1
|
Capaci V, Zupin L, Magistrati M, Bonati MT, Celsi F, Marrone I, Baldo F, Ura B, Spedicati B, Morgan A, Bruno I, Zeviani M, Dallabona C, Girotto G, Magnolato A. Uncovering a Novel Pathogenic Mechanism of BCS1L in Mitochondrial Disorders: Insights from Functional Studies on the c.38A>G Variant. Int J Mol Sci 2025; 26:3670. [PMID: 40332224 PMCID: PMC12027322 DOI: 10.3390/ijms26083670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
The BCS1L gene encodes a mitochondrial chaperone which inserts the Fe2S2 iron-sulfur Rieske protein into the nascent electron transfer complex III. Variants in the BCS1L gene are associated with a spectrum of mitochondrial disorders, ranging from mild to severe phenotypes. Björnstad syndrome, a milder condition, is characterized by sensorineural hearing loss (SNHL) and pili torti. More severe disorders include Complex III Deficiency, which leads to neuromuscular and metabolic dysfunctions with multi-systemic issues and Growth Retardation, Aminoaciduria, Cholestasis, Iron Overload, and Lactic Acidosis syndrome (GRACILE). The severity of these conditions varies depending on the specific BCS1L mutation and its impact on mitochondrial function. This study describes a 27-month-old child with SNHL, proximal renal tubular acidosis, woolly hypopigmented hair, developmental delay, and metabolic alterations. Genetic analysis revealed a homozygous BCS1L variant (c.38A>G, p.Asn13Ser), previously reported in a patient with a more severe phenotype that, however, was not functionally characterized. In this work, functional studies in a yeast model and patient-derived fibroblasts demonstrated that the variant impairs mitochondrial respiration, complex III activity (CIII), and also alters mitochondrial morphology in affected fibroblasts. Interestingly, we unveil a new possible mechanism of pathogenicity for BCS1L mutant protein. Since the interaction between BCS1L and CIII is increased, this suggests the formation of a BCS1L-containing nonfunctional preCIII unable to load RISP protein and complete CIII assembly. These findings support the pathogenicity of the BCS1L c.38A>G variant, suggesting altered interaction between the mutant BCS1L and CIII.
Collapse
Affiliation(s)
- Valeria Capaci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Maria Teresa Bonati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Irene Marrone
- Department of Life Science, University of Trieste, 34127 Trieste, Italy
| | - Francesco Baldo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Beatrice Spedicati
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Irene Bruno
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Massimo Zeviani
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Andrea Magnolato
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, 34137 Trieste, Italy
| |
Collapse
|
2
|
Ma T, Zeng X, Liu M, Xu S, Wang Y, Wu Q, Zhang T. Analysis and identification of mitochondria-related genes associated with age-related hearing loss. BMC Genomics 2025; 26:218. [PMID: 40045222 PMCID: PMC11881475 DOI: 10.1186/s12864-025-11287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND To explore the mitochondrial genes that play a key role in the occurrence and development of age-related hearing loss (ARHL) and provide a basis for the study of the mechanism of ARHL. RESULTS 503 differentially expressed genes (DEGs) were detected in the GSE49543 dataset. 233 genes were up-regulated, and 270 genes were down-regulated. There are 1140 genes in the mitochondrial gene bank, and 28 differentially expressed genes related to ARHL. These genes are mainly involved in mitochondrial respiratory chain complex assembly, small molecule catabolism, NADH dehydrogenase complex assembly, organic acid catabolism, precursor metabolites and energy production, and mitochondrial span Membrane transport, metabolic processes of active oxygen species. Then, Cytoscape software identified the three key genes: Aco2, Bcs1l and Ndufs1. Immunofluorescence and Western blot experiments confirmed that the protein content of three key genes in aging cochlear hair cells decreased. CONCLUSION We employed bioinformatics analysis to screen 503 differentially expressed genes and identified three key genes associated with ARHL. Subsequently, we conducted in vitro experiments to validate their significance, thereby providing a valuable reference for further elucidating the role of mitochondrial function in the pathogenesis and progression of ARHL.
Collapse
Affiliation(s)
- Tianyu Ma
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Xiaoyun Zeng
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Mengting Liu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Shijia Xu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Yuyao Wang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Qilong Wu
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China
| | - Tianhong Zhang
- The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin, Heilongjiang Provice, China.
| |
Collapse
|
3
|
Brischigliaro M, Cabrera-Orefice A, Arnold S, Viscomi C, Zeviani M, Fernández-Vizarra E. Structural rather than catalytic role for mitochondrial respiratory chain supercomplexes. eLife 2023; 12:RP88084. [PMID: 37823874 PMCID: PMC10569793 DOI: 10.7554/elife.88084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Mammalian mitochondrial respiratory chain (MRC) complexes are able to associate into quaternary structures named supercomplexes (SCs), which normally coexist with non-bound individual complexes. The functional significance of SCs has not been fully clarified and the debate has been centered on whether or not they confer catalytic advantages compared with the non-bound individual complexes. Mitochondrial respiratory chain organization does not seem to be conserved in all organisms. In fact, and differently from mammalian species, mitochondria from Drosophila melanogaster tissues are characterized by low amounts of SCs, despite the high metabolic demands and MRC activity shown by these mitochondria. Here, we show that attenuating the biogenesis of individual respiratory chain complexes was accompanied by increased formation of stable SCs, which are missing in Drosophila melanogaster in physiological conditions. This phenomenon was not accompanied by an increase in mitochondrial respiratory activity. Therefore, we conclude that SC formation is necessary to stabilize the complexes in suboptimal biogenesis conditions, but not for the enhancement of respiratory chain catalysis.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenNetherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of CologneCologneGermany
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| | - Massimo Zeviani
- Department of Neurosciences, University of PadovaPadovaItaly
| | - Erika Fernández-Vizarra
- Department of Biomedical Sciences, University of PadovaPadovaItaly
- Veneto Institute of Molecular MedicinePaduaItaly
| |
Collapse
|
4
|
Brischigliaro M, Fernandez-Vizarra E, Viscomi C. Mitochondrial Neurodegeneration: Lessons from Drosophila melanogaster Models. Biomolecules 2023; 13:378. [PMID: 36830747 PMCID: PMC9953451 DOI: 10.3390/biom13020378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The fruit fly-i.e., Drosophila melanogaster-has proven to be a very useful model for the understanding of basic physiological processes, such as development or ageing. The availability of straightforward genetic tools that can be used to produce engineered individuals makes this model extremely interesting for the understanding of the mechanisms underlying genetic diseases in physiological models. Mitochondrial diseases are a group of yet-incurable genetic disorders characterized by the malfunction of the oxidative phosphorylation system (OXPHOS), which is the highly conserved energy transformation system present in mitochondria. The generation of D. melanogaster models of mitochondrial disease started relatively recently but has already provided relevant information about the molecular mechanisms and pathological consequences of mitochondrial dysfunction. Here, we provide an overview of such models and highlight the relevance of D. melanogaster as a model to study mitochondrial disorders.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Erika Fernandez-Vizarra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy
- Centre for the Study of Neurodegeneration (CESNE), University of Padova, 35131 Padova, Italy
| |
Collapse
|
5
|
A Drosophila model of the neurological symptoms in Mpv17-related diseases. Sci Rep 2022; 12:22632. [PMID: 36587049 PMCID: PMC9805426 DOI: 10.1038/s41598-022-27329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Mutations in the Mpv17 gene are responsible for MPV17-related hepatocerebral mitochondrial DNA depletion syndrome and Charcot-Marie-Tooth (CMT) disease. Although several models including mouse, zebrafish, and cultured human cells, have been developed, the models do not show any neurological defects, which are often observed in patients. Therefore, we knocked down CG11077 (Drosophila Mpv17; dMpv17), an ortholog of human MPV17, in the nervous system in Drosophila melanogaster and investigated the behavioral and cellular phenotypes. The resulting dMpv17 knockdown larvae showed impaired locomotor activity and learning ability consistent with mitochondrial defects suggested by the reductions in mitochondrial DNA and ATP production and the increases in the levels of lactate and reactive oxygen species. Furthermore, an abnormal morphology of the neuromuscular junction, at the presynaptic terminal, was observed in dMpv17 knockdown larvae. These results reproduce well the symptoms of human diseases and partially reproduce the phenotypes of Mpv17-deficient model organisms. Therefore, we suggest that neuron-specific dMpv17 knockdown in Drosophila is a useful model for investigation of MPV17-related hepatocerebral mitochondrial DNA depletion syndrome and CMT caused by Mpv17 dysfunction.
Collapse
|
6
|
Brischigliaro M, Cabrera‐Orefice A, Sturlese M, Elurbe DM, Frigo E, Fernandez‐Vizarra E, Moro S, Huynen MA, Arnold S, Viscomi C, Zeviani M. CG7630 is the
Drosophila melanogaster
homolog of the cytochrome
c
oxidase subunit COX7B. EMBO Rep 2022; 23:e54825. [PMID: 35699132 PMCID: PMC9346487 DOI: 10.15252/embr.202254825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial respiratory chain (MRC) is composed of four multiheteromeric enzyme complexes. According to the endosymbiotic origin of mitochondria, eukaryotic MRC derives from ancestral proteobacterial respiratory structures consisting of a minimal set of complexes formed by a few subunits associated with redox prosthetic groups. These enzymes, which are the “core” redox centers of respiration, acquired additional subunits, and increased their complexity throughout evolution. Cytochrome c oxidase (COX), the terminal component of MRC, has a highly interspecific heterogeneous composition. Mammalian COX consists of 14 different polypeptides, of which COX7B is considered the evolutionarily youngest subunit. We applied proteomic, biochemical, and genetic approaches to investigate the COX composition in the invertebrate model Drosophila melanogaster. We identified and characterized a novel subunit which is widely different in amino acid sequence, but similar in secondary and tertiary structures to COX7B, and provided evidence that this object is in fact replacing the latter subunit in virtually all protostome invertebrates. These results demonstrate that although individual structures may differ the composition of COX is functionally conserved between vertebrate and invertebrate species.
Collapse
Affiliation(s)
| | - Alfredo Cabrera‐Orefice
- Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands
| | - Mattia Sturlese
- Molecular Modeling Section Department of Pharmaceutical and Pharmacological Sciences University of Padova Padova Italy
| | - Dei M Elurbe
- Centre for Molecular and Biomolecular Informatics Radboud University Medical Center Nijmegen The Netherlands
| | - Elena Frigo
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Erika Fernandez‐Vizarra
- Department of Biomedical Sciences University of Padova Padova Italy
- Veneto Institute of Molecular Medicine Padova Italy
| | - Stefano Moro
- Molecular Modeling Section Department of Pharmaceutical and Pharmacological Sciences University of Padova Padova Italy
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics Radboud University Medical Center Nijmegen The Netherlands
| | - Susanne Arnold
- Radboud Institute for Molecular Life Sciences Radboud University Medical Center Nijmegen The Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Carlo Viscomi
- Department of Biomedical Sciences University of Padova Padova Italy
| | - Massimo Zeviani
- Veneto Institute of Molecular Medicine Padova Italy
- Department of Neurosciences University of Padova Padova Italy
| |
Collapse
|
7
|
Measurement of mitochondrial respiratory chain enzymatic activities in Drosophila melanogaster samples. STAR Protoc 2022; 3:101322. [PMID: 35479112 PMCID: PMC9036317 DOI: 10.1016/j.xpro.2022.101322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial respiratory chain (MRC) dysfunction is linked to mitochondrial disease as well as other common conditions such as diabetes, neurodegeneration, cancer, and aging. Thus, the evaluation of MRC enzymatic activities is fundamental for diagnostics and research purposes on experimental models. Here, we provide a verified and reliable protocol for mitochondria isolation from various D. melanogaster samples and subsequent measurement of the activity of MRC complexes I–V plus citrate synthase (CS) through UV-VIS spectrophotometry. For complete details on the use and execution of this protocol, please refer to Brischigliaro et al. (2021). A detailed and quick protocol to isolate mitochondria from D. melanogaster samples A step-by-step procedure to measure MRC enzymatic activities in isolated mitochondria A comprehensive guide for data analysis, with examples of validated systems
Collapse
|