1
|
Wang X, Liang Y, Yang F, Shi Y, Shao R, Jing R, Yang T, Chu Q, An D, Zhou Q, Song J, Chen H, Liu C. Molecular mechanisms and targeted therapy of progranulin in metabolic diseases. Front Endocrinol (Lausanne) 2025; 16:1553794. [PMID: 40290306 PMCID: PMC12021630 DOI: 10.3389/fendo.2025.1553794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Progranulin (PGRN) is a secreted glycoprotein with cytokine-like properties, exerting tripartite mechanisms of inflammation suppression, tissue repair promotion, and metabolic regulation. This multifaceted functionality positions PGRN as a potential "multi-effect therapeutic strategy" for metabolic disorders characterised by cartilage degradation and imbalanced bone remodelling, potentially establishing it as a novel therapeutic target for such conditions. Osteoarthritis, rheumatoid arthritis, intervertebral disc degeneration, osteoporosis, periodontitis, and diabetes-related complications-representing the most prevalent metabolic diseases-currently lack effective treatments due to incomplete understanding of their precise pathogenic mechanisms. Recent studies have revealed that PGRN expression levels are closely associated with the onset and progression of these metabolic disorders. However, the exact regulatory role of PGRN in these diseases remains elusive, partly owing to its tissue-specific actions and context-dependent dual roles (anti-inflammatory vs. pro-inflammatory). In this review, we summarise the structure and functions of PGRN, explore its involvement in neurological disorders, immune-inflammatory diseases, and metabolic conditions, and specifically focus on its molecular mechanisms in metabolic diseases. Furthermore, we consolidate advances in targeting PGRN and the application of its engineered derivative, Atsttrin, in metabolic bone disorders. We also discuss potential unexplored mechanisms through which PGRN may exert influence within this field or other therapeutic domains. Collectively, this work aims to provide a new framework for elucidating PGRN's role in disease pathogenesis and advancing strategies for the prevention and treatment of metabolic disorders.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yonglin Liang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ruiwen Shao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ruge Jing
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Tong Yang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Qiao Chu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Dong An
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Qi Zhou
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Haolan Chen
- TCM Internal Medicine Department, Nanhu Community Health Centre, Pinliang, Gansu, China
| | - Chun Liu
- Library, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Gragnaniello V, Gueraldi D, Saracini A, Velasquez Rivas D, Cazzorla C, Salviati L, Burlina AB. Natural history of inflammation and impaired autophagy in children with Gaucher disease identified by newborn screening. Mol Genet Metab Rep 2025; 42:101187. [PMID: 39902270 PMCID: PMC11788785 DOI: 10.1016/j.ymgmr.2025.101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
Introduction Gaucher disease is a lysosomal storage disease due to deficiency of glucocerebrosidase, leading to the accumulation of glucosylceramide, particularly in macrophages. In addition to storage, secondary abnormalities such as inflammation, cellular stress, and impaired autophagy may contribute to the disease pathogenesis. The onset and course of progression of these secondary abnormalities remains unclear. Owing to the increasingly widespread newborn screening programs, diagnosis can be made at a presymptomatic stage. Understanding the early natural course of the disease is important for optimal monitoring and management of such at-risk individuals.The aim of our study is to investigate secondary abnormalities in very young children with type 1 Gaucher disease identified through neonatal screening. Materials and methods We enrolled five children (<4 years old) with type I Gaucher disease in a presymptomatic stage and not receiving therapy. We assessed plasma cytokine profiles (TNFα, IL1β, and IL6 by ELISA), activation of pro-inflammatory p38 mitogen-activated protein kinase (MAPK) and the abundance of LC3-II as indicator of autophagic flux, by immunoblotting. Results All subjects exhibited elevated TNFα (mean 21.74 μmol/L, SD 37.48, range 2.37-88.72 μmol/L). The other cytokines analyzed were within normal range. Cellular stress (activation of p38) was present in the child with higher glucosylsphingosine (GluSph) accumulation. Additionally, all subjects showed a significant reduction in LC3-II (mean 88 %, SD 9 %, range 77-98 %), indicating reduced autophagic flux. Discussion We have identified the presence of inflammation with inhibition of autophagic flux in presymptomatic young children with a genetically confirmed high-risk of developing Gaucher disease. These findings contribute insights into the early course of Gaucher disease and support the management of at-risk individuals identified by newborn screening. Therapeutic interventions including specific enzyme replacement or other means to address inflammation or autophagy could delay or prevent the onset of symptomatic disease and consequential disability. Further clinical studies are warranted to explore these possibilities.
Collapse
Affiliation(s)
- V Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - D Gueraldi
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - A Saracini
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - D Velasquez Rivas
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - C Cazzorla
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - L Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - A B Burlina
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
3
|
Wang S, Weyer MP, Hummel R, Wilken-Schmitz A, Tegeder I, Schäfer MKE. Selective neuronal expression of progranulin is sufficient to provide neuroprotective and anti-inflammatory effects after traumatic brain injury. J Neuroinflammation 2024; 21:257. [PMID: 39390556 PMCID: PMC11468377 DOI: 10.1186/s12974-024-03249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
Progranulin (PGRN), which is produced in neurons and microglia, is a neurotrophic and anti-inflammatory glycoprotein. Human loss-of-function mutations cause frontotemporal dementia, and PGRN knockout (KO) mice are a model for dementia. In addition, PGRN KO mice exhibit severe phenotypes in models of traumatic or ischemic central nervous system (CNS) disorders, including traumatic brain injury (TBI). It is unknown whether restoration of progranulin expression in neurons (and not in microglia) might be sufficient to prevent excessive TBI-evoked brain damage. To address this question, we generated mice with Nestin-Cre-driven murine PGRN expression in a PGRN KO line (PGRN-KONestinGrn) to rescue PGRN in neurons. PGRN expression analysis in primary CNS cell cultures from naïve mice and in (non-) injured brain tissue from PGRN-KONestinGrn revealed expression of PGRN in neurons but not in microglia. After experimental TBI, examination of the structural brain damage at 5 days post-injury (dpi) showed that the TBI-induced loss of brain tissue and hippocampal neurons was exacerbated in PGRN-KOGrnflfl mice (PGRN knockout with the mGrn fl-STOP-fl allele, Cre-negative), as expected, whereas the tissue damage in PGRN-KONestinGrn mice was similar to that in PGRN-WT mice. Analysis of CD68+ immunofluorescent microglia and Cd68 mRNA expression showed that excessive microglial activation was rescued in PGRN-KONestinGrn mice, and the correlation of brain injury with Cd68 expression suggested that Cd68 was a surrogate marker for excessive brain injury caused by PGRN deficiency. The results show that restoring neuronal PGRN expression was sufficient to rescue the exacerbated neuropathology of TBI caused by PGRN deficiency, even in the absence of microglial PGRN. Hence, endogenous microglial PGRN expression was not essential for the neuroprotective or anti-inflammatory effects of PGRN after TBI in this study.
Collapse
Affiliation(s)
- Sudena Wang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), 55131, Mainz, Germany
| | - Marc-Philipp Weyer
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7 | Bd 74-75, Rm 4.101a, 60590, Frankfurt am Main, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), 55131, Mainz, Germany
| | - Annett Wilken-Schmitz
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7 | Bd 74-75, Rm 4.101a, 60590, Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7 | Bd 74-75, Rm 4.101a, 60590, Frankfurt am Main, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), 55131, Mainz, Germany.
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy (FZI) of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Lin Y, Zhao X, Liou B, Fannin V, Zhang W, Setchell KDR, Wang X, Pan D, Grabowski GA, Liu CJ, Sun Y. Intrinsic link between PGRN and Gba1 D409V mutation dosage in potentiating Gaucher disease. Hum Mol Genet 2024; 33:1771-1788. [PMID: 39101473 PMCID: PMC11458007 DOI: 10.1093/hmg/ddae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Gaucher disease (GD) is caused by biallelic GBA1/Gba1 mutations that encode defective glucocerebrosidase (GCase). Progranulin (PGRN, encoded by GRN/Grn) is a modifier of GCase, but the interplay between PGRN and GCase, specifically GBA1/Gba1 mutations, contributing to GD severity is unclear. Mouse models were developed with various dosages of Gba1 D409V mutation against the PGRN deficiency (Grn-/-) [Grn-/-;Gba1D409V/WT (PG9Vwt), Grn-/-;Gba1D409V/D409V (PG9V), Grn-/-;Gba1D409V/Null (PG9VN)]. Disease progression in those mouse models was characterized by biochemical, pathological, transcriptomic, and neurobehavioral analyses. Compared to PG9Vwt, Grn-/-;Gba1WT/Null and Grn-/- mice that had a higher level of GCase activity and undetectable pathologies, homozygous or hemizygous D409V in PG9V or PG9VN, respectively, resulted in profound inflammation and neurodegeneration. PG9VN mice exhibited much earlier onset, shorter life span, tissue fibrosis, and more severe phenotypes than PG9V mice. Glycosphingolipid accumulation, inflammatory responses, lysosomal-autophagy dysfunction, microgliosis, retinal gliosis, as well as α-Synuclein increases were much more pronounced in PG9VN mice. Neurodegeneration in PG9VN was characterized by activated microglial phagocytosis of impaired neurons and programmed cell death due to necrosis and, possibly, pyroptosis. Brain transcriptomic analyses revealed the intrinsic relationship between D409V dosage, and the degree of altered gene expression related to lysosome dysfunction, microgliosis, and neurodegeneration in GD, suggesting the disease severity is dependent on a GCase activity threshold related to Gba1 D409V dosage and loss of PGRN. These findings contribute to a deeper understanding of GD pathogenesis by elucidating additional underlying mechanisms of interplay between PGRN and Gba1 mutation dosage in modulating GCase function and disease severity in GD and GBA1-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Lin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Xiangli Zhao
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 789 Howard Avenue, New Haven, CT 06519, United States
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Venette Fannin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Wujuan Zhang
- Department of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Kenneth D R Setchell
- Department of Pathology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Xiaohong Wang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Dao Pan
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| | - Chuan-ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, 789 Howard Avenue, New Haven, CT 06519, United States
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, 301 East 17th Street, New York, NY 10003, United States
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, United States
| |
Collapse
|
5
|
Qi P, Liu X, Li C, Xu Q, Hu L, Duan H, Zhao G, Lin J. Progranulin Protects against Aspergillus fumigatus Keratitis by Attenuating the Inflammatory Response through Enhancing Autophagy. ACS Infect Dis 2024; 10:2826-2835. [PMID: 38900967 DOI: 10.1021/acsinfecdis.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Fungal keratitis (FK) is a severe corneal condition caused by pathogenic fungi and is associated with the virulence of fungi and an excessive tissue inflammatory response. Progranulin (PGRN), functioning as a multifunctional growth factor, exerts a pivotal influence on the regulation of inflammation and autophagy. The aim of our research was to analyze the role of PGRN in Aspergillus fumigatus (A. fumigatus) keratitis. We found that PGRN expression was increased in the mouse cornea with A. fumigatus keratitis. In our experiments, corneas of mice with FK were treated with 100 ng/mL of PGRN. In vitro, RAW 264.7 cells were treated with 10 ng/mL of PGRN before A. fumigatus stimulation. The findings suggested that PGRN effectively alleviated corneal edema and decreased the expression of pro-inflammatory cytokines in mice. In stimulated RAW 264.7 cells, PGRN treatment suppressed the expression of pro-inflammatory cytokines IL-6 and TNF-α but promoted the expression of the anti-inflammatory cytokines IL-10. PGRN treatment significantly upregulated the expression of autophagy-related proteins LC3, Beclin-1, and Atg-7. 3-Methyladenine (3-MA, autophagy inhibitor) reversed the regulation of inflammatory cytokines by PGRN. In addition, our study demonstrated that PGRN also enhanced phagocytosis in RAW 264.7 cells. In summary, PGRN attenuated the inflammatory response of A. fumigatus keratitis by increasing autophagy and enhanced the phagocytic activity of RAW 264.7 cells. This showed that PGRN had a protective effect on A. fumigatus keratitis.
Collapse
Affiliation(s)
- Pingli Qi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Huijin Duan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
6
|
Huang G, Jian J, Liu CJ. Progranulinopathy: A diverse realm of disorders linked to progranulin imbalances. Cytokine Growth Factor Rev 2024; 76:142-159. [PMID: 37981505 PMCID: PMC10978308 DOI: 10.1016/j.cytogfr.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Progranulin (PGRN), encoded by the GRN gene in humans, was originally isolated as a secreted growth factor that implicates in a multitude of processes ranging from regulation of tumorigenesis, inflammation to neural proliferation. Compelling evidence indicating that GRN mutation can lead to various common neuronal degenerative diseases and rare lysosomal storage diseases. These findings have unveiled a critical role for PGRN as a lysosomal protein in maintaining lysosomal function. The phenotypic spectrum of PGRN imbalance has expanded to encompass a broad spectrum of diseases, including autoimmune diseases, metabolic, musculoskeletal and cardiovascular diseases. These diseases collectively referred to as Progranulinopathy- a term encompasses the wide spectrum of disorders influenced by PGRN imbalance. Unlike its known extracellular function as a growth factor-like molecule associated with multiple membrane receptors, PGRN also serves as an intracellular co-chaperone engaged in the folding and traffic of its associated proteins, particularly the lysosomal hydrolases. This chaperone activity is required for PGRN to exert its diverse functions across a broad range of diseases, encompassing both the central nervous system and peripheral systems. In this comprehensive review, we present an update of the emerging role of PGRN in Progranulinopathy, with special focus on elucidating the intricate interplay between PGRN and a diverse array of proteins at various levels, ranging from extracellular fluids and intracellular components, as well as various pathophysiological processes involved. This review seeks to offer a comprehensive grasp of PGRN's diverse functions, aiming to unveil intricate mechanisms behind Progranulinopathy and open doors for future research endeavors.
Collapse
Affiliation(s)
- Guiwu Huang
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA; Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA; Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Hasan S, Fernandopulle MS, Humble SW, Frankenfield AM, Li H, Prestil R, Johnson KR, Ryan BJ, Wade-Martins R, Ward ME, Hao L. Multi-modal proteomic characterization of lysosomal function and proteostasis in progranulin-deficient neurons. Mol Neurodegener 2023; 18:87. [PMID: 37974165 PMCID: PMC10655356 DOI: 10.1186/s13024-023-00673-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Progranulin (PGRN) is a lysosomal glycoprotein implicated in various neurodegenerative diseases, including frontotemporal dementia and neuronal ceroid lipofuscinosis. Over 70 mutations discovered in the GRN gene all result in reduced expression of the PGRN protein. Genetic and functional studies point toward a regulatory role for PGRN in lysosome functions. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomes remain unclear. METHODS We developed multifaceted proteomic techniques to characterize the dynamic lysosomal biology in living human neurons and fixed mouse brain tissues. Using lysosome proximity labeling and immuno-purification of intact lysosomes, we characterized lysosome compositions and interactome in both human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (i3Neurons) and mouse brains. Using dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics, we measured global protein half-lives in human i3Neurons for the first time. RESULTS Leveraging the multi-modal proteomics and live-cell imaging techniques, we comprehensively characterized how PGRN deficiency changes the molecular and functional landscape of neuronal lysosomes. We found that PGRN loss impairs the lysosome's degradative capacity with increased levels of v-ATPase subunits on the lysosome membrane, increased hydrolases within the lysosome, altered protein regulations related to lysosomal transport, and elevated lysosomal pH. Consistent with impairments in lysosomal function, GRN-null i3Neurons and frontotemporal dementia patient-derived i3Neurons carrying GRN mutation showed pronounced alterations in protein turnover, such as cathepsins and proteins related to supramolecular polymerization and inherited neurodegenerative diseases. CONCLUSION This study suggested PGRN as a critical regulator of lysosomal pH and degradative capacity, which influences global proteostasis in neurons. Beyond the study of progranulin deficiency, these newly developed proteomic methods in neurons and brain tissues provided useful tools and data resources for the field to study the highly dynamic neuronal lysosome biology.
Collapse
Affiliation(s)
- Saadia Hasan
- National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Neurodegenerative Disease, UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
- Augusta University, University of Georgia Medical Partnership, Athens, GA, USA
| | - Michael S Fernandopulle
- National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stewart W Humble
- National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Haorong Li
- Department of Chemistry, George Washington University, Washington, DC, USA
| | - Ryan Prestil
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Kory R Johnson
- National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brent J Ryan
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK
| | - Michael E Ward
- National Institute of Neurological, Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Ling Hao
- Department of Chemistry, George Washington University, Washington, DC, USA.
| |
Collapse
|
8
|
Szinyákovics J, Keresztes F, Kiss EA, Falcsik G, Vellai T, Kovács T. Potent New Targets for Autophagy Enhancement to Delay Neuronal Ageing. Cells 2023; 12:1753. [PMID: 37443788 PMCID: PMC10341134 DOI: 10.3390/cells12131753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Autophagy is a lysosomal-dependent degradation process of eukaryotic cells responsible for breaking down unnecessary and damaged intracellular components. Autophagic activity gradually declines with age due to genetic control, and this change contributes to the accumulation of cellular damage at advanced ages, thereby causing cells to lose their functionality and viability. This could be particularly problematic in post-mitotic cells including neurons, the mass destruction of which leads to various neurodegenerative diseases. Here, we aim to uncover new regulatory points where autophagy could be specifically activated and test these potential drug targets in neurodegenerative disease models of Drosophila melanogaster. One possible way to activate autophagy is by enhancing autophagosome-lysosome fusion that creates the autolysosome in which the enzymatic degradation happens. The HOPS (homotypic fusion and protein sorting) and SNARE (Snap receptor) protein complexes regulate the fusion process. The HOPS complex forms a bridge between the lysosome and autophagosome with the assistance of small GTPase proteins. Thus, small GTPases are essential for autolysosome maturation, and among these proteins, Rab2 (Ras-associated binding 2), Rab7, and Arl8 (Arf-like 8) are required to degrade the autophagic cargo. For our experiments, we used Drosophila melanogaster as a model organism. Nerve-specific small GTPases were silenced and overexpressed. We examined the effects of these genetic interventions on lifespan, climbing ability, and autophagy. Finally, we also studied the activation of small GTPases in a Parkinson's disease model. Our results revealed that GTP-locked, constitutively active Rab2 (Rab2-CA) and Arl8 (Arl8-CA) expression reduces the levels of the autophagic substrate p62/Ref(2)P in neurons, extends lifespan, and improves the climbing ability of animals during ageing. However, Rab7-CA expression dramatically shortens lifespan and inhibits autophagy. Rab2-CA expression also increases lifespan in a Parkinson's disease model fly strain overexpressing human mutant (A53T) α-synuclein protein. Data provided by this study suggests that Rab2 and Arl8 serve as potential targets for autophagy enhancement in the Drosophila nervous system. In the future, it might be interesting to assess the effect of Rab2 and Arl8 coactivation on autophagy, and it would also be worthwhile to validate these findings in a mammalian model and human cell lines. Molecules that specifically inhibit Rab2 or Arl8 serve as potent drug candidates to modulate the activity of the autophagic process in treating neurodegenerative pathologies. In the future, it would be reasonable to investigate which GAP enzyme can inhibit Rab2 or Arl8 specifically, but not affect Rab7, with similar medical purposes.
Collapse
Affiliation(s)
- Janka Szinyákovics
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Fanni Keresztes
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Eszter Anna Kiss
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Gergő Falcsik
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
- ELKH-ELTE Genetic Research Group, H-1117 Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University (ELTE), H-1117 Budapest, Hungary
| |
Collapse
|
9
|
Liu Y, Zhao X, Jian J, Hasan S, Liu C. Interaction with ERp57 is required for progranulin protection against Type 2 Gaucher disease. Biosci Trends 2023; 17:126-135. [PMID: 36889696 PMCID: PMC10514708 DOI: 10.5582/bst.2023.01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Gaucher disease (GD), one of the most common lysosomal storage diseases, is caused by GBA1 mutations resulting in defective glucocerebrosidase (GCase) and consequent accumulation of its substrates β-glucosylceramide (β-GlcCer). We reported progranulin (PGRN), a secretary growth factor-like molecule and an intracellular lysosomal protein was a crucial co-factor of GCase. PGRN binds to GCase and recruits Heat Shock Protein 70 (Hsp70) to GCase through its C-terminal Granulin (Grn) E domain, termed as ND7. In addition, both PGRN and ND7 are therapeutic against GD. Herein we found that both PGRN and its derived ND7 still displayed significant protective effects against GD in Hsp70 deficient cells. To delineate the molecular mechanisms underlying PGRN's Hsp70-independent regulation of GD, we performed a biochemical co-purification and mass spectrometry with His-tagged PGRN and His-tagged ND7 in Hsp70 deficient cells, which led to the identification of ERp57, also referred to as protein disulfide isomerase A3 (PDIA3), as a protein that binds to both PGRN and ND7. Within type 2 neuropathic GD patient fibroblasts L444P, bearing GBA1 L444P mutation, deletion of ERp57 largely abolished the therapeutic effects of PGRN and ND7, as manifested by loss of effects on lysosomal storage, GCase activity, and β-GlcCer accumulation. Additionally, recombinant ERp57 effectively restored the therapeutic effects of PGRN and ND7 in ERp57 knockout L444P fibroblasts. Collectively, this study reports ERp57 as a previously unrecognized binding partner of PGRN that contributes to PGRN regulation of GD.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
- Department of Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Sadaf Hasan
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
10
|
Hasan S, Fernandopulle MS, Humble SW, Frankenfield AM, Li H, Prestil R, Johnson KR, Ryan BJ, Wade-Martins R, Ward ME, Hao L. Multi-modal Proteomic Characterization of Lysosomal Function and Proteostasis in Progranulin-Deficient Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529955. [PMID: 36865171 PMCID: PMC9980118 DOI: 10.1101/2023.02.24.529955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Progranulin (PGRN) is a lysosomal protein implicated in various neurodegenerative diseases. Over 70 mutations discovered in the GRN gene all result in reduced expression of PGRN protein. However, the detailed molecular function of PGRN within lysosomes and the impact of PGRN deficiency on lysosomal biology remain unclear. Here we leveraged multifaceted proteomic techniques to comprehensively characterize how PGRN deficiency changes the molecular and functional landscape of neuronal lysosomes. Using lysosome proximity labeling and immuno-purification of intact lysosomes, we characterized lysosome compositions and interactomes in both human induced pluripotent stem cell (iPSC)-derived glutamatergic neurons (i3Neurons) and mouse brains. Using dynamic stable isotope labeling by amino acids in cell culture (dSILAC) proteomics, we measured global protein half-lives in i3Neurons for the first time and characterized the impact of progranulin deficiency on neuronal proteostasis. Together, this study indicated that PGRN loss impairs the lysosome's degradative capacity with increased levels of v-ATPase subunits on the lysosome membrane, increased catabolic enzymes within the lysosome, elevated lysosomal pH, and pronounced alterations in neuron protein turnover. Collectively, these results suggested PGRN as a critical regulator of lysosomal pH and degradative capacity, which in turn influences global proteostasis in neurons. The multi-modal techniques developed here also provided useful data resources and tools to study the highly dynamic lysosome biology in neurons.
Collapse
Affiliation(s)
- Saadia Hasan
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- UK Dementia Research Institute, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
- MD-PhD program, Augusta University/University of Georgia Medical Partnership, Athens, GA, USA
| | - Michael S. Fernandopulle
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stewart W. Humble
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
- Oxford Parkinson’s Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | | | - Haorong Li
- Department of Chemistry, George Washington University, Washington, DC, USA
| | - Ryan Prestil
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Kory R. Johnson
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brent J. Ryan
- Oxford Parkinson’s Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Richard Wade-Martins
- Oxford Parkinson’s Disease Centre, Kavli Institute for Nanoscience Discovery, Department of Physiology, Anatomy and Genetics, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ling Hao
- Department of Chemistry, George Washington University, Washington, DC, USA
| |
Collapse
|
11
|
Li H, Zhang Y, Li C, Ning P, Sun H, Wei F. Tandem mass tag-based quantitative proteomics analysis reveals the new regulatory mechanism of progranulin in influenza virus infection. Front Microbiol 2023; 13:1090851. [PMID: 36713155 PMCID: PMC9877624 DOI: 10.3389/fmicb.2022.1090851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Progranulin (PGRN) plays an important role in influenza virus infection. To gain insight into the potential molecular mechanisms by which PGRN regulates influenza viral replication, proteomic analyzes of whole mouse lung tissue from wild-type (WT) versus (vs) PGRN knockout (KO) mice were performed to identify proteins regulated by the absence vs. presence of PGRN. Our results revealed that PGRN regulated the differential expression of ALOX15, CD14, CD5L, and FCER1g, etc., and also affected the lysosomal activity in influenza virus infection. Collectively these findings provide a panoramic view of proteomic changes resulting from loss of PGRN and thereby shedding light on the functions of PGRN in influenza virus infection.
Collapse
Affiliation(s)
- Haoning Li
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chengye Li
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Peng Ning
- College of Agriculture, Ningxia University, Yinchuan, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan, China,*Correspondence: Fanhua Wei, ✉
| |
Collapse
|
12
|
Zhao X, Lin Y, Liou B, Fu W, Jian J, Fannin V, Zhang W, Setchell KDR, Grabowski GA, Sun Y, Liu CJ. PGRN deficiency exacerbates, whereas a brain penetrant PGRN derivative protects, GBA1 mutation-associated pathologies and diseases. Proc Natl Acad Sci U S A 2023; 120:e2210442120. [PMID: 36574647 PMCID: PMC9910439 DOI: 10.1073/pnas.2210442120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/08/2022] [Indexed: 12/28/2022] Open
Abstract
Mutations in GBA1, encoding glucocerebrosidase (GCase), cause Gaucher disease (GD) and are also genetic risks in developing Parkinson's disease (PD). Currently, the approved therapies are only effective for directly treating visceral symptoms, but not for primary neuronopathic involvement in GD (nGD). Progranulin (PGRN), encoded by GRN, is a novel modifier of GCase, but the impact of PGRN in GBA1 mutation-associated pathologies in vivo remains unknown. Herein, Grn-/- mice crossed into Gba9v/9v mice, a Gba1 mutant line homozygous for the Gba1 D409V mutation, generating Grn-/-Gba9v/9v (PG9V) mice. PG9V mice exhibited neurobehavioral deficits, early onset, and more severe GD phenotypes compared to Grn-/- and Gba9v/9v mice. Moreover, PG9V mice also displayed PD-like phenotype. Mechanistic analysis revealed that PGRN deficiency caused severe neuroinflammation with microgliosis and astrogliosis, along with impaired autophagy associated with the Gba1 mutation. A PGRN-derived peptide, termed ND7, ameliorated the disease phenotype in GD patient fibroblasts ex vivo. Unexpectedly, ND7 penetrated the blood-brain barrier (BBB) and effectively ameliorated the nGD manifestations and PD pathology in Gba9v/null and PG9V mice. Collectively, this study not only provides the first line of in vivo but also ex vivo evidence demonstrating the crucial role of PGRN in GBA1/Gba1 mutation-related pathologies, as well as a clinically relevant mouse model for mechanistic and potential therapeutics studies for nGD and PD. Importantly, a BBB penetrant PGRN-derived biologic was developed that may provide treatment for rare lysosomal storage diseases and common neurodegenerative disorders, particularly nGD and PD.
Collapse
Affiliation(s)
- Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY10003
| | - Yi Lin
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229
| | - Benjamin Liou
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY10003
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY10003
| | - Venette Fannin
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229
| | - Wujuan Zhang
- The Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229
| | - Kenneth D. R. Setchell
- The Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Gregory A. Grabowski
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Chuan-ju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY10003
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
13
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
14
|
Zhao X, Hasan S, Liou B, Lin Y, Sun Y, Liu C. Analysis of the Biomarkers for Neurodegenerative Diseases in Aged Progranulin Deficient Mice. Int J Mol Sci 2022; 23:629. [PMID: 35054815 PMCID: PMC8775568 DOI: 10.3390/ijms23020629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative diseases are debilitating impairments that affect millions of people worldwide and are characterized by progressive degeneration of structure and function of the central or peripheral nervous system. Effective biomarkers for neurodegenerative diseases can be used to improve the diagnostic workup in the clinic as well as facilitate the development of effective disease-modifying therapies. Progranulin (PGRN) has been reported to be involved in various neurodegenerative disorders. Hence, in the current study we systematically compared the inflammation and accumulation of typical neurodegenerative disease markers in the brain tissue between PGRN knockout (PGRN KO) and wildtype (WT) mice. We found that PGRN deficiency led to significant neuron loss as well as activation of microglia and astrocytes in aged mice. Several characteristic neurodegenerative markers, including α-synuclein, TAR DNA-binding protein 43 (TDP-43), Tau, and β-amyloid, were all accumulated in the brain of PGRN-deficient mice as compared to WT mice. Moreover, higher aggregation of lipofuscin was observed in the brain tissue of PGRN-deficient mice compared with WT mice. In addition, the autophagy was also defective in the brain of PGRN-deficient mice, indicated by the abnormal expression level of autophagy marker LC3-II. Collectively, comprehensive assays support the idea that PGRN plays an important role during the development of neurodegenerative disease, indicating that PGRN might be a useful biomarker for neurodegenerative diseases in clinical settings.
Collapse
Affiliation(s)
- Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (S.H.)
| | - Sadaf Hasan
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (S.H.)
| | - Benjamin Liou
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.L.); (Y.L.); (Y.S.)
| | - Yi Lin
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.L.); (Y.L.); (Y.S.)
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.L.); (Y.L.); (Y.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (S.H.)
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|