1
|
Li W, Zhou R, Ouyang Y, Guan Q, Shen Y, Saiz E, Li M, Hou X. Harnessing Biomimicry for Controlled Adhesion on Material Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401859. [PMID: 39031996 DOI: 10.1002/smll.202401859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/25/2024] [Indexed: 07/22/2024]
Abstract
Nature serves as an abundant wellspring of inspiration for crafting innovative adhesive materials. Extensive research is conducted on various complex forms of biological attachment, such as geckos, tree frogs, octopuses, and mussels. However, significant obstacles still exist in developing adhesive materials that truly replicate the behaviors and functionalities observed in living organisms. Here, an overview of biological organs, structures, and adhesive secretions endowed with adhesion capabilities, delving into the intricate relationship between their morphology and function, and potential for biomimicry are provided. First, the design principles and mechanisms of adhesion behavior and individual organ morphology in nature are summarized from the perspective of structural and size constraints. Subsequently, the value of engineered and bioinspired adhesive materials through selective application cases in practical fields is emphasized. Then, a forward-looking gaze on the conceivable challenges and associated opportunities in harnessing biomimetic strategies and biological materials for advancing adhesive material innovation is highlighted and cast.
Collapse
Affiliation(s)
- Weijun Li
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ruini Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yirui Ouyang
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yigang Shen
- College of Engineering, Zhejiang Normal University, Jinhua, 321004, China
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361102, China
- Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
2
|
Kang V, Isermann H, Sharma S, Wilson DI, Federle W. How a sticky fluid facilitates prey retention in a carnivorous pitcher plant (Nepenthes rafflesiana). Acta Biomater 2021; 128:357-369. [PMID: 33862281 DOI: 10.1016/j.actbio.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Nepenthes pitcher plants grow in nutrient-poor soils and produce large pitfall traps to obtain additional nutrients from animal prey. Previous research has shown that the digestive secretion in N. rafflesiana is a sticky viscoelastic fluid that retains insects much more effectively than water, even after significant dilution. Although the retention of prey is known to depend on the fluid's physical properties, the details of how the fluid interacts with insect cuticle and how its sticky nature affects struggling insects are unclear. In this study, we investigated the mechanisms behind the efficient prey retention in N. rafflesiana pitcher fluid. By measuring the attractive forces on insect body parts moved in and out of test fluids, we show that it costs insects more energy to free themselves from pitcher fluid than from water. Moreover, both the maximum force and the energy required for retraction increased after the first contact with the pitcher fluid. We found that insects sink more easily into pitcher fluid than water and, accordingly, the surface tension of N. rafflesiana pitcher fluid was lower than that of water (60.2 vs. 72.3 mN/m). By analysing the pitcher fluid's wetting behaviour, we demonstrate that it strongly resists dewetting from all surfaces tested, leaving behind residual films and filaments that can facilitate re-wetting. This inhibition of dewetting may be a further consequence of the fluid's viscoelastic nature and likely represents a key mechanism underlying prey retention in Nepenthes pitcher plants. STATEMENT OF SIGNIFICANCE: Carnivorous Nepenthes pitcher plants secrete sticky viscoelastic fluids that prevent insects from escaping after falling into the pitcher. What physical mechanisms are responsible for the fluid's retentive function? First, insects sink and drown more readily in N. rafflesiana pitcher fluid due to its reduced surface tension. Second, once within the fluid, our force measurements show that it costs more energy to separate insects from pitcher fluid than from water. Third, the fluid strongly resists dewetting, making it harder for insects to extract themselves and covering their cuticle with residues that facilitate re-wetting. Such striking inhibition of dewetting may represent a previously unrecognised mechanism of prey retention by Nepenthes. Pitcher fluid fulfils a well-defined biological function and may serve as a model for studying the mechanics of complex fluids.
Collapse
Affiliation(s)
- Victor Kang
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom.
| | - Hannah Isermann
- City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany
| | - Saksham Sharma
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - D Ian Wilson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Walter Federle
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| |
Collapse
|
3
|
The Droserasin 1 PSI: A Membrane-Interacting Antimicrobial Peptide from the Carnivorous Plant Drosera capensis. Biomolecules 2020; 10:biom10071069. [PMID: 32709016 PMCID: PMC7407137 DOI: 10.3390/biom10071069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
The Droserasins, aspartic proteases from the carnivorous plant Drosera capensis, contain a 100-residue plant-specific insert (PSI) that is post-translationally cleaved and independently acts as an antimicrobial peptide. PSIs are of interest not only for their inhibition of microbial growth, but also because they modify the size of lipid vesicles and strongly interact with biological membranes. PSIs may therefore be useful for modulating lipid systems in NMR studies of membrane proteins. Here we present the expression and biophysical characterization of the Droserasin 1 PSI (D1 PSI.) This peptide is monomeric in solution and maintains its primarily α-helical secondary structure over a wide range of temperatures and pH values, even under conditions where its three disulfide bonds are reduced. Vesicle fusion assays indicate that the D1 PSI strongly interacts with bacterial and fungal lipids at pH 5 and lower, consistent with the physiological pH of D. capensis mucilage. It binds lipids with a variety of head groups, highlighting its versatility as a potential stabilizer for lipid nanodiscs. Solid-state NMR spectra collected at a field strength of 36 T, using a unique series-connected hybrid magnet, indicate that the peptide is folded and strongly bound to the membrane. Molecular dynamics simulations indicate that the peptide is stable as either a monomer or a dimer in a lipid bilayer. Both the monomer and the dimer allow the passage of water through the membrane, albeit at different rates.
Collapse
|
4
|
Hatcher CR, Ryves DB, Millett J. The function of secondary metabolites in plant carnivory. ANNALS OF BOTANY 2020; 125:399-411. [PMID: 31760424 PMCID: PMC7061172 DOI: 10.1093/aob/mcz191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Carnivorous plants are an ideal model system for evaluating the role of secondary metabolites in plant ecology and evolution. Carnivory is a striking example of convergent evolution to attract, capture and digest prey for nutrients to enhance growth and reproduction and has evolved independently at least ten times. Though the roles of many traits in plant carnivory have been well studied, the role of secondary metabolites in the carnivorous habit is considerably less understood. SCOPE This review provides the first synthesis of research in which secondary plant metabolites have been demonstrated to have a functional role in plant carnivory. From these studies we identify key metabolites for plant carnivory and their functional role, and highlight biochemical similarities across taxa. From this synthesis we provide new research directions for integrating secondary metabolites into understanding of the ecology and evolution of plant carnivory. CONCLUSIONS Carnivorous plants use secondary metabolites to facilitate prey attraction, capture, digestion and assimilation. We found ~170 metabolites for which a functional role in carnivory has been demonstrated. Of these, 26 compounds are present across genera that independently evolved a carnivorous habit, suggesting convergent evolution. Some secondary metabolites have been co-opted from other processes, such as defence or pollinator attraction. Secondary metabolites in carnivorous plants provide a potentially powerful model system for exploring the role of metabolites in plant evolution. They also show promise for elucidating how the generation of novel compounds, as well as the co-option of pre-existing metabolites, provides a strategy for plants to occupy different environments.
Collapse
Affiliation(s)
| | - David B Ryves
- Geography and Environment, Loughborough University, Loughborough, LE, UK
| | - Jonathan Millett
- Geography and Environment, Loughborough University, Loughborough, LE, UK
| |
Collapse
|
5
|
Galloway AF, Knox P, Krause K. Sticky mucilages and exudates of plants: putative microenvironmental design elements with biotechnological value. THE NEW PHYTOLOGIST 2020; 225:1461-1469. [PMID: 31454421 DOI: 10.1111/nph.16144] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/19/2019] [Indexed: 05/16/2023]
Abstract
Plants produce a wide array of secretions both above and below ground. Known as mucilages or exudates, they are secreted by seeds, roots, leaves and stems and fulfil a variety of functions including adhesion, protection, nutrient acquisition and infection. Mucilages are generally polysaccharide-rich and often occur in the form of viscoelastic gels and in many cases have adhesive properties. In some cases, progress is being made in understanding the structure-function relationships of mucilages such as for the secretions that allow growing ivy to attach to substrates and the biosynthesis and secretion of the mucilage compounds of the Arabidopsis seed coat. Work is just beginning towards understanding root mucilage and the proposed adhesive polymers involved in the formation of rhizosheaths at root surfaces and for the secretions involved in host plant infection by parasitic plants. In this article, we summarise knowledge on plant exudates and mucilages within the concept of their functions in microenvironmental design, focusing in particular on their bioadhesive functions and the molecules responsible for them. We draw attention to areas of future knowledge need, including the microstructure of mucilages and their compositional and regulatory dynamics.
Collapse
Affiliation(s)
- Andrew F Galloway
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, Tromsø, 9037, Norway
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Kirsten Krause
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, Tromsø, 9037, Norway
| |
Collapse
|
6
|
Rodziewicz P, Loroch S, Marczak Ł, Sickmann A, Kayser O. Cannabinoid synthases and osmoprotective metabolites accumulate in the exudates of Cannabis sativa L. glandular trichomes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:108-116. [PMID: 31084863 DOI: 10.1016/j.plantsci.2019.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 05/06/2023]
Abstract
Cannabinoids are terpenophenolic compounds produced by Cannabis sativa L., which accumulate in storage cavities of glandular trichomes as a part of the exudates. We investigated if tetrahydrocannabinolic acid synthase and cannabidiolic acid synthase, which are involved in the last step of cannabinoid biosynthesis, are also secreted into Cannabis trichome exudates. The exudates were collected by microsuction from storage cavities of Cannabis glandular trichomes and were subjected for proteomic and metabolomic analyses. The catalytic activity of the exudates was documented by cannabigerolic acid biotransformation studies under hydrophobic conditions. Electrophoretic separations revealed protein bands at ˜65 kDa, which were further identified as tetrahydrocannabinolic acid synthase and cannabidiolic acid synthase. The accumulation of the enzymes in trichome exudates increased substantially during the flowering period in the drug-type Cannabis plants. The content of cannabinoids increased significantly after incubating hexane-diluted trichome exudates with cannabigerolic acid. In this study, we showed that Cannabis glandular trichomes secrete and accumulate cannabinoid synthases in storage cavities, and the enzymes able to convert cannabigerolic acid under hydrophobic trichome-mimicking conditions. Metabolite profiling of the exudates revealed compounds with hydrophilic, osmoprotective and amphiphilic properties, which may play a role in providing a necessary aqueous microenvironment, which enables enzyme solubility and biocatalysis under hydrophobic conditions of glandular trichomes.
Collapse
Affiliation(s)
- Paweł Rodziewicz
- Department of Technical Biochemistry, Technical University Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany
| | - Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry PAS, Piotrowo 2, 60-965 Poznan, Poland
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, AB24 3FX, United Kingdom
| | - Oliver Kayser
- Department of Technical Biochemistry, Technical University Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| |
Collapse
|
7
|
Miguel S, Nisse E, Biteau F, Rottloff S, Mignard B, Gontier E, Hehn A, Bourgaud F. Assessing Carnivorous Plants for the Production of Recombinant Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:793. [PMID: 31275341 PMCID: PMC6593082 DOI: 10.3389/fpls.2019.00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/31/2019] [Indexed: 05/16/2023]
Abstract
The recovery of recombinant proteins from plant tissues is an expensive and time-consuming process involving plant harvesting, tissue extraction, and subsequent protein purification. The downstream process costs can represent up to 80% of the total cost of production. Secretion-based systems of carnivorous plants might help circumvent this problem. Drosera and Nepenthes can produce and excrete out of their tissues a digestive fluid containing up to 200 mg. L-1 of natural proteins. Based on the properties of these natural bioreactors, we have evaluated the possibility to use carnivorous plants for the production of recombinant proteins. In this context, we have set up original protocols of stable and transient genetic transformation for both Drosera and Nepenthes sp. The two major drawbacks concerning the proteases naturally present in the secretions and a polysaccharidic network composing the Drosera glue were overcome by modulating the pH of the plant secretions. At alkaline pH, digestive enzymes are inactive and the interactions between the polysaccharidic network and proteins in the case of Drosera are subdued allowing the release of the recombinant proteins. For D. capensis, a concentration of 25 μg of GFP/ml of secretion (2% of the total soluble proteins from the glue) was obtained for stable transformants. For N. alata, a concentration of 0.5 ng of GFP/ml secretions (0.5% of total soluble proteins from secretions) was reached, corresponding to 12 ng in one pitcher after 14 days for transiently transformed plants. This plant-based expression system shows the potentiality of biomimetic approaches leading to an original production of recombinant proteins, although the yields obtained here were low and did not allow to qualify these plants for an industrial platform project.
Collapse
Affiliation(s)
- Sissi Miguel
- Plant Advanced Technologies SA, Vandoeuvre-lès-Nancy, France
| | - Estelle Nisse
- Plant Advanced Technologies SA, Vandoeuvre-lès-Nancy, France
| | - Flore Biteau
- Laboratoire Agronomie et Environnement, INRA, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sandy Rottloff
- Laboratoire Agronomie et Environnement, INRA, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Benoit Mignard
- Plant Advanced Technologies SA, Vandoeuvre-lès-Nancy, France
| | - Eric Gontier
- Laboratoire Biopi, Université de Picardie Jules Verne, Amiens, France
| | - Alain Hehn
- Laboratoire Agronomie et Environnement, INRA, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | | |
Collapse
|