1
|
da Silva J. The kin selection theory of genomic imprinting and modes of reproduction in the eusocial Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:677-695. [PMID: 36457233 DOI: 10.1111/brv.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Genomic imprinting is known from flowering plants and mammals but has not been confirmed for the Hymenoptera even though the eusocial Hymenoptera are prime candidates for this peculiar form of gene expression. Here, the kin selection theory of genomic imprinting is reviewed and applied to the eusocial Hymenoptera. The evidence for imprinting in eusocial Hymenoptera with the typical mode of reproduction, involving the sexual production of diploid female offspring, which develop into workers or gynes, and the arrhenotokous parthenogenesis of haploid males, is also reviewed briefly. However, the focus of this review is how atypical modes of reproduction, involving thelytokous parthenogenesis, hybridisation and androgenesis, may also select for imprinting. In particular, naturally occurring hybridisation in several genera of ants may provide useful tests of the role of kin selection in the evolution of imprinting. Hybridisation is expected to disrupt the coadaptation of antagonistically imprinted loci, and thus affect the phenotypes of hybrids. Some of the limited data available on hybrid worker reproduction and on colony sex ratios support predictions about patterns of imprinting derived from kin selection theory.
Collapse
Affiliation(s)
- Jack da Silva
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
2
|
Tseng SP, Darras H, Hsu PW, Yoshimura T, Lee CY, Wetterer JK, Keller L, Yang CCS. Genetic analysis reveals the putative native range and widespread double-clonal reproduction in the invasive longhorn crazy ant. Mol Ecol 2023; 32:1020-1033. [PMID: 36527320 DOI: 10.1111/mec.16827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Clonal reproduction can provide an advantage for invasive species to establish as it can circumvent inbreeding depression which often plagues introduced populations. The world's most widespread invasive ant, Paratrechina longicornis, was previously found to display a double-clonal reproduction system, whereby both males and queens are produced clonally, resulting in separate male and queen lineages, while workers are produced sexually. Under this unusual reproduction mode, inbreeding is avoided in workers as they carry hybrid interlineage genomes. Despite the ubiquitous distribution of P. longicornis, the significance of this reproductive system for the ant's remarkable success remains unclear, as its prevalence is still unknown. Further investigation into the controversial native origin of P. longicornis is also required to reconstruct the evolutionary histories of double-clonal lineages. Here, we examine genetic variation and characterize the reproduction mode of P. longicornis populations sampled worldwide using microsatellites and mitochondrial DNA sequences to infer the ant's putative native range and the distribution of the double-clonal reproductive system. Analyses of global genetic variations indicate that the Indian subcontinent is a genetic diversity hotspot of this species, suggesting that P. longicornis probably originates from this geographical area. Our analyses revealed that both the inferred native and introduced populations exhibit double-clonal reproduction, with queens and males around the globe belonging to two separate, nonrecombining clonal lineages. By contrast, workers are highly heterozygous because they are first-generation interlineage hybrids. Overall, these data indicate a worldwide prevalence of double clonality in P. longicornis and support the prediction that the unusual genetic system may have pre-adapted this ant for global colonization by maintaining heterozygosity in the worker force and alleviating genetic bottlenecks.
Collapse
Affiliation(s)
- Shu-Ping Tseng
- Department of Entomology, National Taiwan University, Taipei, Taiwan.,Department of Entomology, University of California, Riverside, California, USA.,Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Hugo Darras
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Po-Wei Hsu
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Yoshimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, California, USA
| | - James K Wetterer
- Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Chin-Cheng Scotty Yang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Vidal M, Königseder F, Giehr J, Schrempf A, Lucas C, Heinze J. Worker ants promote outbreeding by transporting young queens to alien nests. Commun Biol 2021; 4:515. [PMID: 33941829 PMCID: PMC8093424 DOI: 10.1038/s42003-021-02016-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Choosing the right mating partner is one of the most critical decisions in the life of a sexually reproducing organism and is the basis of sexual selection. This choice is usually assumed to be made by one or both of the sexual partners. Here, we describe a system in which a third party – the siblings – promote outbreeding by their sisters: workers of the tiny ant Cardiocondyla elegans carry female sexuals from their natal nest over several meters and drop them in the nest of another, unrelated colony to promote outbreeding with wingless, stationary males. Workers appear to choose particular recipient colonies into which they transfer numerous female sexuals. Assisted outbreeding and indirect female choice in the ant C. elegans are comparable to human matchmaking and suggest a hitherto unknown aspect of natural history – third party sexual selection. Our study highlights that research at the intersection between social evolution and reproductive biology might reveal surprising facets of animal behavior. Vidal et al. identify a breeding system in the ant Cardiocondyla elegans that avoids colonial inbreeding, managed by a third party of worker ants. This system bears similarities to human matchmaking, but with fundamental genetic drivers rather than social ones.
Collapse
Affiliation(s)
- Mathilde Vidal
- Chair of Zoology and Evolutionary Biology - University of Regensburg, Regensburg, Germany.
| | - Florian Königseder
- Chair of Zoology and Evolutionary Biology - University of Regensburg, Regensburg, Germany
| | - Julia Giehr
- Chair of Zoology and Evolutionary Biology - University of Regensburg, Regensburg, Germany
| | - Alexandra Schrempf
- Chair of Zoology and Evolutionary Biology - University of Regensburg, Regensburg, Germany
| | - Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - Université de Tours, Tours, France
| | - Jürgen Heinze
- Chair of Zoology and Evolutionary Biology - University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Kuhn A, Darras H, Paknia O, Aron S. Repeated evolution of queen parthenogenesis and social hybridogenesis in
Cataglyphis
desert ants. Mol Ecol 2019; 29:549-564. [DOI: 10.1111/mec.15283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Alexandre Kuhn
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
| | - Hugo Darras
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
- Department of Ecology and Evolution Biophore UNIL Sorge University of Lausanne Lausanne Switzerland
| | - Omid Paknia
- ITZ, Ecology and Evolution TiHo Hannover Hannover Germany
| | - Serge Aron
- Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
| |
Collapse
|
5
|
Heinze J, Frohschammer S, Bernadou A. When invasive ants meet: effects of outbreeding on queen performance in the tramp ant Cardiocondyla itsukii. INSECT SCIENCE 2019; 26:333-340. [PMID: 28834236 DOI: 10.1111/1744-7917.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
Most disturbed habitats in the tropics and subtropics harbor numerous species of invasive ants, and occasionally the same species has been introduced repeatedly from multiple geographical sources. We examined how experimental crossbreeding between sexuals from different populations affects the fitness of queens of the tramp ant Cardiocondyla itsukii, which is widely distributed in Asia and the Pacific Islands. Eggs laid by queens that mated with nestmate males had a higher hatching rate than eggs laid by queens mated to males from neighboring (Hawaii × Kauai) or distant introduced populations (Hawaii/Kauai × Okinawa). Furthermore, inbreeding queens had a longer lifespan and produced a less female-biased offspring sex ratio than queens from allopatric mating. This suggests that the genetic divergence between different source populations may already be so large that in case of multiple invasions eventual crossbreeding might negatively affect the fitness of tramp ants.
Collapse
Affiliation(s)
- Jürgen Heinze
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| | | | - Abel Bernadou
- LS Zoologie/Evolutionsbiologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Heinze J. Life-history evolution in ants: the case of Cardiocondyla. Proc Biol Sci 2018; 284:rspb.2016.1406. [PMID: 28298341 DOI: 10.1098/rspb.2016.1406] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/06/2016] [Indexed: 01/09/2023] Open
Abstract
Ants are important components of most terrestrial habitats, and a better knowledge of the diversity of their life histories is essential to understand many aspects of ecosystem functioning. The myrmicine genus Cardiocondyla shows a wide range of colony structures, reproductive behaviours, queen and male lifespans, and habitat use. Reconstructing the evolutionary pathways of individual and social phenotypic traits suggests that the ancestral life history of Cardiocondyla was characterized by the presence of multiple, short-lived queens in small-sized colonies and a male polyphenism with winged dispersers and wingless fighters, which engage in lethal combat over female sexuals within their natal nests. Single queening, queen polyphenism, the loss of winged males and tolerance among wingless males appear to be derived traits that evolved with changes in nesting habits, colony size and the spread from tropical to seasonal environments. The aim of this review is to bring together the information on life-history evolution in Cardiocondyla and to highlight the suitability of this genus for functional genomic studies of adaptation, phenotypic plasticity, senescence, invasiveness and other key life-history traits of ants.
Collapse
Affiliation(s)
- Jürgen Heinze
- Zoologie/Evolutionsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
7
|
Matsuura K. Evolution of the asexual queen succession system and its underlying mechanisms in termites. ACTA ACUST UNITED AC 2017; 220:63-72. [PMID: 28057829 DOI: 10.1242/jeb.142547] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One major advantage of sexual reproduction over asexual reproduction is its promotion of genetic variation, although it reduces the genetic contribution to offspring. Queens of social insects double their contribution to the gene pool, while overuse of asexual reproduction may reduce the ability of the colony to adapt to environmental stress because of the loss of genetic diversity. Recent studies have revealed that queens of some termite species can solve this tradeoff by using parthenogenesis to produce the next generation of queens and sexual reproduction to produce other colony members. This reproductive system, known as asexual queen succession (AQS), has been identified in the subterranean termites Reticulitermes speratus, Reticulitermes virginicus and Reticulitermes lucifugus and in the Neotropical higher termites Embiratermes neotenicus and Cavitermes tuberosus The studies presented here have uncovered the unusual modes of reproduction in termites and have aimed to identify their underlying mechanisms. The study of AQS, the mixed use of sexual and asexual reproduction, is of fundamental importance as it may provide a key to solve the evolutionary paradox of sex.
Collapse
Affiliation(s)
- Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| |
Collapse
|