1
|
Liu Z, Zhang K, Zhang ZQ. Phototactic behavior and oviposition of seven species of Phytoseiidae (Acari: Mesostigmata). PEST MANAGEMENT SCIENCE 2025; 81:1765-1770. [PMID: 39632773 DOI: 10.1002/ps.8575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Phototactic behavior and oviposition site selection in phytoseiid predators are crucial for understanding their ecological interactions and optimizing their use in agricultural pest management. This study investigated the phototactic responses and oviposition preferences of seven phytoseiid species of proven or potential importance in biocontrol: Amblydromalus limonicus (Garman & McGregor), Amblyseius herbicolus (Chant), Amblyseius lentiginosus Denmark and Schicha, Neoseiulus barkeri Hughes, Neoseiulus cucumeris (Oudemans), Neoseiulus womersleyi (Schicha), and Phytoseiulus persimilis Athias-Henriot. We hypothesized that these phytoseiid predators use light as a cue, with their phototactic behavior aligning with their respective lifestyles. RESULTS By presenting adults of these species with two choices (i.e. light and dark) in acrylic arenas, we found that P. persimilis exhibited a significant preference for light. In contrast, other species showed no phototactic preference. The phototactic preferences were similar between genders of all six sexually reproducing species tested in this study. Furthermore, the oviposition site preferences varied significantly among species. Gravid females of As. herbicolus, N. cucumeris, N. womersleyi, and P. persimilis preferred dark sites for egg laying, whereas Ad. limonicus and As. lentiginosus showed no light preference, and N. barkeri preferred light for oviposition. CONCLUSION This study highlights the importance of light as an ecological factor influencing phytoseiid behavior and suggests that phototactic and oviposition preferences are adaptations to specific environmental niches. These findings have practical implications for enhancing the effectiveness of phytoseiids in pest management. Further research should investigate the mechanisms driving phototactic responses and light perception in these phytoseiid predators. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenguo Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Nutrition and Efficient Feeding, Department of Animal Science, Shandong Agricultural University, Taian, People's Republic of China
| | - Keshi Zhang
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Zhi-Qiang Zhang
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Tanaka M, Yase J, Kanto T, Osakabe M. Combined nighttime ultraviolet B irradiation and phytoseiid mite application provide optimal control of the spider mite Tetranychus urticae on greenhouse strawberry plants. PEST MANAGEMENT SCIENCE 2024; 80:698-707. [PMID: 37759371 DOI: 10.1002/ps.7798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Tetranychus urticae is a hard-to-control pest of greenhouse strawberry production. Nighttime ultraviolet B (UV-B) radiation using light reflection sheets (LRS) has been applied as a physical method to control T. urticae through direct ovicidal effects (the UV method). However, because strawberry leaves grow more densely, UV-B radiation fails to reach the lower leaf surfaces inhabited by spider mites; therefore, a complementary method is required. We propose the supplemental application of phytoseiid mites in greenhouse strawberry production. We evaluated the control effects of UV-B irradiation, phytoseiid mite application and their combined use. The effects of UV-B irradiation on the degree of overlap relative to the independent distributions (ω) between predators and prey were also analyzed. RESULTS The UV method alone maintained low T. urticae density levels from November to February; however, mite populations increased from March onward. Phytoseiid mite application in January and February without UV-B irradiation resulted in a temporary increase in spider mites in March and/or April. By contrast, combined application of the UV method and phytoseiid mites had a greater control effect during the strawberry growing season. The ω values were higher for the UV method compared with no UV-B irradiation, suggesting that UV-B irradiation increased phytoseiid mite foraging rates. CONCLUSION The release of phytoseiid mites compensated for the shortcomings of the UV method, and UV-B irradiation promoted predation by phytoseiid mites by increasing the behavioral numerical response. Consequently, combined application of UV-B irradiation and phytoseiid mites is optimal for T. urticae control in greenhouse strawberry production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Masaya Tanaka
- Plant Protection Department, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Junya Yase
- Plant Protection Department, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Takeshi Kanto
- Plant Protection Department, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Hyogo, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Yuan L, Osakabe M. Mechanisms underlying the impact and interaction of temperature and UV-B on the hatching of spider mite and phytoseiid mite eggs. PEST MANAGEMENT SCIENCE 2022; 78:4314-4323. [PMID: 35731693 DOI: 10.1002/ps.7050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A spider mite control method using night-time ultraviolet (UV)-B irradiation was recently developed for strawberry greenhouses (UV method). The control effect of this UV method is negatively affected by increasing temperature. Tetranychus urticae eggs are more resistant to a single dose of UV-B irradiation than Neoseiulus californicus eggs. By contrast, N. californicus can better survive nightly UV-B irradiation with the UV method compared with T. urticae. To elucidate the mechanism underlying these phenomena, we explored the hypotheses that higher temperature promotes photoenzymatic repair (PER) and that mortality is determined by UV-B susceptibility in the embryonic stage exposed to UV-B. RESULTS PER efficacy was not promoted by increasing temperature. The lowest hatchability (around zero) of T. urticae eggs after a single dose of UV-B irradiation (0.288 and 0.432 kJ m-2 ) without photoreactivation was seen in the morphogenesis stages between "cleavage ended" and "eye points became colored". Based on these results, we developed a linear function of daily UV-B irradiance and deviation of cumulative irradiance during vulnerable embryonic developmental phases from 50% lethal dose (LD50 ) after a single dose of UV-B irradiation. The difference between T. urticae and N. californicus and changes in UV-B vulnerability due to temperature could be explained by this simple relationship. CONCLUSION Slower development in T. urticae than N. californicus in nature and developmental delay under low temperatures increase the ovicidal effects of the UV method. This shows the advantage of the simultaneous use of the UV method and biological control, contributing to the development of integrated pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifeng Yuan
- Laboratory of Ecological Information, Kyoto University, Kyoto, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Yuan L, Mori S, Haruyama N, Hirai N, Osakabe M. Strawberry pollen as a source of UV-B protection ingredients for the phytoseiid mite Neoseiulus californicus (Acari: Phytoseiidae). PEST MANAGEMENT SCIENCE 2021; 77:851-859. [PMID: 32949092 DOI: 10.1002/ps.6089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A new physical control method using ultraviolet-B (UV-B) lamps and light-reflecting sheets (UV method) significantly suppressed a spider mite population on greenhouse strawberries. Although UV-B radiation may adversely affect the survival of phytoseiid mites, previous research has suggested that Neoseiulus californicus can improve its survival on exposure to UV-B irradiation by consuming antioxidants contained in tea and peach pollen. In this study, we evaluated strawberry pollen as an alternative food source for N. californicus and examined whether antioxidants in the pollen mitigated UV-B damage to N. californicus. RESULTS The fecundity of N. californicus females reared on Tetranychus urticae decreased on shifting their diet to pollen. By contrast, females reared continuously on strawberry pollen produced as many eggs as females reared continuously on T. urticae. Survival and fecundity after UV-B irradiation were higher in females on the pollen diet. Oxygen radical absorbance capacity analysis revealed that the high antioxidant activity of strawberry pollen was due to four hydroxycinnamoyl spermidine derivatives. CONCLUSION Strawberry pollen was an adequate alternative food source for N. californicus. Feeding on strawberry pollen, which contains spermidine derivatives with high antioxidant activity, mitigated UV-B damage. This shows the potential of combining the UV-method with N. californicus for controlling T. urticae in strawberries.
Collapse
Affiliation(s)
- Lifeng Yuan
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shinnosuke Mori
- Laboratory of Comparative Agricultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoto Haruyama
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Japan
| | - Nobuhiro Hirai
- Laboratory of Comparative Agricultural Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Tian CB, Li YY, Huang J, Chu WQ, Wang ZY, Liu H. Comparative Transcriptome and Proteome Analysis of Heat Acclimation in Predatory Mite Neoseiulus barkeri. Front Physiol 2020; 11:426. [PMID: 32411020 PMCID: PMC7201100 DOI: 10.3389/fphys.2020.00426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
In our previous study, we reported a high temperature adapted strain (HTAS) of the predatory mite Neoseiulus barkeri was artificially selected via a long-term heat acclimation (35°C) and frequent heat hardenings. To understand the molecular basis of heat acclimation, 'omics' analyses were performed to compare the differences between HTAS female adults to conventional strain (CS) at transcriptional and translational levels. We obtained a total of 5,374 differentially expressed genes and 500 differentially expressed proteins. Among them, 119 transcripts had concurrent transcription and translation profiles. It's conserved that some processes, such as high expression of heat shock protein (HSP) genes, involved in heat tolerance of transcriptome analyses, while many protective enzymes including glutathione S-transferase, superoxide dismutase, peroxidase, and cytochrome P450 displayed down-regulated expression. KEGG analysis mapped 4,979 and 348 differentially expressed genes and proteins, to 299 and 253 pathways, respectively. The mitogen-activated protein kinases (MAPK) signaling pathway may provide new insights for the investigation of the molecular mechanisms of heat tolerance. Correlation enriched pathways indicated that there were four pathways associated with heat acclimation involving in energy metabolism and immunity. In addition, the expression patterns of ten randomly selected genes including HSP were consistent with the transcriptome results obtained through quantitative real-time PCR. Comparisons between transcriptome and proteome results indicated the upregulation of HSPs and genes participated in ATP production, immunity and energy metabolism process. A majority of antioxidant-related genes and detoxication-related genes were down-regulated suggesting a fitness cost of heat acclimation. Our results demonstrated that heat tolerance during a long-time acclimation of N. barkeri is a fairly complicated process of physiological regulations. These findings also contribute to a better understanding of the mechanisms of thermal responses of phytoseiid mites which could provide useful information for biological control through natural enemies.
Collapse
Affiliation(s)
| | | | | | | | | | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Yuan L, Osakabe M. Dose-Response and Temperature Dependence of the Mortality of Spider Mite and Predatory Mite Eggs Caused by Daily Nighttime Ultraviolet-B Irradiation. Photochem Photobiol 2020; 96:877-882. [PMID: 31886904 DOI: 10.1111/php.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023]
Abstract
The two-spotted spider mite, Tetranychus urticae, is an economically important agricultural pest. A novel physical control method involving daily nighttime UV-B irradiation was recently developed for use in strawberry greenhouses. However, the overlapping of leaves after March prevents direct irradiation to T. urticae on the lower leaf surface, decreasing control effect. Excessive UV-B irradiation causes leaf sunscald in winter. Therefore, optimization of UV-B irradiance and a compensatory control agent are desired. Temperature may affect the survival of organisms exposed to UV-B, although the temperature dependence of UV-B damage is controversial. A phytoseiid mite, Neoseiulus californicus, is a prominent predator but vulnerable to a single UV-B irradiation. We compared dose-response and temperature dependence of UV-B damage between T. urticae and N. californicus eggs under daily nighttime UV-B irradiation. Unexpectedly, N. californicus showed greater resistance to UV-B than T. urticae, and the mortality was increased and decreased at low and high temperatures, respectively. This makes possible the application of UV-B doses that are lethal for spider mites but safe for phytoseiid mites. Overall, we concluded that combined use of phytoseiid mites with UV-B lamps is advantageous to spider mite management in strawberry greenhouses.
Collapse
Affiliation(s)
- Lifeng Yuan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
7
|
Tian CB, Li YY, Wang X, Fan WH, Wang G, Liang JY, Wang ZY, Liu H. Effects of UV-B radiation on the survival, egg hatchability and transcript expression of antioxidant enzymes in a high-temperature adapted strain of Neoseiulus barkeri. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 77:527-543. [PMID: 31062204 DOI: 10.1007/s10493-019-00361-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/17/2019] [Indexed: 05/19/2023]
Abstract
Biological control of spider mites in hot and dry weather is a serious technical issue. A high-temperature adapted strain (HTAS) of the predatory mite Neoseiulus barkeri Hughes was selected from its conventional strain (CS), via long-term heat acclimation and frequent heat hardenings in our previous studies. However, the environment of high temperature is usually associated with enhanced ultraviolet (UV) radiation. In the present study, the physiological effects of UV-B radiation on survival rate and egg damage of N. barkeri were investigated, as well as the activities and expression profiles of antioxidant enzymes to UV-B radiation stress. UV-B radiation had deleterious effects on egg hatchability and survival of N. barkeri. Adults of the HTAS strain were less UV-B resistant than those of the CS strain; they also had lower levels of enzymatic activity of superoxide dismutase (SOD) and catalase against oxidative damage and weaker upregulation of SOD genes. The mRNA expression of three SOD genes of CS adult females immediately increased whereas that of HTAS showed almost no difference under UV-B stress for 1 h. The results showed the HTAS of N. barkeri had lower fitness under UV-B stress compared with the CS of N. barkeri. These results suggested that long-term heat acclimation may exert a profound impact on the developmental physiology of N. barkeri.
Collapse
Affiliation(s)
- Chuan-Bei Tian
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Ya-Ying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Xian Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Wen-Hui Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Ge Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Jing-Yu Liang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Zi-Ying Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Sugioka N, Kawakami M, Hirai N, Osakabe M. A Pollen Diet Confers Ultraviolet-B Resistance in Phytoseiid Mites by Providing Antioxidants. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Nakai K, Murata Y, Osakabe M. Effects of Low Temperature on Spider Mite Control by Intermittent Ultraviolet-B Irradiation for Practical Use in Greenhouse Strawberries. ENVIRONMENTAL ENTOMOLOGY 2018; 47:140-147. [PMID: 29186383 DOI: 10.1093/ee/nvx179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The application of ultraviolet-B (UVB) radiation to control spider mites is challenging as a key technology for integrated pest management (IPM) in greenhouse strawberries in Japan. To address this, concurrent use of phytoseiid mites and reduced UVB irradiance is desirable to ensure control effects in areas shaded from UVB radiation and to minimize the sunscald in winter, respectively. We designed experiments reproducing the UVB dose on the lower leaf surfaces in strawberry and evaluated the effects of intermittent UVB irradiation at midnight for practical application in the greenhouse and low temperature on the survival of the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) and damage to the phytoseiid mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). The midnight intermittent UVB irradiation effectively suppressed egg hatching and development of larvae of T. urticae, and the control effect was reinforced at 20°C (no eggs hatched at 0.13 kJ m-2 d-1) rather than, at 25°C (70.8% eggs hatched). In contrast, the hatchability of N. californicus eggs was unaffected by intermittent UVB irradiation at 0.27 kJ m-2 d-1 at 25°C and 20°C. However, residual effects of UVB irradiation to N. californicus eggs on survival of hatched larvae were seen, so that reducing the UVB dose is also advantageous for this phytoseiid mite. N. californicus showed a photoreactivation capacity, whereas their UVB tolerance was improved by prey species, suggesting the possibility of the improvement of phytoseiid mites by diet. The reduction of UVB dose and concurrent use of phytoseiid mites increase reliability of the UVB method in IPM strategies in strawberry greenhouse.
Collapse
Affiliation(s)
- Kazuhiro Nakai
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasumasa Murata
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Murata Y, Osakabe M. Developmental Phase-Specific Mortality After Ultraviolet-B Radiation Exposure in the Two-Spotted Spider Mite. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1448-1455. [PMID: 29069313 DOI: 10.1093/ee/nvx169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to ambient ultraviolet-B (UVB) radiation generates DNA lesions, such as cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidine photoproducts in Tetranychus urticae Koch (Acari: Tetranychidae). Larvae appeared normal and healthy after UVB irradiation. Conversely, many mites were trapped in their old epidermis or experienced retarded development and shrunk, thus failing to molt from protochrysalises to protonymphs and died. This suggested that DNA lesions per se were not causing lethality in mites unless damaged genes were expressed. UVB-induced DNA lesions may have interfered with DNA replication and gene expression during the physiological changes of morphogenesis in the chrysalis stage. Comprehensive gene expression analysis by RNA sequencing revealed that gene expression involving epidermal tissue (characteristically cuticular protein genes) and myosin heavy chain muscle-like genes were downregulated in protochrysalises irradiated with UVB at the larval stage. We conclude that the success of protochrysalis molting is determined by whether the DNA lesions of genes, particularly those connected with morphogenesis, are repaired before expression at the protochrysalis stage.
Collapse
Affiliation(s)
- Yasumasa Murata
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| |
Collapse
|
11
|
Moran PJ, Wibawa MI, Smith L. Tolerance of the eriophyid mite Aceria salsolae to UV-A light and implications for biological control of Russian thistle. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:327-338. [PMID: 29210002 DOI: 10.1007/s10493-017-0205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Aceria salsolae (Acari: Eriophyidae) is being evaluated as a candidate biological control agent of Russian thistle (Salsola tragus, Chenopodiaceae), a major invasive weed of rangelands and dryland crops in the western USA. Prior laboratory host range testing under artificial lighting indicated reproduction on non-native Bassia hyssopifolia and on a native plant, Suaeda calceoliformis. However, in field tests in the native range, mite populations released on these 'nontarget' plants remained low. We hypothesized that UV-A light, which can affect behavior of tetranychid mites, would affect populations of the eriophyid A. salsolae differently on the target and nontarget plant species, decreasing the mite's realized host range. Plants were infested with A. salsolae under lamps that emitted UV-A, along with broad-spectrum lighting, and the size of mite populations and plant growth was compared to infested plants exposed only to broad-spectrum light. Russian thistle supported 3- to 55-fold larger mite populations than nontarget plants regardless of UV-A treatment. UV-A exposure did not affect mite populations on Russian thistle or S. calceoliformis, whereas it increased populations 7-fold on B. hyssopifolia. Main stems on nontarget plants grew 2- to 6-fold faster than did Russian thistle under either light treatment. The two nontarget plants attained greater volume under the control light regime than UV-A, but Russian thistle was unaffected. Although Russian thistle was always the superior host, addition of UV-A light to the artificial lighting regime did not reduce the ability of A. salsolae to reproduce on the two nontarget species, suggesting that UV-B or other environmental factors may be more important in limiting mite populations in the field.
Collapse
Affiliation(s)
- Patrick J Moran
- U.S. Department of Agriculture-Agricultural Research Service, Exotic and Invasive Weeds Research Unit, 800 Buchanan St., Albany, CA, 94710, USA.
| | - M Irene Wibawa
- U.S. Department of Agriculture-Agricultural Research Service, Exotic and Invasive Weeds Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Lincoln Smith
- U.S. Department of Agriculture-Agricultural Research Service, Exotic and Invasive Weeds Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
- U.S. Department of Agriculture-Agricultural Research Service, European Biological Control Laboratory, Montpellier, France
| |
Collapse
|
12
|
Atarashi M, Manabe Y, Kishimoto H, Sugawara T, Osakabe M. Antioxidant Protection by Astaxanthin in the Citrus Red Mite (Acari: Tetranychidae). ENVIRONMENTAL ENTOMOLOGY 2017; 46:1143-1150. [PMID: 28981670 DOI: 10.1093/ee/nvx121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Indexed: 06/07/2023]
Abstract
Solar ultraviolet-B (UVB) radiation and radiant heat have lethal effects on plant-dwelling mites, including spider mites, and their natural enemies, such as phytoseiid mites, leading them to reside on lower leaf surfaces. Panonychus spider mites are outcompeted by Tetranychus spider mites and thus exploit upper leaf surfaces, where they are exposed to both UVB radiation and radiant heat. Panonychus spider mites are thought to produce astaxanthin constitutionally. In this study, we compared carotenoid components, antioxidant capacity, lipid peroxidation, survival, and egg production in wild-type (WTS) and albino-type strains (ATS) of Panonychus citri (McGregor). Four carotenoids (neoxanthin, violaxanthin, lutein, and carotene) and their isomers and esters were identified in both strains, but astaxanthin and its esters were present only in WTS. The singlet oxygen scavenging capacity of lipid-soluble ingredients was greater in WTS than in ATS, whereas the oxygen radical absorbance capacities of hydrophilic ingredients were equivalent between them. Lipid peroxide accumulation was clearly higher in ATS than in WTS under both UVB irradiation (25 °C) and high temperature (35 °C) conditions. The findings are consistent with an antioxidant protective function of astaxanthin in this mite. Survival periods at 38 °C were longer in WTS than in ATS, although no difference was shown at 35 °C or under UVB irradiation. Therefore, astaxanthin accumulation was shown to be a major mechanism for survival under radiant heat, although other mechanisms, such as photoreactivation, might play a major role in survival under UVB radiation.
Collapse
Affiliation(s)
- Makoto Atarashi
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Manabe
- Laboratory of Technology of Marine Bioproducts, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hidenari Kishimoto
- Apple Research Division, Institute of Fruit Tree and Tea Science NARO, Morioka 020-0123, Japan
| | - Tatsuya Sugawara
- Laboratory of Technology of Marine Bioproducts, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Murata Y, Osakabe M. Photo-enzymatic repair of UVB-induced DNA damage in the two-spotted spider mite Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 71:15-34. [PMID: 27873138 DOI: 10.1007/s10493-016-0100-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Ambient ultraviolet-B (UVB) radiation induces lethal effects in the two-spotted spider mite Tetranychus urticae, whereas photoreactivation by irradiation with ultraviolet-A and visible light (VIS) plays an important role to increase survival of mites irradiated by UVB. The physiological mechanisms and ecological significance of photoreactivation in terrestrial arthropods have not been shown clearly. We verified the biological impact and accumulation of DNA lesions by UVB irradiation and the repair of them by photoreactivation in T. urticae larvae. Survival of UVB-irradiated larvae decreased with increasing UVB dose, but recovered remarkably with VIS exposure after UVB irradiation (photoreactivation). The DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts (6-4PPs) linearly increased with the UVB dose. The CPDs were repaired after exposure to VIS, whereas the frequency of 6-4PPs was unaffected by VIS; CPD photolyase genes, but not (6-4) photolyase genes, have been found in the T. urticae genome. Therefore, DNA damage and CPD photo enzymatic repair (PER) is significant for survival in this mite under ambient UVB radiation. Unexpectedly, gene expression of CPD photolyase was unaffected by irradiation with UVB and VIS. Instead, expression of xeroderma pigmentosum A (XPA) was increased by irradiation. XPA is a core factor in nucleotide excision repair (NER), which is a repair system unrelated to photo energy. The relationship between gene expression and enzymatic repair remains unclear. To elucidate the PER process in T. urticae, further study will be necessary on the gene expression patterns and molecular functions of CPD photolyase in PER and of XPA in NER.
Collapse
Affiliation(s)
- Yasumasa Murata
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
14
|
Koveos DS, Suzuki T, Terzidou A, Kokkari A, Floros G, Damos P, Kouloussis NA. Egg hatching response to a range of ultraviolet-B (UV-B) radiation doses for four predatory mites and the herbivorous spider mite Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 71:35-46. [PMID: 27988819 DOI: 10.1007/s10493-016-0102-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Egg hatchability of four predatory mites-Phytoseiulus persimilis Athias-Henriot, Iphiseius [Amblyseius] degenerans Berlese, Amblyseius swirskii Athias-Henriot, and Euseius finlandicus Oudemans (Acari: Phytoseiidae)-and the spider mite Tetranychus urticae Koch (Acari: Tetranychidae) was determined under various UV-B doses either in constant darkness (DD) or with simultaneous irradiation using white light. Under UV-B irradiation and DD or simultaneous irradiation with white light, the predator's eggs hatched in significantly lower percentages than in the control non-exposed eggs, which indicates deleterious effects of UV-B on embryonic development. In addition, higher hatchability percentages were observed under UV-B irradiation and DD in eggs of the predatory mites than in eggs of T. urticae. This might be caused by a higher involvement of an antioxidant system, shield effects by pigments or a mere shorter duration of embryonic development in predatory mites than in T. urticae, thus avoiding accumulative effects of UV-B. Although no eggs of T. urticae hatched under UV-B irradiation and DD, variable hatchability percentages were observed under simultaneous irradiation with white light, which suggests the involvement of a photoreactivation system that reduces UV-B damages. Under the same doses with simultaneous irradiation with white light, eggs of T. urticae displayed higher photoreactivation and were more tolerant to UV-B than eggs of the predatory mites. Among predators variation regarding the tolerance to UV-B effects was observed, with eggs of P. persimilis and I. degenerans being more tolerant to UV-B radiation than eggs of A. swirskii and E. finlandicus.
Collapse
Affiliation(s)
- Dimitrios S Koveos
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Takeshi Suzuki
- Laboratory of Molecular Environmental Biology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Anastasia Terzidou
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Anastasia Kokkari
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - George Floros
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Petros Damos
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Nikos A Kouloussis
- Laboratory of Applied Zoology and Parasitology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| |
Collapse
|
15
|
Tanaka M, Yase J, Aoki S, Sakurai T, Kanto T, Osakabe M. Physical Control of Spider Mites Using Ultraviolet-B With Light Reflection Sheets in Greenhouse Strawberries. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1758-1765. [PMID: 27270574 DOI: 10.1093/jee/tow096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/16/2016] [Indexed: 06/06/2023]
Abstract
Development of spider mite management technology other than chemical control is desired because of the serious development of acaricide resistance worldwide. Recent studies have evidenced the lethal effects of ultraviolet-B (UVB) radiation on spider mites. To develop the technology on how to use UVB irradiation for spider mite control, we tested whether UVB lamp-light reflection sheet (LRS) combinations suppressed the population size of Tetranychus urticae Koch on strawberry in a greenhouse from December to May (2012-2013, 2013-2014) in Japan. We designed four combinations of UVB lamps and LRSs: 1) neither UVB lamps nor LRSs (UV-LRS-); 2) a UVB lamp without an LRS (UV+LRS-; 2012-2013 only); 3) a UVB lamp and a mulch-type LRS (UV+LRSm); and 4) a UVB lamp and a wing-type LRS (UV+LRSw). The number of adult females peaked at 438.0 and 222.0 per plant in UV-LRS- of 2012-2013 and 2013-2014, respectively, and peaked at 191.6 females in UV+LRS- of 2012-2013. In contrast, the peak abundance was 20.9-98.0 females in UV+LRSm, and fewer than 15 females were noted in UV+LRSw over either experimental period. UVB irradiance on lower leaf surfaces was higher in UV+LRSm and UV+LRSw than UV-LRS- and UV+LRS-, and the mite densities were significantly correlated with UVB irradiance on lower leaf surfaces. Consequently, we conclude that the combinations of UVB lamp-LRS have an excellent capacity to control T. urticae on greenhouse strawberry, and that the LRS was an essential component in this technological approach.
Collapse
Affiliation(s)
- Masaya Tanaka
- Plant Protection Department, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, 1533 Minaminooka-koh, Befu-cho, Kasai, Hyogo 679-0198, Japan (; ; ),
| | - Junya Yase
- Plant Protection Department, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, 1533 Minaminooka-koh, Befu-cho, Kasai, Hyogo 679-0198, Japan (; ; )
| | - Shinichi Aoki
- Lighting Business Division, Panasonic Corporation Eco Solutions Company, Kadoma, Osaka 571-8686, Japan
| | - Takafumi Sakurai
- Agro Products Division, Maruwa Biochemical CO., LTD., Osaka, Osaka 541-0046, Japan , and
| | - Takeshi Kanto
- Plant Protection Department, Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, 1533 Minaminooka-koh, Befu-cho, Kasai, Hyogo 679-0198, Japan (; ; )
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Sudo M, Osakabe M. Joint Effect of Solar UVB and Heat Stress on the Seasonal Change of Egg Hatching Success in the Herbivorous False Spider Mite (Acari: Tenuipalpidae). ENVIRONMENTAL ENTOMOLOGY 2015; 44:1605-1613. [PMID: 26314033 DOI: 10.1093/ee/nvv131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 07/22/2015] [Indexed: 06/04/2023]
Abstract
Seasonal population dynamics of an herbivorous mite has been documented in terms of the relationship between thermoresponses and temporal biological factors such as resource availability or predation risk. Although recent studies emphasize the deleterious effects of solar ultraviolet-B (UVB; 280-320 nm wavelengths) radiation on plant-dwelling mites, how UVB affects mite population remains largely unknown. On a wild shrub Viburnum erosum var. punctatum in Kyoto, an herbivorous false spider mite, Brevipalpus obovatus Donnadieu, occurs only in autumn. Females of this species lay one-third of their eggs on upper leaf surfaces. Oviposition on upper surfaces is beneficial for avoiding predation by phytoseiids, but exposes eggs to solar UVB and heat stress. To test the hypothesis that the seasonal occurrence of this mite is determined by interactions between solar UVB radiation and temperature, we examined variation in egg hatching success under near-ambient and UV-attenuated sunlight conditions from spring to autumn. The UV-attenuation significantly improved hatching success. However, most eggs died under heat stress regardless of UV treatments in July and August. We established a deterministic heat stress-cumulative UVB dose-egg hatching success response model, which we applied to meteorological data. The model analyses illustrated lower and higher survivability peaks in late May and October, respectively, which partly corresponded to data for annual field occurrence, indicating the importance of solar UVB radiation and heat stress as determinants of the seasonal occurrence of this mite.
Collapse
Affiliation(s)
- M Sudo
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan. Present Address: Natural Resources Inventory Center, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan.
| | - M Osakabe
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Karthi S, Sankari R, Shivakumar MS. Ultraviolet-B light induced oxidative stress: Effects on antioxidant response of Spodoptera litura. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 135:1-6. [DOI: 10.1016/j.jphotobiol.2014.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/18/2014] [Accepted: 04/07/2014] [Indexed: 11/16/2022]
|
18
|
Tachi F, Osakabe M. Spectrum-specific UV egg damage and dispersal responses in the phytoseiid predatory mite Neoseiulus californicus (Acari: Phytoseiidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:787-794. [PMID: 24690314 DOI: 10.1603/en13336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Solar ultraviolet-B (UVB) radiation is deleterious to plant-dwelling mites. Neoseiulus californicus (McGregor) is a predominant predator of agriculturally important pest species of spider mite. However, phytoseiid mites are more vulnerable to UVB radiation than spider mites. Thus, the UVB radiation may influence decision making in foraging phytoseiid mites whether disperse or not. We tested the difference in impact and behavioral response among wavelengths of monochromatic UV radiation using a spectroscopic light source in N. californicus in the laboratory. We also examined whether the behavioral responses of N. californicus females to UV radiation varied based on the presence of prey (Tetranychus urticae Koch) eggs and residues (webs and excreta of T. urticae: foraging cue). The impact of UV radiation on the N. californicus egg hatchability varied drastically between wavelengths of ≤300 nm (0%) and ≥310 nm (100%). The N. californicus females escaped from UV radiation more quickly when they were irradiated with UV at shorter wavelength. Presence of T. urticae eggs had no effects arresting the escape of phytoseiid mites. In contrast, prey residues (including eggs) markedly detained N. californicus females from escaping under UV irradiation at ≥310 nm. However, N. californicus females quickly escaped when irradiated with UV at harmful 300 nm wavelength, regardless of prey cues. This indicates that the eyeless phytoseiid mite is capable of perceiving UV radiation, and whether escape or not is determined on the basis of harmful/harmless UV wavelength and presence/absence of foraging cues.
Collapse
Affiliation(s)
- Fuyuki Tachi
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
19
|
Suzuki T, Yoshioka Y, Tsarsitalidou O, Ntalia V, Ohno S, Ohyama K, Kitashima Y, Gotoh T, Takeda M, Koveos DS. An LED-based UV-B irradiation system for tiny organisms: System description and demonstration experiment to determine the hatchability of eggs from four Tetranychus spider mite species from Okinawa. JOURNAL OF INSECT PHYSIOLOGY 2014; 62:1-10. [PMID: 24462572 DOI: 10.1016/j.jinsphys.2014.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
We developed a computer-based system for controlling the photoperiod and irradiance of UV-B and white light from a 5×5 light-emitting diode (LED) matrix (100×100mm). In this system, the LED matrix was installed in each of four irradiation boxes and controlled by pulse-width modulators so that each box can independently emit UV-B and white light at irradiances of up to 1.5 and 4.0Wm(-2), respectively, or a combination of both light types. We used this system to examine the hatchabilities of the eggs of four Tetranychus spider mite species (T. urticae, T. kanzawai, T. piercei and T. okinawanus) collected from Okinawa Island under UV-B irradiation alone or simultaneous irradiation with white light for 12hd(-1) at 25°C. Although no eggs of any species hatched under the UV-B irradiation, even when the irradiance was as low as 0.02Wm(-2), the hatchabilities increased to >90% under simultaneous irradiation with 4.0Wm(-2) white light. At 0.06Wm(-2) UV-B, T. okinawanus eggs hatched (15% hatchability) under simultaneous irradiation with white light, whereas other species showed hatchabilities <1%. These results suggest that photolyases activated by white light may reduce UV-B-induced DNA damage in spider mite eggs and that the greater UV-B tolerance of T. okinawanus may explain its dominance on plants in seashore environments, which have a higher risk of exposure to reflected UV-B even on the undersurface of leaves. Our system will be useful for further examination of photophysiological responses of tiny organisms because of its ability to precisely control radiation conditions.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Faculty of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, Chiba 277-0882, Japan; Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan; Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan.
| | - Yoshio Yoshioka
- Faculty of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan
| | - Olga Tsarsitalidou
- Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vivi Ntalia
- Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Suguru Ohno
- Ishigaki Branch, Okinawa Prefectural Agricultural Research Center, Ishigaki, Okinawa 907-0003, Japan
| | - Katsumi Ohyama
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa, Chiba 277-0882, Japan
| | - Yasuki Kitashima
- Faculty of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan
| | - Tetsuo Gotoh
- Faculty of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Dimitris S Koveos
- Faculty of Agriculture, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
20
|
Sudo M, Osakabe M. Stellate hairs on leaves of a deciduous shrub Viburnum erosum var. punctatum (Adoxaceae) effectively protect Brevipalpus obovatus (Acari: Tenuipalpidae) eggs from the predator Phytoseius nipponicus (Acari: Phytoseiidae). EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:299-311. [PMID: 23400449 DOI: 10.1007/s10493-012-9648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
The eggs of the herbivorous false spider mite Brevipalpus obovatus Donnadieu have a longer incubation period than those of spider mites and are not protected by webs. Brevipalpus obovatus often lays its eggs in the gaps among the hairs on host leaves. We examined the effects of stellate hairs of Viburnum erosum var. punctatum (VEP) leaves on the survival of B. obovatus eggs. Adult B. obovatus and Phytoseius nipponicus Ehara, a generalist predator, were introduced to VEP leaf disks; each B. obovatus egg was inspected daily until hatching. More eggs (63 vs. 42 %) survived on the abaxial surfaces of VEP leaves, where the stellate hairs are more complicated, than on the adaxial surfaces. Predation hazard decreased rapidly with increasing egg age and a substantial portion of the eggs hatched. Phytoseius nipponicus preyed on eggs regardless of egg age when mixed-age eggs were provided. Manipulative experiments with bent stellate hairs showed that the normal hairs reduced the predation risk of B. obovatus eggs by P. nipponicus. Therefore, the predation hazard was considered to decrease since the stellate hairs hindered the search for B. obovatus eggs by the phytoseiid mite.
Collapse
Affiliation(s)
- Masaaki Sudo
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
21
|
Murata Y, Osakabe M. The Bunsen-Roscoe reciprocity law in ultraviolet-B-induced mortality of the two-spotted spider mite Tetranychus urticae. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:241-247. [PMID: 23220191 DOI: 10.1016/j.jinsphys.2012.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
To determine whether the Bunsen-Roscoe reciprocity law (i.e., the extent of photochemical effects is determined by cumulative irradiance) is applicable to ultraviolet-B (UVB) damage in the twospotted spider mite Tetranychus urticae, egg hatchability and survival of individuals were assessed after irradiation with a UVB lamp using various combinations of intensity and time length. A positive linear correlation between probit mortality and cumulative UVB irradiance was detected in eggs, larvae, teleiochrysalis females, and adult females, regardless of UVB intensity (0.19-0.58 Wm(-2)). LD50 values were clearly higher in adult females, followed by teleiochrysalis females, larvae, and eggs. In eggs, reciprocity was obeyed not only at the UVB intensities listed above, but also at very low UVB intensity (0.014-0.023 Wm(-2)). Such reciprocity in the negative effects of UVB radiation was also observed for the developmental rate of juveniles and egg production of adult females. However, the LD50 value of eggs obtained using the UVB lamp (0.58 kJm(-2)) was lower than that elicited by solar UVB radiation in a previous outdoor experiment (about 50 kJm(-2)). These results suggest that a photoreactivation mechanism plays an important role in the survival of this mite under solar radiation.
Collapse
Affiliation(s)
- Yasumasa Murata
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|