1
|
Greffier J, Viry A, Robert A, Khorsi M, Si-Mohamed S. Photon-counting CT systems: A technical review of current clinical possibilities. Diagn Interv Imaging 2025; 106:53-59. [PMID: 39304365 DOI: 10.1016/j.diii.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
In recent years, computed tomography (CT) has undergone a number of developments to improve radiological care. The most recent major innovation has been the development of photon-counting detectors. By comparison with the energy-integrating detectors traditionally used in CT, these detectors offer better dose efficiency, eliminate electronic noise, improve spatial resolution and have intrinsic spectral sensitivity. These detectors also allow the energy of each photon to be counted, thus improving the sampling of the X-ray spectrum in multiple energy bins, to better distinguish between photoelectric and Compton attenuation coefficients, resulting in better spectral images and specific color K-edge images. The purpose of this article was to make the reader more familiar with the basic principles and techniques of new photon-counting CT systems equipped with photon-counting detectors and also to describe the currently available devices that could be used in clinical practice.
Collapse
Affiliation(s)
- Joël Greffier
- IMAGINE UR UM 103, Montpellier University, Department of Medical Imaging, Nîmes University Hospital, 30900 Nîmes, France.
| | - Anaïs Viry
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, 1007 Lausanne, Switzerland
| | - Antoine Robert
- University of Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Villeurbanne, France
| | - Mouad Khorsi
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, 1007 Lausanne, Switzerland
| | - Salim Si-Mohamed
- University of Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Villeurbanne, France; Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, 69500 Bron, France
| |
Collapse
|
2
|
Grözinger M, Wennmann M, Sawall S, Wehrse E, Sedaghat S, Neelsen C, Bauer F, Goldschmidt H, Weru V, Ziener CH, Kopp-Schneider A, Schlemmer HP, Rotkopf LT. Detection of myeloma-associated osteolytic bone lesions with energy-integrating and photon-counting detector CT. RADIOLOGIE (HEIDELBERG, GERMANY) 2024; 64:24-31. [PMID: 39020050 DOI: 10.1007/s00117-024-01344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND A recent innovation in computed tomography (CT) imaging has been the introduction of photon-counting detector CT (PCD-CT) systems, which are able to register the number and the energy level of incoming x‑ray photons and have smaller detector elements compared with conventional CT scanners that operate with energy-integrating detectors (EID-CT). OBJECTIVES The study aimed to evaluate the potential benefits of a novel, non-CE certified PCD-CT in detecting myeloma-associated osteolytic bone lesions (OL) compared with a state-of-the-art EID-CT. MATERIALS AND METHODS Nine patients with multiple myeloma stage III (according to Durie and Salmon) underwent magnetic resonance imaging (MRI), EID-CT, and PCD-CT of the lower lumbar spine and pelvis. The PCD-CT and EID-CT images of all myeloma lesions that were visible in clinical MRI scans were reviewed by three radiologists for corresponding OL. Additionally, the visualization of destructions to cancellous or cortical bone, and trabecular structures, was compared between PCD-CT and EID-CT. RESULTS Readers detected 21% more OL in PCD-CT than in EID-CT images (138 vs. 109; p < 0.0001). The sensitivity advantage of PCD-CT in lesion detection increased with decreasing lesion size. The visualization quality of cancellous and cortical destructions as well as of trabecular structures was rated higher by all three readers in PCD-CT images (mean image quality improvements for PCD-CT over EID-CT were +0.45 for cancellous and +0.13 for cortical destructions). CONCLUSIONS For myeloma-associated OL, PCD-CT demonstrated significantly higher sensitivity, especially with small size. Visualization of bone tissue and lesions was considered significantly better in PCD-CT than in EID-CT. This implies that PCD-CT scanners could potentially be used in the early detection of myeloma-associated bone lesions.
Collapse
Affiliation(s)
- Martin Grözinger
- Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Markus Wennmann
- Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Stefan Sawall
- Division of X-Ray Imaging and CT, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Eckhard Wehrse
- Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Christian Neelsen
- Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Fabian Bauer
- Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Hartmut Goldschmidt
- Department of Medicine V, Multiple Myeloma Section, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Vivienn Weru
- Division of Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Christian H Ziener
- Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Annette Kopp-Schneider
- Division of Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany
| | - Lukas T Rotkopf
- Division of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Baden-Württemberg, Germany.
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Baden-Württemberg, Germany.
| |
Collapse
|
3
|
Michail C, Liaparinos P, Kalyvas N, Kandarakis I, Fountos G, Valais I. Radiation Detectors and Sensors in Medical Imaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:6251. [PMID: 39409289 PMCID: PMC11478476 DOI: 10.3390/s24196251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Medical imaging instrumentation design and construction is based on radiation sources and radiation detectors/sensors. This review focuses on the detectors and sensors of medical imaging systems. These systems are subdivided into various categories depending on their structure, the type of radiation they capture, how the radiation is measured, how the images are formed, and the medical goals they serve. Related to medical goals, detectors fall into two major areas: (i) anatomical imaging, which mainly concerns the techniques of diagnostic radiology, and (ii) functional-molecular imaging, which mainly concerns nuclear medicine. An important parameter in the evaluation of the detectors is the combination of the quality of the diagnostic result they offer and the burden of the patient with radiation dose. The latter has to be minimized; thus, the input signal (radiation photon flux) must be kept at low levels. For this reason, the detective quantum efficiency (DQE), expressing signal-to-noise ratio transfer through an imaging system, is of primary importance. In diagnostic radiology, image quality is better than in nuclear medicine; however, in most cases, the dose is higher. On the other hand, nuclear medicine focuses on the detection of functional findings and not on the accurate spatial determination of anatomical data. Detectors are integrated into projection or tomographic imaging systems and are based on the use of scintillators with optical sensors, photoconductors, or semiconductors. Analysis and modeling of such systems can be performed employing theoretical models developed in the framework of cascaded linear systems analysis (LCSA), as well as within the signal detection theory (SDT) and information theory.
Collapse
Affiliation(s)
| | | | | | - Ioannis Kandarakis
- Radiation Physics, Materials Technology and Biomedical Imaging Laboratory, Department of Biomedical Engineering, University of West Attica, Ag. Spyridonos, 12210 Athens, Greece; (C.M.); (P.L.); (N.K.); (G.F.); (I.V.)
| | | | | |
Collapse
|
4
|
Mourad C, Gallego Manzano L, Viry A, Booij R, Oei EHG, Becce F, Omoumi P. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol 2024; 53:1889-1902. [PMID: 38441616 PMCID: PMC11303444 DOI: 10.1007/s00256-024-04622-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/09/2024]
Abstract
In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.
Collapse
Affiliation(s)
- Charbel Mourad
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Diagnostic Imaging and Interventional Therapeutics, Hôpital Libanais Geitaoui-CHU, Beyrouth, Lebanon
| | - Lucia Gallego Manzano
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anaïs Viry
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fabio Becce
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
Cau R, Saba L, Balestrieri A, Meloni A, Mannelli L, La Grutta L, Bossone E, Mantini C, Politi C, Suri JS, Cavaliere C, Punzo B, Maffei E, Cademartiri F. Photon-Counting Computed Tomography in Atherosclerotic Plaque Characterization. Diagnostics (Basel) 2024; 14:1065. [PMID: 38893593 PMCID: PMC11172199 DOI: 10.3390/diagnostics14111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Atherosclerotic plaque buildup in the coronary and carotid arteries is pivotal in the onset of acute myocardial infarctions or cerebrovascular events, leading to heightened levels of illness and death. Atherosclerosis is a complex and multistep disease, beginning with the deposition of low-density lipoproteins in the arterial intima and culminating in plaque rupture. Modern technology favors non-invasive imaging techniques to assess atherosclerotic plaque and offer insights beyond mere artery stenosis. Among these, computed tomography stands out for its widespread clinical adoption and is prized for its speed and accessibility. Nonetheless, some limitations persist. The introduction of photon-counting computed tomography (PCCT), with its multi-energy capabilities, enhanced spatial resolution, and superior soft tissue contrast with minimal electronic noise, brings significant advantages to carotid and coronary artery imaging, enabling a more comprehensive examination of atherosclerotic plaque composition. This narrative review aims to provide a comprehensive overview of the main concepts related to PCCT. Additionally, we aim to explore the existing literature on the clinical application of PCCT in assessing atherosclerotic plaque. Finally, we will examine the advantages and limitations of this recently introduced technology.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy; (A.M.); (F.C.)
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Lorenzo Mannelli
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Eduardo Bossone
- Cardiology Unit, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, “G.d’Annunzio” University, 66100 Chieti, Italy;
| | - Carola Politi
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA;
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Erica Maffei
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Filippo Cademartiri
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy; (A.M.); (F.C.)
| |
Collapse
|
6
|
Klempka A, Ackermann E, Brehmer S, Clausen S, Groden C. Advanced Imaging of Shunt Valves in Cranial CT Scans with Photon-Counting Scanner. Tomography 2024; 10:654-659. [PMID: 38787010 PMCID: PMC11125980 DOI: 10.3390/tomography10050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
This brief report aimed to show the utility of photon-counting technology alongside standard cranial imaging protocols for visualizing shunt valves in a patient's cranial computed tomography scan. Photon-counting CT scans with cranial protocols were retrospectively surveyed and four types of shunt valves were encountered: proGAV 2.0®, M.blue®, Codman Certas®, and proSA®. These scans were compared with those obtained from non-photon-counting scanners at different time points for the same patients. The analysis of these findings demonstrated the usefulness of photon-counting technology for the clear and precise visualization of shunt valves without any additional radiation or special reconstruction patterns. The enhanced utility of photon-counting is highlighted by providing superior spatial resolution compared to other CT detectors. This technology facilitates a more accurate characterization of shunt valves and may support the detection of subtle abnormalities and a precise assessment of shunt valves.
Collapse
Affiliation(s)
- Anna Klempka
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Eduardo Ackermann
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Stefanie Brehmer
- Department of Neurosurgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
7
|
Klempka A, Clausen S, Soltane MI, Ackermann E, Groden C. Three-Dimensional Visualization of Shunt Valves with Photon Counting CT and Comparison to Traditional X-ray in a Simple Phantom Model. Tomography 2024; 10:543-553. [PMID: 38668400 PMCID: PMC11054214 DOI: 10.3390/tomography10040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
This study introduces an application of innovative medical technology, Photon Counting Computer Tomography (PC CT) with novel detectors, for the assessment of shunt valves. PC CT technology offers enhanced visualization capabilities, especially for small structures, and opens up new possibilities for detailed three-dimensional imaging. Shunt valves are implanted under the skin and redirect excess cerebrospinal fluid, for example, to the abdominal cavity through a catheter. They play a vital role in regulating cerebrospinal fluid drainage in various pathologies, which can lead to hydrocephalus. Accurate imaging of shunt valves is essential to assess the rate of drainage, as their precise adjustment is a requirement for optimal patient care. This study focused on two adjustable shunt valves, the proGAV 2.0® and M. blue® (manufactured by Miethke, Potsdam, Germany). A comprehensive comparative analysis of PC CT and traditional X-ray techniques was conducted to explore this cutting-edge technology and it demonstrated that routine PC CT can efficiently assess shunt valves' adjustments. This technology shows promise in enhancing the accurate management of shunt valves used in settings where head scans are already frequently required, such as in the treatment of hydrocephalus.
Collapse
Affiliation(s)
- Anna Klempka
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Mohamed Ilyes Soltane
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Eduardo Ackermann
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Hollý S, Chmelík M, Suchá S, Suchý T, Beneš J, Pátrovič L, Juskanič D. Photon-counting CT using multi-material decomposition algorithm enables fat quantification in the presence of iron deposits. Phys Med 2024; 118:103210. [PMID: 38219560 DOI: 10.1016/j.ejmp.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
PURPOSE A new generation of CT detectors were recently developed with the ability to measure individual photon's energy and thus provide spectral information. The aim of this work was to assess the performance of simultaneous fat and iron quantification using a clinical photon-counting CT (PCCT) and its comparison to dual-energy CT (DECT), MRS and MRI at 3 T. METHODS Two 3D printed cylindrical phantoms with 32 samples (n = 12 fat fractions between 0 % and 100 %, n = 20 with mixtures of fat and iron) were scanned with PCCT and DECT scanners for comparison. A three-material decomposition approach was used to estimate the volume fractions of fat (FF), iron and soft tissue. The same phantoms were examined by MRI (6-echo DIXON, a.k.a. Q-DIXON) and MRS (multi-echo STEAM, a.k.a. HISTO) at 3 T for comparison. RESULTS PCCT, DECT, MRI and MRS computed FFs showed correlation with reference fat fraction values in samples with no iron (r > 0.98). PCCT decomposition showed slightly weaker correlation with FFref in samples with added iron (r = 0.586) compared to MRI (r = 0.673) and MRS (r = 0.716) methods. On the other hand, it showed no systematic over- or underestimation. Surprisingly, DECT decomposition-derived FF showed strongest correlation (r = 0.758) in these samples, however systematic overestimation was observed. FF values computed by three-material PCCT decomposition, DECT decomposition, MRI and MRS were unaffected by iron concentration. CONCLUSIONS This in-vitro study shows for the first time that photon-counting computed tomography may be used for quantification of fat content in the presence of iron deposits.
Collapse
Affiliation(s)
- Samuel Hollý
- JESSENIUS - diagnostic center, Nitra, Slovakia; Institute of Biophysics and Informatics, First Faculty of Medicine Charles University, Prague, Czech Republic
| | - Marek Chmelík
- JESSENIUS - diagnostic center, Nitra, Slovakia; Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Slovakia.
| | - Slavomíra Suchá
- Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Slovakia
| | - Tomáš Suchý
- Department of Technical Disciplines in Health Care, Faculty of Health Care, University of Prešov, Slovakia
| | - Jiři Beneš
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Dominik Juskanič
- JESSENIUS - diagnostic center, Nitra, Slovakia; Medical Faculty, Commenius University in Bratislava, Slovakia
| |
Collapse
|
9
|
Layer YC, Kravchenko D, Dell T, Kütting D. [CT technology: photon-counting detector computed tomography]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00117-023-01166-z. [PMID: 37289254 DOI: 10.1007/s00117-023-01166-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) is a CT technology that overcomes many limitations of conventional detectors. Direct conversion of photons hitting the detector into electrical signals combined with more sensitive and accurate photon detection simultaneously allows spectral evaluation and also potential reduction in radiation exposure to the patient. The combination of energy thresholds and elimination of detector septa allows for a reduction of electronic noise, an increase of spatial resolution, and an improvement of dose efficiency. ACHIEVEMENTS Recent research has confirmed significantly reduced image noise, reduced radiation dose, increased spatial resolution, improved iodine signal, and a reduction in artifacts. Spectral imaging potentiates these effects and also allows retrospective calculation of virtual monoenergetic images, virtual noncontrast images or iodine maps. Thus, the photon-counting technique offers the possibility of using various contrast agents, with the prospect of single-scan multiphase imaging or visualization of specific metabolic processes. Therefore, further research and complementary approval processes are necessary for clinical application. Likewise, further research is needed to develop and validate optimal settings and reconstructions for a wide variety of situations, as well as to test new application possibilities. CONCLUSIONS The only photon-counting detector CT device available on the market to date received clinical approval in 2021. It remains to be seen which other applications will become possible through improvements in hardware and software. This technology has already demonstrated an impressive superiority compared with the current standard of CT imaging, especially regarding high-resolution imaging of detailed structures and examinations with high radiation exposure.
Collapse
Affiliation(s)
- Yannik Christian Layer
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| | - Dmitrij Kravchenko
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - Tatjana Dell
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - Daniel Kütting
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| |
Collapse
|
10
|
Cademartiri F, Meloni A, Pistoia L, Degiorgi G, Clemente A, Gori CD, Positano V, Celi S, Berti S, Emdin M, Panetta D, Menichetti L, Punzo B, Cavaliere C, Bossone E, Saba L, Cau R, Grutta LL, Maffei E. Dual-Source Photon-Counting Computed Tomography-Part I: Clinical Overview of Cardiac CT and Coronary CT Angiography Applications. J Clin Med 2023; 12:jcm12113627. [PMID: 37297822 DOI: 10.3390/jcm12113627] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The photon-counting detector (PCD) is a new computed tomography detector technology (photon-counting computed tomography, PCCT) that provides substantial benefits for cardiac and coronary artery imaging. Compared with conventional CT, PCCT has multi-energy capability, increased spatial resolution and soft tissue contrast with near-null electronic noise, reduced radiation exposure, and optimization of the use of contrast agents. This new technology promises to overcome several limitations of traditional cardiac and coronary CT angiography (CCT/CCTA) including reduction in blooming artifacts in heavy calcified coronary plaques or beam-hardening artifacts in patients with coronary stents, and a more precise assessment of the degree of stenosis and plaque characteristic thanks to its better spatial resolution. Another potential application of PCCT is the use of a double-contrast agent to characterize myocardial tissue. In this current overview of the existing PCCT literature, we describe the strengths, limitations, recent applications, and promising developments of employing PCCT technology in CCT.
Collapse
Affiliation(s)
| | - Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Laura Pistoia
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Giulia Degiorgi
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Vincenzo Positano
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Simona Celi
- BioCardioLab, Department of Bioengineering, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Sergio Berti
- Cardiology Unit, Ospedale del Cuore, Fondazione Monasterio/CNR, 54100 Massa, Italy
| | - Michele Emdin
- Department of Cardiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Daniele Panetta
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Luca Menichetti
- Institute of Clinical Physiology, National Council of Research, 56124 Pisa, Italy
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy
| | - Luca Saba
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Riccardo Cau
- Department of Radiology, University Hospital, 09042 Monserrato, Italy
| | - Ludovico La Grutta
- Department of Radiology, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| |
Collapse
|
11
|
Sawall S. [New contrast agents for photon-counting computed tomography]. RADIOLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00117-023-01135-6. [PMID: 37069237 DOI: 10.1007/s00117-023-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND The introduction of energy-selective photon-counting detectors into clinical practice represents the next milestone in computed tomography (CT). In addition to significantly higher resolution, these detectors allow the implicit acquisition of dual or multispectral data in a single measurement through the use of typically freely selectable thresholds. This capability reignited the interest in new contrast agents based on heavy elements, so-called high‑z elements, for clinical CT. OBJECTIVE The present article aims to investigate the potential suitability of different chemical elements as contrast agents and to discuss possible clinical applications, for example, K‑edge imaging or simultaneous application of different contrast agents. CONCLUSION First preclinical experiments as well as experiments in large animals could demonstrate potential advantages of contrast agents based on heavy elements. For example, such contrast agents promise a significant increase in image contrast compared to conventional iodine-based agents.
Collapse
Affiliation(s)
- Stefan Sawall
- Röntgenbildgebung und CT (E025), Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland.
- Medizinische Fakultät, Universität Heidelberg, Heidelberg, Deutschland.
| |
Collapse
|
12
|
Dillinger D, Overhoff D, Booz C, Kaatsch HL, Piechotka J, Hagen A, Froelich MF, Vogl TJ, Waldeck S. Impact of CT Photon-Counting Virtual Monoenergetic Imaging on Visualization of Abdominal Arterial Vessels. Diagnostics (Basel) 2023; 13:938. [PMID: 36900082 PMCID: PMC10000913 DOI: 10.3390/diagnostics13050938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
PURPOSE The novel photon-counting detector (PCD) technique acquires spectral data for virtual monoenergetic imaging (VMI) in every examination. The aim of this study was the evaluation of the impact of VMI of abdominal arterial vessels on quantitative and qualitative subjective image parameters. METHODS A total of 20 patients that underwent an arterial phase computed tomography (CT) scan of the abdomen with a novel PCD CT (Siemens NAEOTOM alpha) were analyzed regarding attenuation at different energy levels in virtual monoenergetic imaging. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were calculated and compared between the different virtual monoenergetic (VME) levels with correlation to vessel diameter. In addition, subjective image parameters (overall subjective image quality, subjective image noise and vessel contrast) were evaluated. RESULTS Our research showed decreasing attenuation levels with increasing energy levels in virtual monoenergetic imaging regardless of vessel diameter. CNR showed best overall results at 60 keV, and SNR at 70 keV with no significant difference to 60 keV (p = 0.294). Subjective image quality was rated best at 70 keV for overall image quality, vessel contrast and noise. CONCLUSIONS Our data suggest that VMI at 60-70 keV provides the best objective and subjective image quality concerning vessel contrast irrespective of vessel size.
Collapse
Affiliation(s)
- Daniel Dillinger
- Department of Vascular Surgery and Endovascular Surgery, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Daniel Overhoff
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Christian Booz
- Institute for Diagnostic and Interventional Radiology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hanns L. Kaatsch
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Joel Piechotka
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Achim Hagen
- Department of Vascular Surgery and Endovascular Surgery, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Matthias F. Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Thomas J. Vogl
- Institute for Diagnostic and Interventional Radiology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, Bundeswehr Central Hospital, Rübenacher Straße 170, 56072 Koblenz, Germany
- Department of Neuroradiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
13
|
Affiliation(s)
- Theresa C McLoud
- From the Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, MZ-FND 216, Boston, MA 02114-2696 (T.C.M.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic Florida, Jacksonville, Fla (B.P.L.)
| | - Brent P Little
- From the Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, MZ-FND 216, Boston, MA 02114-2696 (T.C.M.); and Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic Florida, Jacksonville, Fla (B.P.L.)
| |
Collapse
|
14
|
Ruetters M, Sen S, Gehrig H, Bruckner T, Kim TS, Lux CJ, Schlemmer HP, Heinze S, Maier J, Kachelrieß M, Sawall S. Dental imaging using an ultra-high resolution photon-counting CT system. Sci Rep 2022; 12:7125. [PMID: 35504943 PMCID: PMC9064945 DOI: 10.1038/s41598-022-11281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Clinical photon-counting CT (PCCT) offers a spatial resolution of about 200 µm and might allow for acquisitions close to conventional dental CBCTs. In this study, the capabilities of this new system in comparison to dental CBCTs shall be evaluated. All 8 apical osteolysis identified in CBCT were identified by both readers in all three PCCT scan protocols. Mean visibility scores showed statistical significant differences for root canals(p = 0.0001), periodontal space(p = 0.0090), cortical(p = 0.0003) and spongious bone(p = 0.0293) in favor of high and medium dose PCCT acquisitions. Overall, both devices showed excellent image quality of all structures assessed. Interrater-agreement showed high values for all protocols in all structures. Bland-Altman plots revealed a high concordance of both modalities with the reference measurements. In vitro, ultra-high resolution PCCT can reliably identify different diagnostic entities and structures relevant for dental diagnostics similar to conventional dental CBCT with similar radiation dose. Acquisitions of five cadaveric heads were performed in an experimental CT-system containing an ultra-high resolution PC detector (0.25 mm pixel size in isocenter) as well as in a dental CBCT scanner. Acquisitions were performed using dose levels of 8.5 mGy, 38.0 mGy and 66.5 mGy (CTDI16cm) in case of PCCT and of 8.94 mGy (CTDI16cm) in case of CBCT. The quality of delineation of hard tissues, root-canals, periodontal-space as well as apical osteolysis was assessed by two readers. Mean visibility scores and interrater-agreement (overall agreement (%)) were calculated. Vertical bone loss (bl) and thickness (bt) of the buccal bone lamina of 15 lower incisors were measured and compared to reference measurements by ore microscopy and clinical probing.
Collapse
Affiliation(s)
- Maurice Ruetters
- Section of Periodontology, Department of Operative Dentistry, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Sinan Sen
- Department of Orthodontics, University Hospital of Schleswig-Holstein, Arnold -Heller-Straße 3, 24105, Kiel, Germany
| | - Holger Gehrig
- Section of Periodontology, Department of Operative Dentistry, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry, University Hospital Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Ti-Sun Kim
- Section of Periodontology, Department of Operative Dentistry, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christopher J Lux
- Department of Orthodontics, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sarah Heinze
- Institute of Forensic and Traffic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Joscha Maier
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Marc Kachelrieß
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Stefan Sawall
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| |
Collapse
|
15
|
Schlemmer HP. The Eye of the CT Scanner: The story of learning to see the invisible or from the fluorescent screen to the photon-counting detector. ROFO-FORTSCHR RONTG 2021; 193:1034-1049. [PMID: 33735934 DOI: 10.1055/a-1308-2693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Roentgen's photographs with the "new kind of rays" triggered a worldwide storm of enthusiasm in all social circles. It was a stroke of luck that the photographic dry plates available to him were also sensitive to invisible X-rays. The discovery, research and utilization of X-rays are based on methods for making them visible, from fluorescent screens to photographic plates and digital X-ray detectors. From this point of view, this paper aims to outline the 125-year success story of X-ray imaging from its discovery to the recent development of photon-counting detectors. The scientific-historical view during the transition from the 19th to the 20th century reveals an impressive period of profound scientific and social upheaval in which revolutionary discoveries and technological developments led to enormous progress in medicine. The cross-fertilization of physics and medicine and their combination with inventiveness, engineering and entrepreneurial spirit created the impressive possibilities of today's imaging diagnostics. This contribution accompanies the Roentgen Lecture the author gave on November 13, 2020 in Roentgen's birth house as part of its inauguration and the closing ceremony of the 101st Congress of the German Roentgen Society in Remscheid-Lennep. KEY POINTS:: · The development of computed tomography was a milestone in the methodological advancement of imaging with X-rays.. · In the detector pixel invisible X-rays are converted into digital electrical impulses, which the computer uses to create images.. · Photon-counting detectors could have significant diagnostic advantages for clinical applications.. CITATION FORMAT: · Schlemmer H, The Eye of the CT Scanner: The story of learning to see the invisible or from the fluorescent screen to the photon-counting detector. Fortschr Röntgenstr 2021; 193: 1034 - 1048.
Collapse
|