1
|
Jallouli S, Ghroubi S, Damak M, Sakka S, Elleuch MH, Mhiri C, Yahia A, Driss T, de Marco G, Hammouda O. 12-week melatonin supplementation improved dynamic postural stability and walking performance in persons living with multiple sclerosis: A randomized controlled trial. Behav Brain Res 2025; 476:115191. [PMID: 39122092 DOI: 10.1016/j.bbr.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Persons with multiple sclerosis (PwMS) suffer from sleep disturbances, fatigue and pain, which can be due, at least in part, to decreased levels of endogenous melatonin. These alterations could exacerbate postural instability, gait disorders and fall risk. Acute effects of exogenous melatonin on physical disorders have been studied in PwMS but its long-term effects on these parameters have not been explored yet in this population. This study aimed to determine the impact of chronic melatonin intake on dynamic postural stability, walking performance and fall risk in PwMS. METHODS This randomized placebo-controlled study included 27 PwMS who were assigned to either melatonin group (MG, n=15) or placebo group (PG, n=12) (3 mg/night for 12 weeks). Dynamic postural balance (force platform), walking performance (locometer) and fall risk (Four Square Step Test) were evaluated pre (T0)- and post (T1)-intervention. Sleep quality (Pittsburgh Sleep Quality Index (PSQI)), fatigue perception (Fatigue Severity Scale (FSS)), neuropathic pain (Neuropathic Pain Questionnaire 4 (DN4)) and quality of life (International Multiple Sclerosis (MS) Quality of Life Questionnaire) were also assessed at T0 and T1. RESULTS The center of pressure mean velocity decreased in MG compared with PG in the frontal plane (22.98 %, p=0.028). Stride length and walking speed increased in MG comparatively with PG (18.09 %, p=0.036; 9.65 %, p=0.025, respectively). The PSQI (55.89 %, p<0.001), FSS (32.38 %, p=0.003) and DN4 (32.41 %, p=0.035) scores decreased in MG compared with PG. CONCLUSION 12-week melatonin supplementation can be recommended for managing MS-related gait disorders and dynamic postural imbalance. This therapy may also be prescribed for PwMS due to its anti-fatigue and analgesic effects as well as its benefits on sleep quality. CLINICAL REGISTRATION This study was prospectively recorded in the Pan African Clinical Trial Registry database (PACTR202007465309582) (https://pactr.samrc.ac.za/.).
Collapse
Affiliation(s)
- Sonda Jallouli
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Tunisia; High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia.
| | - Sameh Ghroubi
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Tunisia
| | - Mariem Damak
- Department of Neurology, Habib Bourguiba University Hospital, Clinical Investigation Center, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease, LR12SP19, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Salma Sakka
- Department of Neurology, Habib Bourguiba University Hospital, Clinical Investigation Center, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease, LR12SP19, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Mohamed Habib Elleuch
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Tunisia
| | - Chokri Mhiri
- Department of Neurology, Habib Bourguiba University Hospital, Clinical Investigation Center, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease, LR12SP19, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Abdelmoneem Yahia
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Tunisia
| | - Tarak Driss
- LINP2, UFR STAPS, University of Paris Nanterre, Nanterre, France
| | | | - Omar Hammouda
- LINP2, UFR STAPS, University of Paris Nanterre, Nanterre, France; Research Laboratory, Molecular bases of Human Pathology, LR19ES13, Faculty of medicine of Sfax, University of Sfax, Tunisia
| |
Collapse
|
2
|
Kapel-Reguła A, Duś-Ilnicka I, Radwan-Oczko M. Relevance of Saliva Analyses in Terms of Etiological Factors, Biomarkers, and Indicators of Disease Course in Patients with Multiple Sclerosis-A Review. Int J Mol Sci 2024; 25:12559. [PMID: 39684271 DOI: 10.3390/ijms252312559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, progressive, and neurodegenerative disease. The cause of this condition remains unknown. Diagnosing and monitoring the course of this disease requires the use of time-consuming, costly, and invasive methods such as magnetic resonance imaging and cerebrospinal fluid analysis. To date, no specific diagnostic tests for MS are available. The purpose of this publication is to answer the question of whether saliva, as a mirror of oral and general health and easily obtainable test material, can be a significant source of information on etiological factors, biomarkers, and indicators of disease progression and whether analysis of substances in saliva is sensitive enough to replace plasma, urine, or cerebrospinal fluid. For this purpose, a systematic search of databases was conducted: PubMed, Google Scholar, and Embase.
Collapse
Affiliation(s)
| | - Irena Duś-Ilnicka
- Oral Pathology Department, Faculty of Dentistry, Wroclaw Medical University, 50-425 Wrocław, Poland
| | - Małgorzata Radwan-Oczko
- Oral Pathology Department, Faculty of Dentistry, Wroclaw Medical University, 50-425 Wrocław, Poland
| |
Collapse
|
3
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
4
|
Canever JB, Queiroz LY, Soares ES, de Avelar NCP, Cimarosti HI. Circadian rhythm alterations affecting the pathology of neurodegenerative diseases. J Neurochem 2024; 168:1475-1489. [PMID: 37358003 DOI: 10.1111/jnc.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
The circadian rhythm is a nearly 24-h oscillation found in various physiological processes in the human brain and body that is regulated by environmental and genetic factors. It is responsible for maintaining body homeostasis and it is critical for essential functions, such as metabolic regulation and memory consolidation. Dysregulation in the circadian rhythm can negatively impact human health, resulting in cardiovascular and metabolic diseases, psychiatric disorders, and premature death. Emerging evidence points to a relationship between the dysregulation circadian rhythm and neurodegenerative diseases, suggesting that the alterations in circadian function might play crucial roles in the pathogenesis and progression of neurodegenerative diseases. Better understanding this association is of paramount importance to expand the knowledge on the pathophysiology of neurodegenerative diseases, as well as, to provide potential targets for the development of new interventions based on the dysregulation of circadian rhythm. Here we review the latest findings on dysregulation of circadian rhythm alterations in Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, spinocerebellar ataxia and multiple-system atrophy, focusing on research published in the last 3 years.
Collapse
Affiliation(s)
- Jaquelini Betta Canever
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Letícia Yoshitome Queiroz
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ericks Sousa Soares
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Núbia Carelli Pereira de Avelar
- Laboratory of Aging, Resources and Rheumatology, Department of Health Sciences, Federal University of Santa Catarina, Araranguá, Santa Catarina, Brazil
| | - Helena Iturvides Cimarosti
- Postgraduate Program of Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Postgraduate Program of Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
5
|
Razmaray H, Nasiri E, Vakilipour P, Morsali S, Moradi A, Ebrahimian A, Rashidi S, Mosaddeghi-Heris R, Sadigh-Eteghad S, Naseri A. The effects of melatonin supplementation on neurobehavioral outcomes and clinical severity in rodent models of multiple sclerosis; a systematic review and meta-analysis. Inflammopharmacology 2024; 32:927-944. [PMID: 38252220 DOI: 10.1007/s10787-023-01414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Through the antioxidant and anti-inflammation pathways, melatonin is proposed as a safe and effective intervention in neurological diseases. This study aims to evaluate the effects of melatonin supplementation on the neurobehavioral and clinical outcomes in animal models of multiple sclerosis (MS). METHODS This study was conducted following the PRISMA statement. Animal studies that reported the effects of melatonin in preclinical MS models, including the experimental autoimmune encephalomyelitis (EAE) and cuprizone model for demyelination are included in this study. A systematic search in PubMed, Web of Science, Embase, and Scopus up was conducted in April 2023. The collaborative Approach to Meta-Analysis and Review of Animal Experimental Studies (CAMARADES) critical appraisal tool was used for the quality assessment of the studies and the quantitative synthetizes were conducted using the comprehensive meta-analysis software. RESULTS Out of 542 studies, finally 21 studies, including 14 studies in the EAE model and 7 studies of the toxic demyelination method with cuprizone were included. The route of administration was intraperitoneal in 18 studies, oral in 2 studies, and subcutaneous in 1 study. The quantitative synthesis of the EAE clinical severity scale was associated with significant differences (standardized mean difference [SDM]: - 2.52; - 3.61 to - 1.42; p value < 0.01). In subgroup analyses, the difference was statistically significant in the mouse subgroup (SMD: - 2.60; - 3.74 to - 1.46; p value < 0.01). DISCUSSION This study encountered that melatonin may be associated with improved behavioral and cognitive outcomes of preclinical models of MS with acceptable safety profiles. FUNDING The research was supported by the Student Research Committee, Tabriz University of Medical Sciences (grant number: 71005).
Collapse
Affiliation(s)
- Hadis Razmaray
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran
| | - Ehsan Nasiri
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran
| | - Pouya Vakilipour
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran
| | - Afshin Moradi
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran
| | - Asal Ebrahimian
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran
| | - Sahel Rashidi
- Faculty of Medicine, Dokuz Eylül University, Izmir, Türkiye
| | - Reza Mosaddeghi-Heris
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/614756, East Azerbaijan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/614756, East Azerbaijan, Iran.
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 5166/15731, East Azerbaijan, Iran.
- Research Center for Evidence-Based Medicine, Center of Excellence, Iranian EBM Centre: A Joanna Briggs Institute (JBI), Tabriz University of Medical Sciences, Tabriz, Iran.
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| |
Collapse
|
6
|
Jallouli S, Ghroubi S, Sakka S, Ben Dhia I, Damak M, Yahia A, Driss T, Mhiri C, Elleuch MH, Hammouda O. Effects of a nighttime melatonin ingestion on dynamic postural balance and muscle strength the following morning in people living with multiple sclerosis: A preliminary study. Clin Neurol Neurosurg 2024; 238:108165. [PMID: 38428060 DOI: 10.1016/j.clineuro.2024.108165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Decreased endogenous melatonin concentrations in people with multiple sclerosis (PwMS) are associated with fatigue and pain that impair postural balance and muscle strength. Melatonin ingestion had analgesic and anti-fatigue effects. However, the acute effect of exogenous melatonin on dynamic postural stability and muscle strength has not been studied yet in PwMS. This study aimed to investigate the safety and the efficacy of a nighttime melatonin intake on dynamic postural balance and lower-extremity muscle strength the following morning in PwMS. METHODS Fourteen PwMS (28.36 ± 6.81 years) were assessed (8 a.m.) pre- and post-acute intake of melatonin or placebo (6mg, 30 minutes before nocturnal bedtime). Evaluated parameters included dynamic postural balance (force platform), lower-extremity muscle strength [Five-Repetition Sit-To-Stand Test (5-STST)], hand dexterity (Nine-Hole Peg Test), nociceptive pain [Visual Analogue Scale (VAS)], neuropathic pain [Neuropathic Pain 4 Questions (DN4)], sleep quality and fatigue perception [Hooper Index (HI)]. RESULTS In the frontal plane, melatonin reduced the center of pressure (CoP) path length (CoPL), CoPL in the anteroposterior axis (CoPLY) and CoP sway area (CoPAr) compared with placebo by 7.56% (p=0.02, Cohens'd (d)=1.24), 19.27% (p<0.001, d=2.60) and 13.82% (p<0.001, d=2.02), respectively. Melatonin induced a higher decrease in these posturographic parameters compared with placebo in the sagittal plane [CoPL: 9.10% (p=0.005, d=1.02), CoPLY: 4.29% (p=0.025, d=1.07) and CoPAr: 7.45% (p=0.038, d=0.74)]. Melatonin decreased 5-STST duration as well as VAS, DN4, HI-fatigue and HI-sleep scores compared with placebo by 8.19% (p=0.008, d=1.19), 5.74% (p=0.04, d=0.82), 27.30% (p=0.023, d=0.98), 40.15% (p=0.044, d=0.85) and 30.16% (p=0.012, d=1.10), respectively. CONCLUSION This preliminary study, among PwMS, showed that acute melatonin ingestion was safe and efficient for improving dynamic postural stability and lower-extremity muscle strength probably through its analgesic and anti-fatigue effects.
Collapse
Affiliation(s)
- Sonda Jallouli
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Tunisia; High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia.
| | - Sameh Ghroubi
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Tunisia
| | - Salma Sakka
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease, LR12SP19, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Imen Ben Dhia
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Tunisia; High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia
| | - Mariem Damak
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease, LR12SP19, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Abdelmoneem Yahia
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Tunisia
| | - Tarak Driss
- LINP2, UFR STAPS, University of Paris Nanterre, Nanterre, France
| | - Chokri Mhiri
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease, LR12SP19, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Mohamed Habib Elleuch
- Research laboratory: Evaluation and Management of Musculoskeletal System Pathologies, LR20ES09, Faculty of Medicine, University of Sfax, Tunisia
| | - Omar Hammouda
- LINP2, UFR STAPS, University of Paris Nanterre, Nanterre, France; Research Laboratory, Molecular bases of Human Pathology, LR19ES13, Faculty of Medicine of Sfax, University of Sfax, Tunisia
| |
Collapse
|
7
|
Xu Y, Gao W, Sun Y, Wu M. New insight on microglia activation in neurodegenerative diseases and therapeutics. Front Neurosci 2023; 17:1308345. [PMID: 38188026 PMCID: PMC10770846 DOI: 10.3389/fnins.2023.1308345] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Microglia are immune cells within the central nervous system (CNS) closely linked to brain health and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. In response to changes in the surrounding environment, microglia activate and change their state and function. Several factors, example for circadian rhythm disruption and the development of neurodegenerative diseases, influence microglia activation. In this review, we explore microglia's function and the associated neural mechanisms. We elucidate that circadian rhythms are essential factors influencing microglia activation and function. Circadian rhythm disruption affects microglia activation and, consequently, neurodegenerative diseases. In addition, we found that abnormal microglia activation is a common feature of neurodegenerative diseases and an essential factor of disease development. Here we highlight the importance of microglia activation in neurodegenerative diseases. Targeting microglia for neurodegenerative disease treatment is a promising direction. We introduce the progress of methods targeting microglia for the treatment of neurodegenerative diseases and summarize the progress of drugs developed with microglia as targets, hoping to provide new ideas for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Yucong Xu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Gao
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingnan Sun
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Pivovarova-Ramich O, Zimmermann HG, Paul F. Multiple sclerosis and circadian rhythms: Can diet act as a treatment? Acta Physiol (Oxf) 2023; 237:e13939. [PMID: 36700353 DOI: 10.1111/apha.13939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory and neurodegenerative disease of the central nervous system (CNS) with increasing incidence and prevalence. MS is associated with inflammatory and metabolic disturbances that, as preliminary human and animal data suggest, might be mediated by disruption of circadian rhythmicity. Nutrition habits can influence the risk for MS, and dietary interventions may be effective in modulating MS disease course. Chronotherapeutic approaches such as time-restricted eating (TRE) may benefit people with MS by stabilizing the circadian clock and restoring immunological and metabolic rhythms, thus potentially counteracting disease progression. This review provides a summary of selected studies on dietary intervention in MS, circadian rhythms, and their disruption in MS, including clock gene variations, circadian hormones, and retino-hypothalamic tract changes. Furthermore, we present studies that reported diurnal variations in MS, which might result from circadian disruption. And lastly, we suggest how chrononutritive approaches like TRE might counteract MS disease activity.
Collapse
Affiliation(s)
- Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Hanna Gwendolyn Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Muñoz-Jurado A, Escribano BM, Agüera E, Caballero-Villarraso J, Galván A, Túnez I. SARS-CoV-2 infection in multiple sclerosis patients: interaction with treatments, adjuvant therapies, and vaccines against COVID-19. J Neurol 2022; 269:4581-4603. [PMID: 35788744 PMCID: PMC9253265 DOI: 10.1007/s00415-022-11237-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
The SARS-CoV-2 pandemic has raised particular concern for people with Multiple Sclerosis, as these people are believed to be at increased risk of infection, especially those being treated with disease-modifying therapies. Therefore, the objective of this review was to describe how COVID-19 affects people who suffer from Multiple Sclerosis, evaluating the risk they have of suffering an infection by this virus, according to the therapy to which they are subjected as well as the immune response of these patients both to infection and vaccines and the neurological consequences that the virus can have in the long term. The results regarding the increased risk of infection due to treatment are contradictory. B-cell depletion therapies may cause patients to have a lower probability of generating a detectable neutralizing antibody titer. However, more studies are needed to help understand how this virus works, paying special attention to long COVID and the neurological symptoms that it causes.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain
| | - Begoña M. Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Campus of Rabanales, 14071 Cordoba, Spain
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
| | - Eduardo Agüera
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Neurology Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Javier Caballero-Villarraso
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, 14004 Cordoba, Spain
- Clinical Analysis Service, Reina Sofía University Hospital, Cordoba, Spain
| | - Alberto Galván
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, 14004 Cordoba, Spain
| | - Isaac Túnez
- Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBC), Cordoba, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Cordoba, Av. Menendez Pidal, 14004 Cordoba, Spain
- Cooperative Research Thematic Excellent Network on Brain Stimulation (REDESTIM), Madrid, Spain
| |
Collapse
|
10
|
Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022; 30:1569-1596. [PMID: 35665873 PMCID: PMC9167428 DOI: 10.1007/s10787-022-01011-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3β, which could be useful in controlling the microbiota. CONCLUSION Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.
Collapse
|
11
|
Gray KJ, Gibbs JE. Adaptive immunity, chronic inflammation and the clock. Semin Immunopathol 2022; 44:209-224. [PMID: 35233691 PMCID: PMC8901482 DOI: 10.1007/s00281-022-00919-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
The adaptive arm of the immune system facilitates recognition of specific foreign pathogens and, via the action of T and B lymphocytes, induces a fine-tuned response to target the pathogen and develop immunological memory. The functionality of the adaptive immune system exhibits daily 24-h variation both in homeostatic processes (such as lymphocyte trafficking and development of T lymphocyte subsets) and in responses to challenge. Here, we discuss how the circadian clock exerts influence over the function of the adaptive immune system, considering the roles of cell intrinsic clockwork machinery and cell extrinsic rhythmic signals. Inappropriate or misguided actions of the adaptive immune system can lead to development of autoimmune diseases such as rheumatoid arthritis, ulcerative colitis and multiple sclerosis. Growing evidence indicates that disturbance of the circadian clock has negative impact on development and progression of these chronic inflammatory diseases and we examine current understanding of clock-immune interactions in the setting of these inflammatory conditions. A greater appreciation of circadian control of adaptive immunity will facilitate further understanding of mechanisms driving daily variation in disease states and drive improvements in the diagnosis and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kathryn J Gray
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
12
|
Time to activin on pathogenic T cells. Proc Natl Acad Sci U S A 2020; 117:12513-12514. [PMID: 32444489 DOI: 10.1073/pnas.2008491117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Skarlis C, Anagnostouli M. The role of melatonin in Multiple Sclerosis. Neurol Sci 2019; 41:769-781. [PMID: 31845043 DOI: 10.1007/s10072-019-04137-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Melatonin is a neurohormone mainly produced by the pineal gland following a circadian rhythm. It is characterized as a pleiotropic factor because it not only regulates the wake-sleep rhythm but also exerts antinociceptive, antidepressant, anxiolytic, and immunomodulating properties. Recent studies suggest that dysregulation of melatonin secretion is associated with the pathogenesis of various autoimmune diseases, such as, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and multiple sclerosis (MS). MS is an autoimmune disorder characterized by an abnormal immune response directed against the myelin sheath in the central nervous system, demyelination, oligodendrocyte death, and axonal degeneration. Recent evidence reveals that melatonin secretion is dysregulated in MS patients, suggesting that melatonin could be a potential target for therapeutic intervention. Here, we summarize the available literature regarding the role of melatonin in immune processes relevant for experimental autoimmune encephalomyelitis (EAE), MS, and the current clinical trials of melatonin supplementation in MS patients.
Collapse
Affiliation(s)
- Charalampos Skarlis
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Vas. Sophias, 74, 115 28, Athens, Greece.
| | - Maria Anagnostouli
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Vas. Sophias, 74, 115 28, Athens, Greece. .,Demyelinating Diseases Clinic, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece.
| |
Collapse
|