); (A.S.)
| |
Collapse
|
3
|
Pan W, Li S, Li K, Zhou P. Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Potential in Organ Transplantation. Stem Cells Int 2024; 2024:2043550. [PMID: 38708382 PMCID: PMC11068458 DOI: 10.1155/2024/2043550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
At present, organ transplantation remains the most appropriate therapy for patients with end-stage organ failure. However, the field of organ transplantation is still facing many challenges, including the shortage of organ donors, graft function damage caused by organ metastasis, and antibody-mediated immune rejection. It is therefore urgently necessary to find new and effective treatment. Stem cell therapy has been regarded as a "regenerative medicine technology." Mesenchymal stem cells (MSCs), as the most common source of cells for stem cell therapy, play an important role in regulating innate and adaptive immune responses and have been widely used in clinical trials for the treatment of autoimmune and inflammatory diseases. Increasing evidence has shown that MSCs mainly rely on paracrine pathways to exert immunomodulatory functions. In addition, mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are the main components of paracrine substances of MSCs. Herein, an overview of the application of the function of MSCs and MSC-EVs in organ transplantation will focus on the progress reported in recent experimental and clinical findings and explore their uses for graft preconditioning and recipient immune tolerance regulation. Additionally, the limitations on the use of MSC and MSC-EVs are also discussed, covering the isolation of exosomes and preservation techniques. Finally, the opportunities and challenges for translating MSCs and MSC-EVs into clinical practice of organ transplantation are also evaluated.
Collapse
Affiliation(s)
- Wennuo Pan
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shaohan Li
- Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
4
|
Sitbon A, Delmotte PR, Goumard C, Turco C, Gautheron J, Conti F, Aoudjehane L, Scatton O, Monsel A. Therapeutic potentials of mesenchymal stromal cells-derived extracellular vesicles in liver failure and marginal liver graft rehabilitation: a scoping review. Minerva Anestesiol 2023; 89:690-706. [PMID: 37079286 DOI: 10.23736/s0375-9393.23.17265-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Liver failure includes distinct subgroups of diseases: Acute liver failure (ALF) without preexisting cirrhosis, acute-on-chronic liver failure (ACLF) (severe form of cirrhosis associated with organ failures and excess mortality), and liver fibrosis (LF). Inflammation plays a key role in ALF, LF, and more specifically in ACLF for which we have currently no treatment other than liver transplantation (LT). The increasing incidence of marginal liver grafts and the shortage of liver grafts require us to consider strategies to increase the quantity and quality of available liver grafts. Mesenchymal stromal cells (MSCs) have shown beneficial pleiotropic properties with limited translational potential due to the pitfalls associated with their cellular nature. MSC-derived extracellular vesicles (MSC-EVs) are innovative cell-free therapeutics for immunomodulation and regenerative purposes. MSC-EVs encompass further advantages: pleiotropic effects, low immunogenicity, storage stability, good safety profile, and possibility of bioengineering. Currently, no human studies explored the impact of MSC-EVs on liver disease, but several preclinical studies highlighted their beneficial effects. In ALF and ACLF, data showed that MSC-EVs attenuate hepatic stellate cells activation, exert antioxidant, anti-inflammatory, anti-apoptosis, anti-ferroptosis properties, and promote regeneration of the liver, autophagy, and improve metabolism through mitochondrial function recovery. In LF, MSC-EVs demonstrated anti-fibrotic properties associated with liver tissue regeneration. Normothermic-machine perfusion (NMP) combined with MSC-EVs represents an attractive therapy to improve liver regeneration before LT. Our review suggests a growing interest in MSC-EVs in liver failure and gives an appealing insight into their development to rehabilitate marginal liver grafts through NMP.
Collapse
Affiliation(s)
- Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France -
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France -
| | - Pierre-Romain Delmotte
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Claire Goumard
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Célia Turco
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Jérémie Gautheron
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
| | - Filomena Conti
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Lynda Aoudjehane
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- IHU-Innovation of Cardiometabolism and Nutrition (ICAN), INSERM, Sorbonne University, Paris, France
| | - Olivier Scatton
- UMRS-938, Research Center of Saint-Antoine (CRSA), Sorbonne University, Paris, France
- Department of Digestive, Hepatobiliary Surgery and Liver Transplantation, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Sorbonne University, Paris, France
- INSERM UMRS-959 Immunology-Immunopathology-Immunotherapy (I3), Sorbonne University, Paris, France
| |
Collapse
|
5
|
Sun Y, Ma Y, Sun F, Feng W, Ye H, Tian T, Lei M. Astragaloside IV attenuates lipopolysaccharide induced liver injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. Heliyon 2023; 9:e15436. [PMID: 37113780 PMCID: PMC10126932 DOI: 10.1016/j.heliyon.2023.e15436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Aims and objectives Sepsis-associated liver injury is a common public health problem in intensive care units. Astragaloside IV (AS-IV) is an active component extracted from the Chinese herb Astragalus membranaceus, and has been shown to have anti-oxidation, anti-inflammation, and anti-apoptosis properties. The research aimed to investigate the protective effect of AS-IV in lipopolysaccharide (LPS)-induced liver injury. Methods Male C57BL/6 wild-type mice (6-8 week-old) were intraperitoneally injected with 10 mg/kg LPS for 24 h and AS-IV (80 mg/kg) 2 h before the LPS injection. Biochemical and histopathological analyses were carried out to assess liver injury. The RT-qPCR analyzed the mRNA expression of IL-1β, TNF-α, and IL-6. The mRNA and protein expression of SIRT1, nuclear Nrf2, Nrf2, and HO-1 were measured by Western blotting. Results Serum alanine/aspartate aminotransferases (ALT/AST) analysis, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were showed that AS-IV protected against LPS-induced hepatotoxicity. The protection afforded by AS-IV was confirmed by pathological examination of the liver. Pro-inflammatory cytokines, including interleukin- 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6), were observed to be reversed by AS-IV after exposure to LPS. Western blot analysis demonstrated that AS-IV enhanced the expression levels of Sirtuin 1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). Conclusions AS-IV protects against LPS-induced Liver Injury and Inflammation by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation.
Collapse
|
6
|
Therapeutic Efficiency of Nasal Mucosa-Derived Ectodermal Mesenchymal Stem Cells in Rats with Acute Hepatic Failure. Stem Cells Int 2023; 2023:6890299. [PMID: 36655034 PMCID: PMC9842420 DOI: 10.1155/2023/6890299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background Liver transplantation is limited by the insufficiency of liver organ donors when treating end-stage liver disease or acute liver failure (ALF). Ectodermal mesenchymal stem cells (EMSCs) derived from nasal mucosa have emerged as an alternative cell-based therapy. However, the role of EMSCs in acute liver failure remains unclear. Methods EMSCs were obtained from the nasal mucosa tissue of rats. First, EMSCs were seeded on the gelatin-chitosan scaffolds, and the biocompatibility was evaluated. Next, the protective effects of EMSCs were investigated in carbon tetrachloride- (CCl4-) induced ALF rats. Finally, we applied an indirect coculture system to analyze the paracrine effects of EMSCs on damaged hepatocytes. A three-step nontransgenic technique was performed to transform EMSCs into hepatocyte-like cells (HLCs) in vitro. Results EMSCs exhibited a similar phenotype to other mesenchymal stem cells along with self-renewal and multilineage differentiation capabilities. EMSC-seeded gelatin-chitosan scaffolds can increase survival rates and ameliorate liver function and pathology of ALF rat models. Moreover, transplanted EMSCs can secrete paracrine factors to promote hepatocyte regeneration, targeted migration, and transdifferentiate into HLCs in response to the liver's microenvironment, which will then repair or replace the damaged hepatocytes. Similar to mature hepatocytes, HLCs generated from EMSCs possess functions of expressing specific hepatic markers, storing glycogen, and producing urea. Conclusions These results confirmed the feasibility of EMSCs in acute hepatic failure treatment. To our knowledge, this is the first time that EMSCs are used in the therapy of liver diseases. EMSCs are expected to be a novel and promising cell source in liver tissue engineering.
Collapse
|
7
|
Transplantation of adipose-derived mesenchymal stem cells ameliorates acute hepatic injury caused by nonsteroidal anti-inflammatory drug diclofenac sodium in female rats. Biomed Pharmacother 2022; 155:113805. [PMID: 36271578 DOI: 10.1016/j.biopha.2022.113805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Although the beneficial role of adipose-derived mesenchymal stem cells (AD-MSCs) in acute liver injury has been addressed by numerous studies employing different liver injury inducers, the role of rat AD-MSCs (rAD-MSCs) in diclofenac sodium (DIC) - induced acute liver injury has not yet been clarified. OBJECTIVE This study aimed to investigate whether rat adipose- rAD-MSCs injected intraperitoneal could restore the DIC-induced hepatoxicity. METHODS Hepatotoxicity was induced by DIC in a dose-based manner, after which intraperitoneal injection of rAD-MSCs was performed. RESULTS Here, the transplanted cells migrated to the injured liver, and this was evidenced by detecting the specific SRY in the liver samples. After administering DIC, a significant decrease in body weight, survival rate, serum proteins, antioxidants, anti-apoptotic gene expression, and certain growth factors, whereas hepatic-specific markers, pro-inflammatory mediators, and oxidative, pro-apoptotic, and ER-stress markers were elevated. These adverse effects were significantly recovered after engraftment with rAD-MSCs. This was evidenced by enhanced survival and body weight, improved globulin and albumin values, increased expression of SOD, GPx, BCL-2, VEGF, and FGF-basic expression, and decreased serum ALT, AST, ALP, and total bilirubin. rAD-MSCs also reduced liver cell damage by suppressing the expression of MDA, IL-1B, IL-6, BAX, JNK, GRP78/BiP, CHOP, XBP-1, and cleaved caspase 3/7. Degenerative hepatic changes and multifocal areas of fatty change within liver cells were observed in DIC-received groups. These changes were improved with the transplantation of rAD-MSCs. CONCLUSIONS We could conclude that targeted AD-MSCs could be applied to reduce hepatic toxicity caused by NSAIDs (DIC).
Collapse
|
8
|
Harrell CR, Pavlovic D, Djonov V, Volarevic V. Therapeutic potential of mesenchymal stem cells in the treatment of acute liver failure. World J Gastroenterol 2022; 28:3627-3636. [PMID: 36161038 PMCID: PMC9372816 DOI: 10.3748/wjg.v28.i28.3627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) is a severe and life-threatening condition in which rapid deterioration of liver function develops in a patient who has no preexisting liver disease. Mesenchymal stem cells (MSCs) are immunoregulatory stem cells which are able to modulate phenotype and function of all immune cells that play pathogenic role in the development and progression of ALF. MSCs in juxtacrine and paracrine manner attenuate antigen-presenting properties of dendritic cells and macrophages, reduce production of inflammatory cytokines in T lymphocytes, suppress hepatotoxicity of natural killer T (NKT) cells and promote generation and expansion of immunosuppressive T, B and NKT regulatory cells in acutely inflamed liver. Due to their nano-sized dimension and lipid envelope, intravenously injected MSC-derived exosomes (MSC-Exos) may by-pass all biological barriers to deliver MSC-sourced immunoregulatoy factors directly into the liver-infiltrated immune cells and injured hepatocytes. Results obtained by us and others revealed that intravenous administration of MSCs and MSC-Exos efficiently attenuated detrimental immune response and acute inflammation in the liver, suggesting that MSCs and MSC-Exos could be considered as potentially new remedies in the immunotherapy of ALF. In this review, we emphasize the current knowledge about molecular and cellular mechanisms which are responsible for MSC-based modulation of liver-infiltrated immune cells and we discuss different insights regarding the therapeutic potential of MSCs in liver regeneration.
Collapse
Affiliation(s)
| | - Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Vladislav Volarevic
- Department of Medical Genetics and Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| |
Collapse
|
9
|
Abo-Aziza FAM, Zaki AKA, Adel RM, Fotouh A. Amelioration of aflatoxin acute hepatitis rat model by bone marrow mesenchymal stem cells and their hepatogenic differentiation. Vet World 2022; 15:1347-1364. [PMID: 35765490 PMCID: PMC9210847 DOI: 10.14202/vetworld.2022.1347-1364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation and their hepatogenic differentiated cells (HDCs) can be applied for liver injury repair by tissue grafting. Regenerative potentiality in liver cirrhosis models was widely investigated; however, immunomodulation and anti-inflammation in acute hepatitis remain unexplored. This study aimed to explore the immunomodulatory and evaluate twice intravenous (IV) or intrahepatic (IH) administration of either BM-MSCs or middle-stage HDCs on aflatoxin (AF) acute hepatitis rat model. Materials and Methods: BM-MSCs viability, phenotypes, and proliferation were evaluated. Hepatogenic differentiation, albumin, and mmmmmmmm-fetoprotein gene expression were assessed. AF acute hepatitis was induced in rats using AFB1 supplementation. The transplantation of BM-MSCs or their HDCs was done either by IV or IH route. Hepatic ultrasound was performed after 3-weeks of therapy. Cytokines profile (tumor necrosis factor-α [TNF-α], interleukin [IL]-4, and IL-10) was assessed. Hepatic bio-indices, serum, and hepatic antioxidant activity were evaluated, besides examining liver histological sections. Results: Acute AFB1 showed a significant increase in TNF-α (p<0.01), liver enzyme activities (p<0.05), as well as decrease in IL-4, IL-10, and antioxidant enzyme activities (p<0.05). Cytokines profile was ameliorated in groups treated with IV and IH BM-MCs, showed a negative correlation between IL-4 and TNF-α (p<0.05), and a positive correlation between IL-10 upregulation and TNF-α (p<0.01). In IV HDCs treated group, positive correlations between IL-4 and IL-10 downregulation and TNF-α were observed. However, in IH HDCs group, a significant positive correlation between IL-4 and IL-10 upregulation and TNF-α, were recorded (p<0.05). In addition, IV BM-MSCs and IH HDCs treatments significantly increased antioxidant enzymes activity (p<0.05). IV and IH BM-MSCs significantly ameliorated liver transaminase levels, whereas IH HDCs significantly ameliorated alanine aminotransferase activity and nitric oxide concentration (p<0.05). Conclusion: The administration routes of BM-MSCs did not demonstrate any significant difference; however, the IH route of HDCs showed significant amelioration from the IV route. On the other hand, it showed noticeable anti-inflammatory and immunomodulatory improvements in aflatoxicosis rats. Therefore, it can be concluded that acute hepatitis can be treated by a noninvasive IV route without the expense of hepatogenic differentiation. Further research using clinical trials that address several problems regarding engraftment and potentiation are needed to determine the optimal manipulation strategy as well as to achieve better long term effects.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rana M. Adel
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
10
|
Li F, Zhang J, Yi K, Wang H, Wei H, Chan HF, Tao Y, Li M. Delivery of Stem Cell Secretome for Therapeutic Applications. ACS APPLIED BIO MATERIALS 2022; 5:2009-2030. [PMID: 35285638 DOI: 10.1021/acsabm.1c01312] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intensive studies on stem cell therapy reveal that benefits of stem cells attribute to the paracrine effects. Hence, direct delivery of stem cell secretome to the injured site shows the comparative therapeutic efficacy of living cells while avoiding the potential limitations. However, conventional systemic administration of stem cell secretome often leads to rapid clearance in vivo. Therefore, a variety of different biomaterials are developed for sustained and controllable delivery of stem cell secretome to improve therapeutic efficiency. In this review, we first introduce current approaches for the preparation and characterization of stem cell secretome as well as strategies to improve their therapeutic efficacy and production. The up-to-date delivery platforms are also summarized, including nanoparticles, injectable hydrogels, microneedles, and scaffold patches. Meanwhile, we discuss the underlying therapeutic mechanism of stem cell secretome for the treatment of various diseases. In the end, future opportunities and challenges are proposed.
Collapse
Affiliation(s)
- Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
11
|
Chen SN, Tan Y, Xiao XC, Li Q, Wu Q, Peng YY, Ren J, Dong ML. Deletion of TLR4 attenuates lipopolysaccharide-induced acute liver injury by inhibiting inflammation and apoptosis. Acta Pharmacol Sin 2021; 42:1610-1619. [PMID: 33495514 PMCID: PMC8463538 DOI: 10.1038/s41401-020-00597-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Septic acute liver injury is one of the leading causes of fatalities in patients with sepsis. Toll-like receptor 4 (TLR4) plays a vital role in response to lipopolysaccharide (LPS) challenge, but the mechanisms underlying TLR4 function in septic injury remains unclear. In this study, we investigated the role of TLR4 in LPS-induced acute liver injury (ALI) in mice with a focus on inflammation and apoptosis. Wild-type (WT) and TLR4-knockout (TLR4-/-) mice were challenged with LPS (4 mg/kg) for 6 h. TLR4 signaling cascade markers (TLR4, MyD88, and NF-κB), inflammatory markers (TNFα, IL-1β, and IL-6), and apoptotic markers (Bax, Bcl-2, and caspase 3) were evaluated. We showed that LPS challenge markedly increased the levels of serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) and other liver pathological changes in WT mice. In addition, LPS challenge elevated the levels of liver carbonyl proteins and serum inflammatory cytokines, upregulated the expression of TLR4, MyD88, and phosphorylated NF-κB in liver tissues. Moreover, LPS challenge significantly increased hepatocyte apoptosis, caspase 3 activity, and Bax level while suppressing Bcl-2 expression in liver tissues. These pathological changes were greatly attenuated in TLR4-/- mice. Similar pathological responses were provoked in primary hepatic Kupffer cells isolated from WT and TLR4-/- mice following LPS (1 μg/mL, 6 h) challenge. In summary, these results demonstrate that silencing of TLR4 attenuates LPS-induced liver injury through inhibition of inflammation and apoptosis via TLR4/MyD88/NF-κB signaling pathway. TLR4 deletion confers hepatoprotection against ALI induced by LPS, possibly by repressing macrophage inflammation and apoptosis.
Collapse
Affiliation(s)
- Sai-Nan Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Chan Xiao
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qian Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - You-You Peng
- Shanghai Hongrun Boyuan School, Shanghai, 201713, China
| | - Jun Ren
- Department of Cardiology, and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| | - Mao-Long Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Li SW, Cai Y, Mao XL, He SQ, Chen YH, Yan LL, Zhou JJ, Song YQ, Ye LP, Zhou XB. The Immunomodulatory Properties of Mesenchymal Stem Cells Play a Critical Role in Inducing Immune Tolerance after Liver Transplantation. Stem Cells Int 2021; 2021:6930263. [PMID: 34531915 PMCID: PMC8440082 DOI: 10.1155/2021/6930263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Although liver transplantation is considered to be the best choice for patients with end-stage liver diseases, postoperative immune rejection still cannot be overlooked. Patients with liver transplantation have to take immunosuppressive drugs for a long time or even their entire lives, in which heavy economic burden and side effects caused by the drugs have become the major impediment for liver transplantation. There is a growing body of evidences indicating that mesenchymal stem cell (MSC) transplantation, a promising tool in regenerative medicine, can be used as an effective way to induce immune tolerance after liver transplantation based on their huge expansion potential and unique immunomodulatory properties. MSCs have been reported to inhibit innate immunity and adaptive immunity to induce a tolerogenic microenvironment. In in vitro studies, transplanted MSCs show plasticity in immune regulation by altering their viability, migration, differentiation, and secretion in the interactions with the surrounding host microenvironment. In this review, we aim to provide an overview of the current understanding of immunomodulatory properties of MSCs in liver transplantation, to elucidate the potential mechanisms behind MSCs regulating immune response, especially in vivo and the influence of the microenvironment, and ultimately to discuss the feasible strategies to improve the clinical prognosis of liver transplantation. Only after exhaustive understanding of potential mechanisms of the MSC immunomodulation can we improve the safety and effectiveness of MSC treatment and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jing-jing Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-qi Song
- Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
13
|
Zheng Y, Zhu S, Zheng X, Xu W, Li X, Li J, Gao Z, Xie C, Peng L. Serum from Acute-on-chronic Liver Failure Patients May Affect Mesenchymal Stem Cells Transplantation by Impairing the Immunosuppressive Function of Cells. J Clin Transl Hepatol 2021; 9:503-513. [PMID: 34447679 PMCID: PMC8369013 DOI: 10.14218/jcth.2021.00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/11/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS The safety and efficacy of mesenchymal stem cells (MSCs) in the treatment of acute-on-chronic liver failure (ACLF) have been validated. However, the impact of the pathological ACLF microenvironment on MSCs is less well understood. This study was designed to explore the changes in the functional properties of MSCs exposed to ACLF serum. METHODS MSCs were cultured in the presence of 10%, 30% and 50% serum concentrations from ACLF patients and healthy volunteers. Then, the cell morphology, phenotype, apoptosis and proliferation of MSCs were evaluated, including the immunosuppressive effects. Subsequently, mRNA sequencing analysis was used to identify the molecules and pathways involved in MSC functional changes in the context of ACLF. RESULTS In the presence of ACLF serum, MSC morphology significantly changed but phenotype did not. Besides, MSC proliferation activity was weakened, while the apoptosis rate was lightly increased. Most importantly, the immunosuppressive function of MSCs was enhanced in a low-concentration serum environment but transformed into a proinflammatory response in a high-concentration serum environment. RNA sequencing indicated that 10% serum concentration from ACLF patients mediated the PI3K-Akt pathway to enhance the anti-inflammatory effect of MSCs, while the 50% serum concentration from ACLF patients promoted the conversion of MSCs into a proinflammatory function by affecting the cell cycle. CONCLUSIONS The 50% ACLF serum concentration is more similar to the environment in the human body, which means that direct peripheral blood intravenous infusion of MSCs may reduce the effect of transplantation. Combining treatments of plasma exchange to reduce harmful substances in serum may promote MSCs to exert a stronger anti-inflammatory effect.
Collapse
Affiliation(s)
- Yongyuan Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shu Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xingrong Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuejun Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianguo Li
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Corresponding Authors: Liang Peng, 600 Tianhe Road, Tianhe district, Guangzhou, Guangdong 510530, China. ORCID: https://orcid.org/0000-0001-6184-5750. Tel/Fax: +86-20-8525-2372, E-mail: ; Chan Xie, 600 Tianhe Road, Tianhe district, Guangzhou, Guangdong 510530, China. ORCID: https://orcid.org/0000-0002-0225-5483. Tel/Fax: +86-20-8525-2372, E-mail:
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Corresponding Authors: Liang Peng, 600 Tianhe Road, Tianhe district, Guangzhou, Guangdong 510530, China. ORCID: https://orcid.org/0000-0001-6184-5750. Tel/Fax: +86-20-8525-2372, E-mail: ; Chan Xie, 600 Tianhe Road, Tianhe district, Guangzhou, Guangdong 510530, China. ORCID: https://orcid.org/0000-0002-0225-5483. Tel/Fax: +86-20-8525-2372, E-mail:
| |
Collapse
|
14
|
Hade MD, Suire CN, Suo Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:1959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 273] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
Affiliation(s)
| | | | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA; (M.D.H.); (C.N.S.)
| |
Collapse
|
15
|
Zhou JH, Lu X, Yan CL, Sheng XY, Cao HC. Mesenchymal stromal cell-dependent immunoregulation in chemically-induced acute liver failure. World J Stem Cells 2021; 13:208-220. [PMID: 33815670 PMCID: PMC8006015 DOI: 10.4252/wjsc.v13.i3.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI), which refers to liver damage caused by a drug or its metabolites, has emerged as an important cause of acute liver failure (ALF) in recent years. Chemically-induced ALF in animal models mimics the pathology of DILI in humans; thus, these models are used to study the mechanism of potentially effective treatment strategies. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties, and they alleviate acute liver injury and decrease the mortality of animals with chemically-induced ALF. Here, we summarize some of the existing research on the interaction between MSCs and immune cells, and discuss the possible mechanisms underlying the immuno-modulatory activity of MSCs in chemically-induced ALF. We conclude that MSCs can impact the phenotype and function of macrophages, as well as the differentiation and maturation of dendritic cells, and inhibit the proliferation and activation of T lymphocytes or B lymphocytes. MSCs also have immuno-modulatory effects on the production of cytokines, such as prostaglandin E2 and tumor necrosis factor-alpha-stimulated gene 6, in animal models. Thus, MSCs have significant benefits in the treatment of chemically-induced ALF by interacting with immune cells and they may be applied to DILI in humans in the near future.
Collapse
Affiliation(s)
- Jia-Hang Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xuan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Cui-Lin Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Yu Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hong-Cui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
16
|
Hu C, Zhao L, Li L. Genetic modification by overexpression of target gene in mesenchymal stromal cell for treating liver diseases. J Mol Med (Berl) 2021; 99:179-192. [PMID: 33388882 DOI: 10.1007/s00109-020-02031-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Different hepatoxic factors cause irreversible liver injury, leading to liver failure, cirrhosis, and cancer in mammals. Liver transplantation is the only effective strategy, which can improve the prognosis of patients with end-stage liver diseases, but it is limited by liver donor shortage, expensive costs, liver graft rejection and dysfunction, and recurring liver failure. Recently, mesenchymal stromal cells (MSCs) isolated from various tissues are regarded as the main stem cell type with therapeutic effects in liver diseases because of their hepatogenic differentiation, anti-inflammatory, immuoregulatory, anti-apoptotic, antifibrotic, and antitumor capacities. To further improve the therapeutic effects of MSCs, multiple studies showed that genetically engineered MSCs have increased regenerative capacities and are able to more effectively inhibit cell death. Moreover, they are able to secrete therapeutic proteins for attenuating liver injury in liver diseases. In this review, we mainly focus on gene overexpression for reprogramming MSCs to increase their therapeutic effects in treating various liver diseases. We described the potential mechanisms of MSCs with gene overexpression in attenuating liver injury, and we recommend further expansion of experiments to discover more gene targets and optimized gene delivery methods for MSC-based regenerative medicine. We also discussed the potential hurdles in genetic engineering MSCs. In conclusion, we highlight that we need to overcome all scientific hurdles before genetically modified MSC therapy can be translated into clinical practices for patients with liver diseases.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Liu J, Jiang F, Jiang Y, Wang Y, Li Z, Shi X, Zhu Y, Wang H, Zhang Z. Roles of Exosomes in Ocular Diseases. Int J Nanomedicine 2020; 15:10519-10538. [PMID: 33402823 PMCID: PMC7778680 DOI: 10.2147/ijn.s277190] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Exosomes, nanoscale vesicles with a diameter of 30 to 150 nm, are composed of a lipid bilayer, protein, and genetic material. Exosomes are secreted by virtually all types of cells in the human body. They have key functions in cell-to-cell communication, immune regulation, inflammatory response, and neovascularization. Mounting evidence indicates that exosomes play an important role in various diseases, such as cancer, cardiovascular diseases, and brain diseases; however, the role that exosomes play in eye diseases has not yet been rigorously studied. This review covers current exosome research as it relates to ocular diseases including diabetic retinopathy, age-related macular degeneration, autoimmune uveitis, glaucoma, traumatic optic neuropathies, corneal diseases, retinopathy of prematurity, and uveal melanoma. In addition, we discuss recent advances in the biological functions of exosomes, focusing on the toxicity of exosomes and the use of exosomes as biomarkers and drug delivery vesicles. Finally, we summarize the primary considerations and challenges to be taken into account for the effective applications of exosomes.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Yu Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Yicheng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Xuefeng Shi
- Department of Pediatric Ophthalmology and Strabismus, Tianjin Eye Hospital, Tianjin, 300020, People's Republic of China.,School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.,Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, People's Republic of China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, People's Republic of China
| | - Yanping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
18
|
Cai W, Sun J, Sun Y, Zhao X, Guo C, Dong J, Peng X, Zhang R. NIR-II FL/PA dual-modal imaging long-term tracking of human umbilical cord-derived mesenchymal stem cells labeled with melanin nanoparticles and visible HUMSC-based liver regeneration for acute liver failure. Biomater Sci 2020; 8:6592-6602. [PMID: 33231594 DOI: 10.1039/d0bm01221a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetaminophen (APAP) has been widely used for relieving pain and fever, whilst overdose would lead to the occurrence of acute liver failure (ALF). Currently, few effective treatments are available for ALF in clinic, especially for severe, advanced- or end-stage patients who need liver transplantation. Human umbilical cord-derived mesenchymal stem cells (hUMSCs), as one of the mesenchymal stem cells, not only contribute to relieving hepatotoxicity and promoting hepatocyte regeneration due to their self-renewing, multi-differentiation potential, anti-inflammatory, immunomodulatory and paracrine properties, but possess lower immunomodulatory effects, faster self-renewal properties and noncontroversial ethical concerns, which may play a better role in the treatment of ALF. In this work, hUMSCs were rapidly labeled with near-infrared II fluorescent dye-modified melanin nanoparticles (MNP-PEG-H2), which could realize long-term tracking of hUMSCs by NIR-II fluorescent (FL)/photoacoustic (PA) dual-modal imaging and could visualize hUMSC-based liver regeneration in ALF. The nanoparticles exhibited good dispersibility and biocompatibility, high labeling efficiency for hUMSCs and excellent NIR-II FL/PA imaging performance. Moreover, the MNP-PEG-H2 labeled hUMSCs could be continuously traced in vivo for up to 21 days. After intravenous delivery, the NIR-II FL and PA images revealed that labeled hUMSCs were able to engraft in the injured liver and repair damaged tissue in ALF mice. Therefore, the hUMSCs labeled with endogenous melanin nanoparticles solve the key tracing problem of MSC-based regenerative medicine and realize the visualization of the treatment process, which may provide an efficient, safe and potential choice for ALF.
Collapse
Affiliation(s)
- Wenwen Cai
- Imaging Department, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Harrell CR, Markovic BS, Fellabaum C, Arsenijevic N, Djonov V, Volarevic V. The role of Interleukin 1 receptor antagonist in mesenchymal stem cell-based tissue repair and regeneration. Biofactors 2020; 46:263-275. [PMID: 31755595 DOI: 10.1002/biof.1587] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/27/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-1 receptor antagonist (IL-1Ra), a naturally occurring antagonist of IL-1α/IL-1β signaling pathways, has been attributed to the immunosuppressive effects of mesenchymal stem cells (MSCs). MSCs, in IL-1Ra-dependent manner, suppressed production of IL-1β in dermal macrophages, induced their polarization in anti-inflammatory M2 phenotype, attenuated antigen-presenting properties of dendritic cells (DCs), and promoted expansion of immunosuppressive T regulatory cells in the skin, which resulted in enhanced repair of the nonhealing wounds. Reduced activation of inflammasome and suppressed production of IL-1β in macrophages were mainly responsible for beneficial effects of MSC-derived IL-1Ra in alleviation of acute lung injury, dry eye syndrome, and corneal injury. Through the production of IL-1Ra, MSCs reduced migration of DCs to the draining lymph nodes and attenuated generation of inflammatory Th1 and Th17 cells that resulted in alleviation of fulminant hepatitis and rheumatoid arthritis. MSCs, in IL-1Ra-dependent manner, reduced liver fibrosis by suppressing production of Type I collagen in hepatic stellate cells. IL-1Ra was, at least partially, responsible for enhanced proliferation of hepatocytes and chondrocytes in MSC-treated animals with partial hepatectomy and osteoarthritis. Despite of these beneficial effects, IL-1Ra-dependent inhibition of IL-1α/IL-1β-signaling significantly increased risk of infections. Therefore, future experimental and clinical studies should delineate potential side effects of MSC-derived IL-1Ra before IL-1Ra-overexpressing MSCs could be used as a potentially new therapeutic agent for the treatment of acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Bojana Simovic Markovic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | | - Vladislav Volarevic
- Faculty of Medical Sciences, Department for Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
20
|
Hu C, Zhao L, Wu Z, Li L. Transplantation of mesenchymal stem cells and their derivatives effectively promotes liver regeneration to attenuate acetaminophen-induced liver injury. Stem Cell Res Ther 2020; 11:88. [PMID: 32106875 PMCID: PMC7047366 DOI: 10.1186/s13287-020-01596-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP)-induced injury is a common clinical phenomenon that not only occurs in a dose-dependent manner but also occurs in some idiosyncratic individuals in a dose-independent manner. APAP overdose generally results in acute liver injury via the initiation of oxidative stress, endoplasmic reticulum (ER) stress, autophagy, liver inflammation, and microcirculatory dysfunction. Liver transplantation is the only effective strategy for treating APAP-induced liver failure, but liver transplantation is inhibited by scarce availability of donor liver grafts, acute graft rejection, lifelong immunosuppression, and unbearable costs. Currently, N-acetylcysteine (NAC) effectively restores liver functions early after APAP intake, but it does not protect against APAP-induced injury at the late stage. An increasing number of animal studies have demonstrated that mesenchymal stem cells (MSCs) significantly attenuate acute liver injury through their migratory capacity, hepatogenic differentiation, immunoregulatory capacity, and paracrine effects in acute liver failure (ALF). In this review, we comprehensively discuss the mechanisms of APAP overdose-induced liver injury and current therapies for treating APAP-induced liver injury. We then comprehensively summarize recent studies about transplantation of MSC and MSC derivatives for treating APAP-induced liver injury. We firmly believe that MSCs and their derivatives will effectively promote liver regeneration and liver injury repair in APAP overdose-treated animals and patients. To this end, MSC-based therapies may serve as an effective strategy for patients who are waiting for liver transplantation during the early and late stages of APAP-induced ALF in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongwen Wu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
21
|
Zheng Y, Cui B, Sun W, Wang S, Huang X, Gao H, Gao F, Cheng Q, Lu L, An Y, Li X, Sun N. Potential Crosstalk between Liver and Extra-liver Organs in Mouse Models of Acute Liver Injury. Int J Biol Sci 2020; 16:1166-1179. [PMID: 32174792 PMCID: PMC7053327 DOI: 10.7150/ijbs.41293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/18/2020] [Indexed: 12/26/2022] Open
Abstract
Carbon tetrachloride (CCl4), Concanavalin A (ConA), bile duct ligation (BDL), and liver resection (LR) are four types of commonly used mouse models of acute liver injury. However, these four models belong to different types of liver cell damage while their application situations are often confounded. In addition, the systematic changes of multiple extra-liver organs after acute liver injury and the crosstalk between liver and extra-liver organs remain unclear. Here, we aim to map the morphological, metabolomic and transcriptomic changes systematically after acute liver injury and search for the potential crosstalk between the liver and the extra-liver organs. Significant changes of transcriptome were observed in multiple extra-liver organs after different types of acute liver injury despite dramatic morphological damage only occurred in lung tissues of the ConA/BDL models and spleen tissues in the ConA model. Liver transcriptomic changes initiated the serum metabolomic alterations which correlated to transcriptomic variation in lung, kidney, and brain tissues of BDL and LR models. The potential crosstalk might lead to pulmonary damage and development of hepatorenal syndrome (HRS) and hepatic encephalopathy (HE) during liver injury. Serum derived from acute liver injury mice damaged alveolar epithelial cells and human podocytes in vitro. Our data indicated that different types of acute liver injury led to different transcriptomic changes within extra-liver organs. Integration of serum metabolomics and transcriptomics from multiple tissues can improve our understanding of acute liver injury and its effect on the other organs.
Collapse
Affiliation(s)
- Yufan Zheng
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baiping Cui
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenrui Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Sining Wang
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xu Huang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Han Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Cheng
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Metabolomics and Systems Biology Laboratory, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200032, China.,Department of Internal Medicine, Huashan Hospital West Campus, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Hu C, Li L. The immunoregulation of mesenchymal stem cells plays a critical role in improving the prognosis of liver transplantation. J Transl Med 2019; 17:412. [PMID: 31823784 PMCID: PMC6905033 DOI: 10.1186/s12967-019-02167-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
The liver is supplied by a dual blood supply, including the portal venous system and the hepatic arterial system; thus, the liver organ is exposed to multiple gut microbial products, metabolic products, and toxins; is sensitive to extraneous pathogens; and can develop liver failure, liver cirrhosis and hepatocellular carcinoma (HCC) after short-term or long-term injury. Although liver transplantation (LT) serves as the only effective treatment for patients with end-stage liver diseases, it is not very popular because of the complications and low survival rates. Although the liver is generally termed an immune and tolerogenic organ with adaptive systems consisting of humoral immunity and cell-mediated immunity, a high rejection rate is still the main complication in patients with LT. Growing evidence has shown that mesenchymal stromal cell (MSC) transplantation could serve as an effective immunomodulatory strategy to induce tolerance in various immune-related disorders. MSCs are reported to inhibit the immune response from innate immune cells, including macrophages, dendritic cells (DCs), natural killer cells (NK cells), and natural killer T (NKT) cells, and that from adaptive immune cells, including T cells, B cells and other liver-specific immune cells, for the generation of a tolerogenic microenvironment. In this review, we summarized the relationship between LT and immunoregulation, and we focused on how to improve the effects of MSC transplantation to improve the prognosis of LT. Only after exhaustive clarification of the potential immunoregulatory mechanisms of MSCs in vitro and in vivo can we implement MSC protocols in routine clinical practice to improve LT outcome.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
23
|
Hu C, Wu Z, Li L. Pre-treatments enhance the therapeutic effects of mesenchymal stem cells in liver diseases. J Cell Mol Med 2019; 24:40-49. [PMID: 31691463 PMCID: PMC6933358 DOI: 10.1111/jcmm.14788] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Liver diseases caused by viral infection, alcohol abuse and metabolic disorders can progress to end‐stage liver failure, liver cirrhosis and liver cancer, which are a growing cause of death worldwide. Although liver transplantation and hepatocyte transplantation are useful strategies to promote liver regeneration, they are limited by scarce sources of organs and hepatocytes. Mesenchymal stem cells (MSCs) restore liver injury after hepatogenic differentiation and exert immunomodulatory, anti‐inflammatory, antifibrotic, antioxidative stress and antiapoptotic effects on liver cells in vivo. After isolation and culture in vitro, MSCs are faced with nutrient and oxygen deprivation, and external growth factors maintain MSC capacities for further applications. In addition, MSCs are placed in a harsh microenvironment, and anoikis and inflammation after transplantation in vivo significantly decrease their regenerative capacity. Pre‐treatment with chemical agents, hypoxia, an inflammatory microenvironment and gene modification can protect MSCs against injury, and pre‐treated MSCs show improved hepatogenic differentiation, homing capacity, survival and paracrine effects in vitro and in vivo in regard to attenuating liver injury. In this review, we mainly focus on pre‐treatments and the underlying mechanisms for improving the therapeutic effects of MSCs in various liver diseases. Thus, we provide evidence for the development of MSC‐based cell therapy to prevent acute or chronic liver injury. Mesenchymal stem cells have potential as a therapeutic to prolong the survival of patients with end‐stage liver diseases in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongwen Wu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Pan B, Qin J, Liu X, He B, Wang X, Pan Y, Sun H, Xu T, Xu M, Chen X, Xu X, Zeng K, Sun L, Wang S. Identification of Serum Exosomal hsa-circ-0004771 as a Novel Diagnostic Biomarker of Colorectal Cancer. Front Genet 2019; 10:1096. [PMID: 31737058 PMCID: PMC6838203 DOI: 10.3389/fgene.2019.01096] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Exosomal circular RNAs (circRNAs) in peripheral blood are considered as emerging diagnostic biomarkers of cancers. Owing to the lack of sensitive and specific biomarkers, a large number of colorectal cancer (CRC) patients were diagnosed in advanced stages leading to high mortality. This study aimed to identify circulating exosomal circRNAs as novel diagnostic biomarkers of CRC. Materials and Methods: Candidate circRNA was selected by integrating analysis of Gene Expression Omnibus (GEO) database with online program GEO2R. A total of 170 patients and 45 healthy controls were enrolled to assess the diagnostic value of circRNAs for CRC. Exosomes isolated from the serum of participants and cell cultured media were confirmed by transmission electron microscope (TEM), Nanoparticle Tracking Analysis and western blot. The expression and the diagnostic utility of circRNA were tested by qRT-PCR and receiver operating characteristic (ROC) analysis, respectively. Results: The circulating exosomal hsa-circ-0004771 with most abundant among the top ten differentially expressed circRNAs (fold change ≥1.5) was selected for further study based on the results of GEO dataset analysis. The up-regulated exosomal hsa-circ-0004771 was verified in serum of CRC patients compared to healthy controls (HCs) and patients with benign intestinal diseases (BIDs) by qRT-PCR. The area under the ROC curves (AUCs) of circulating exosomal hsa-circ-0004771 were 0.59 (95%CI, 0.457–0.725), 0.86 (95%CI, 0.785–0.933) and 0.88 (95%CI, 0.815–0.940) to differentiate BIDs, stage I/II CRC patients and CRC patients from HCs, respectively. The AUC was 0.816 (95%CI, 0.728–0.9) to differentiate stage I/II CRC patients from patients with BIDs. In addition, the elevated expression of exosomal hsa-circ-0004771 in the serum of CRC patients was tumor-derived. It was found that the expression of exosomal hsa-circ-0004771 was down-regulated expression of in the serum of postoperative CRC patients as well as cultured media of CRC cells treated with GW4869. Conclusions: Circulating exosomal hsa-circ-0004771 was significantly up-regulated in CRC patients and served as a novel potential diagnostic biomarker of CRC.
Collapse
Affiliation(s)
- Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jian Qin
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xuhong Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoxiang Chen
- School of Medicine, Southeast University, Nanjing, China
| | - Xueni Xu
- School of Medicine, Southeast University, Nanjing, China
| | - Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing, China
| | - Li Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|