1
|
|
2
|
Pusch LC, Kammerer CF, Fröbisch J. Cranial anatomy of Bolotridon frerensis, an enigmatic cynodont from the Middle Triassic of South Africa, and its phylogenetic significance. PeerJ 2021; 9:e11542. [PMID: 34178451 PMCID: PMC8214396 DOI: 10.7717/peerj.11542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
The cynodont fauna of the Trirachodon-Kannemeyeria Subzone of the Middle Triassic Cynognathus Assemblage Zone (AZ) is almost exclusively represented by taxa belonging to the clade Eucynodontia. However, there is one basal (non-eucynodont) cynodont known to have survived into this assemblage: the enigmatic Bolotridon frerensis. BSPG 1934-VIII-7 represents by far the most extensive specimen of B. frerensis, consisting of a partial skull with occluded lower jaw. The specimen was initially described by Broili & Schröder (1934), but their description was limited to surface details of the skull and the dental morphology. Here, by using a computed tomographic (CT) reconstruction, we redescribe this specimen, providing novel information on its palatal and internal anatomy. New endocranial characters recognized for this taxon include ridges in the nasal cavity indicating the presence of cartilaginous respiratory turbinals. New data obtained from the CT scan were incorporated into the most recently published data matrix of early non-mammalian cynodonts to test the previously unstable phylogenetic position of Bolotridon. Our phylogenetic analyses recovered Bolotridon as the sister-taxon of Eucynodontia, a more crownward position than previously hypothesized.
Collapse
Affiliation(s)
- Luisa C Pusch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian F Kammerer
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Jörg Fröbisch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Whitney MR, Sidor CA. Evidence of torpor in the tusks of Lystrosaurus from the Early Triassic of Antarctica. Commun Biol 2020; 3:471. [PMID: 32855434 PMCID: PMC7453012 DOI: 10.1038/s42003-020-01207-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/01/2020] [Indexed: 11/16/2022] Open
Abstract
Antarctica has hosted a wide range of ecosystems over the past 500-million years. Early in the Mesozoic, the Antarctic portion of southern Pangaea had a more habitable climate, but its position within the polar circle imposed extreme photoperiod seasonality on its resident flora and fauna. It remains unclear to what degree physiological adaptations underpinned the ability of tetrapods to establish the terrestrial communities captured in the fossil record. Here we use regular and stressful growth marks preserved in the dentine of ever-growing tusks of the Early Triassic mammalian predecessor, Lystrosaurus, to test for adaptations specific to this polar inhabitant. We find evidence of prolonged stress indicative of torpor when compared to tusk samples from non-polar populations of Lystrosaurus. These preliminary findings are to our knowledge the oldest instance of torpor yet reported in the fossil record and demonstrate unexpected physiological flexibility in Lystrosaurus that may have contributed its survivorship through the Permo-Triassic mass extinction. Whitney and Sidor examine the growth marks on Lystrosaurus tusks from the Early Triassic, and demonstrate evidence of torpor in polar specimens. These preliminary findings give insight into physiological adaptations that could have aided in survival and recovery from the Permo-Triassic mass extinction.
Collapse
Affiliation(s)
- Megan R Whitney
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| | - Christian A Sidor
- Department of Biology and Burke Museum, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
4
|
Castanhinha R, Araújo R, Júnior LC, Angielczyk KD, Martins GG, Martins RMS, Chaouiya C, Beckmann F, Wilde F. Bringing dicynodonts back to life: paleobiology and anatomy of a new emydopoid genus from the Upper Permian of Mozambique. PLoS One 2013; 8:e80974. [PMID: 24324653 PMCID: PMC3852158 DOI: 10.1371/journal.pone.0080974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
Dicynodontia represent the most diverse tetrapod group during the Late Permian. They survived the Permo-Triassic extinction and are central to understanding Permo-Triassic terrestrial ecosystems. Although extensively studied, several aspects of dicynodont paleobiology such as, neuroanatomy, inner ear morphology and internal cranial anatomy remain obscure. Here we describe a new dicynodont (Therapsida, Anomodontia) from northern Mozambique: Niassodon mfumukasi gen. et sp. nov. The holotype ML1620 was collected from the Late Permian K5 formation, Metangula Graben, Niassa Province northern Mozambique, an almost completely unexplored basin and country for vertebrate paleontology. Synchrotron radiation based micro-computed tomography (SRµCT), combined with a phylogenetic analysis, demonstrates a set of characters shared with Emydopoidea. All individual bones were digitally segmented allowing a 3D visualization of each element. In addition, we reconstructed the osseous labyrinth, endocast, cranial nerves and vasculature. The brain is narrow and the cerebellum is broader than the forebrain, resembling the conservative, "reptilian-grade" morphology of other non-mammalian therapsids, but the enlarged paraflocculi occupy the same relative volume as in birds. The orientation of the horizontal semicircular canals indicates a slightly more dorsally tilted head posture than previously assumed in other dicynodonts. In addition, synchrotron data shows a secondary center of ossification in the femur. Thus ML1620 represents, to our knowledge, the oldest fossil evidence of a secondary center of ossification, pushing back the evolutionary origins of this feature. The fact that the specimen represents a new species indicates that the Late Permian tetrapod fauna of east Africa is still incompletely known.
Collapse
Affiliation(s)
- Rui Castanhinha
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Museu da Lourinhã, Lourinhã, Portugal
| | - Ricardo Araújo
- Museu da Lourinhã, Lourinhã, Portugal
- Huffington Department of Earth Sciences, Southern Methodist University, Dallas, Texas, United States of America
| | | | - Kenneth D. Angielczyk
- Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, United States of America
| | - Gabriel G. Martins
- Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rui M. S. Martins
- Museu da Lourinhã, Lourinhã, Portugal
- Campus Tecnológico e Nuclear, Instituto Superior Técnico, Bobadela, Portugal
- Centro de Investigação em Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Fabian Wilde
- Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| |
Collapse
|
5
|
Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 2013; 13:208. [PMID: 24063680 PMCID: PMC4016551 DOI: 10.1186/1471-2148-13-208] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
Collapse
Affiliation(s)
- Marc EH Jones
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
- School of Earth and Environmental Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Cajsa Lisa Anderson
- University of Gothenburg, Department of Plant and Environmental Sciences, Gothenburg, Sweden
| | - Christy A Hipsley
- Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Müller
- Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Susan E Evans
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK
| | - Rainer R Schoch
- Staatliches Museum für Naturkunde, Rosenstein 1, D-70191, Stuttgart, Germany
| |
Collapse
|
6
|
Jones MEH, Anderson CL, Hipsley CA, Müller J, Evans SE, Schoch RR. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 2013. [PMID: 24063680 DOI: 10.1186/1471-2148-23-208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Lepidosauria (lizards, snakes, tuatara) is a globally distributed and ecologically important group of over 9,000 reptile species. The earliest fossil records are currently restricted to the Late Triassic and often dated to 227 million years ago (Mya). As these early records include taxa that are relatively derived in their morphology (e.g. Brachyrhinodon), an earlier unknown history of Lepidosauria is implied. However, molecular age estimates for Lepidosauria have been problematic; dates for the most recent common ancestor of all lepidosaurs range between approximately 226 and 289 Mya whereas estimates for crown-group Squamata (lizards and snakes) vary more dramatically: 179 to 294 Mya. This uncertainty restricts inferences regarding the patterns of diversification and evolution of Lepidosauria as a whole. RESULTS Here we report on a rhynchocephalian fossil from the Middle Triassic of Germany (Vellberg) that represents the oldest known record of a lepidosaur from anywhere in the world. Reliably dated to 238-240 Mya, this material is about 12 million years older than previously known lepidosaur records and is older than some but not all molecular clock estimates for the origin of lepidosaurs. Using RAG1 sequence data from 76 extant taxa and the new fossil specimens two of several calibrations, we estimate that the most recent common ancestor of Lepidosauria lived at least 242 Mya (238-249.5), and crown-group Squamata originated around 193 Mya (176-213). CONCLUSION A Early/Middle Triassic date for the origin of Lepidosauria disagrees with previous estimates deep within the Permian and suggests the group evolved as part of the faunal recovery after the end-Permain mass extinction as the climate became more humid. Our origin time for crown-group Squamata coincides with shifts towards warmer climates and dramatic changes in fauna and flora. Most major subclades within Squamata originated in the Cretaceous postdating major continental fragmentation. The Vellberg fossil locality is expected to become an important resource for providing a more balanced picture of the Triassic and for bridging gaps in the fossil record of several other major vertebrate groups.
Collapse
Affiliation(s)
- Marc E H Jones
- Research Department of Cell and Developmental Biology, Anatomy Building, UCL, University College London, Gower Street, London WCIE 6BT, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Ruta M, Angielczyk KD, Fröbisch J, Benton MJ. Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proc Biol Sci 2013; 280:20131071. [PMID: 23945681 PMCID: PMC3757962 DOI: 10.1098/rspb.2013.1071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adaptive radiations are central to macroevolutionary theory. Whether triggered by acquisition of new traits or ecological opportunities arising from mass extinctions, it is debated whether adaptive radiations are marked by initial expansion of taxic diversity or of morphological disparity (the range of anatomical form). If a group rediversifies following a mass extinction, it is said to have passed through a macroevolutionary bottleneck, and the loss of taxic or phylogenetic diversity may limit the amount of morphological novelty that it can subsequently generate. Anomodont therapsids, a diverse clade of Permian and Triassic herbivorous tetrapods, passed through a bottleneck during the end-Permian mass extinction. Their taxic diversity increased during the Permian, declined significantly at the Permo–Triassic boundary and rebounded during the Middle Triassic before the clade's final extinction at the end of the Triassic. By sharp contrast, disparity declined steadily during most of anomodont history. Our results highlight three main aspects of adaptive radiations: (i) diversity and disparity are generally decoupled; (ii) models of radiations following mass extinctions may differ from those triggered by other causes (e.g. trait acquisition); and (iii) the bottleneck caused by a mass extinction means that a clade can emerge lacking its original potential for generating morphological variety.
Collapse
Affiliation(s)
- Marcello Ruta
- School of Life Sciences, University of Lincoln, Lincoln LN2 2LG, UK.
| | | | | | | |
Collapse
|
8
|
Kammerer CF, Fröbisch J, Angielczyk KD. On the validity and phylogenetic position of Eubrachiosaurus browni, a kannemeyeriiform dicynodont (Anomodontia) from Triassic North America. PLoS One 2013; 8:e64203. [PMID: 23741307 PMCID: PMC3669350 DOI: 10.1371/journal.pone.0064203] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/11/2013] [Indexed: 11/18/2022] Open
Abstract
The large dicynodont Eubrachiosaurus browni from the Upper Triassic Popo Agie Formation of Wyoming is redescribed. Eubrachiosaurus is a valid taxon that differs from Placerias hesternus, with which it was previously synonymized, by greater anteroposterior expansion of the scapula dorsally and a very large, nearly rectangular humeral ectepicondyle with a broad supinator process. Inclusion of Eubrachiosaurus in a revised phylogenetic analysis of anomodont therapsids indicates that it is a stahleckeriid closely related to the South American genera Ischigualastia and Jachaleria. The recognition of Eubrachiosaurus as a distinct lineage of North American dicynodonts, combined with other recent discoveries in the eastern USA and Europe, alters our perception of Late Triassic dicynodont diversity in the northern hemisphere. Rather than being isolated relicts in previously therapsid-dominated regions, Late Triassic stahleckeriid dicynodonts were continuing to disperse and diversify, even in areas like western North America that were otherwise uninhabited by coeval therapsids (i.e., cynodonts).
Collapse
Affiliation(s)
- Christian F Kammerer
- Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany.
| | | | | |
Collapse
|
9
|
Provincialization of terrestrial faunas following the end-Permian mass extinction. Proc Natl Acad Sci U S A 2013; 110:8129-33. [PMID: 23630295 DOI: 10.1073/pnas.1302323110] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to their devastating effects on global biodiversity, mass extinctions have had a long-term influence on the history of life by eliminating dominant lineages that suppressed ecological change. Here, we test whether the end-Permian mass extinction (252.3 Ma) affected the distribution of tetrapod faunas within the southern hemisphere and apply quantitative methods to analyze four components of biogeographic structure: connectedness, clustering, range size, and endemism. For all four components, we detected increased provincialism between our Permian and Triassic datasets. In southern Pangea, a more homogeneous and broadly distributed fauna in the Late Permian (Wuchiapingian, ∼257 Ma) was replaced by a provincial and biogeographically fragmented fauna by Middle Triassic times (Anisian, ∼242 Ma). Importantly in the Triassic, lower latitude basins in Tanzania and Zambia included dinosaur predecessors and other archosaurs unknown elsewhere. The recognition of heterogeneous tetrapod communities in the Triassic implies that the end-Permian mass extinction afforded ecologically marginalized lineages the ecospace to diversify, and that biotic controls (i.e., evolutionary incumbency) were fundamentally reset. Archosaurs, which began diversifying in the Early Triassic, were likely beneficiaries of this ecological release and remained dominant for much of the later Mesozoic.
Collapse
|
10
|
Rubidge B. The roots of early mammals lie in the Karoo: Robert Broom's foundation and subsequent research progress. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/0035919x.2012.737868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Kammerer CF, Flynn JJ, Ranivoharimanana L, Wyss AR. Ontogeny in the Malagasy Traversodontid Dadadon isaloi and a Reconsideration of its Phylogenetic Relationships. ACTA ACUST UNITED AC 2012. [DOI: 10.3158/2158-5520-5.1.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Huttenlocker AK, Sidor CA. Taxonomic Revision of Therocephalians (Therapsida: Theriodontia) from the Lower Triassic of Antarctica. AMERICAN MUSEUM NOVITATES 2012. [DOI: 10.1206/3738.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
FRÖBISCH JÖRG, REISZ ROBERTR. The postcranial anatomy of Suminia getmanovi (Synapsida: Anomodontia), the earliest known arboreal tetrapod. Zool J Linn Soc 2011. [DOI: 10.1111/j.1096-3642.2010.00685.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|