1
|
Lorenzoni M, De Felice D, Beccaceci G, Di Donato G, Foletto V, Genovesi S, Bertossi A, Cambuli F, Lorenzin F, Savino A, Avalle L, Cimadamore A, Montironi R, Weber V, Carbone FG, Barbareschi M, Demichelis F, Romanel A, Poli V, Del Sal G, Julio MKD, Gaspari M, Alaimo A, Lunardi A. ETS-related gene (ERG) undermines genome stability in mouse prostate progenitors via Gsk3β dependent Nkx3.1 degradation. Cancer Lett 2022; 534:215612. [PMID: 35259458 PMCID: PMC8968219 DOI: 10.1016/j.canlet.2022.215612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022]
Abstract
21q22.2–3 deletion is the most common copy number alteration in prostate cancer (PCa). The genomic rearrangement results in the androgen-dependent de novo expression of ETS-related gene (ERG) in prostate cancer cells, a condition promoting tumor progression to advanced stages of the disease. Interestingly, ERG expression characterizes 5–30% of tumor precursor lesions – High Grade Prostatic Intraepithelial Neoplasia (HGPIN) - where its role remains unclear. Here, by combining organoids technology with Click-chemistry coupled Mass Spectrometry, we demonstrate a prominent role of ERG in remodeling the protein secretome of prostate progenitors. Functionally, by lowering autocrine Wnt-4 signaling, ERG represses canonical Wnt pathway in prostate progenitors, and, in turn, promotes the accumulation of DNA double strand breaks via Gsk3β-dependent degradation of the tumor suppressor Nkx3.1. On the other hand, by shaping extracellular paracrine signals, ERG strengthens the pro-oxidative transcriptional signature of inflammatory macrophages, which we demonstrate to infiltrate pre-malignant ERG positive prostate lesions. These findings highlight previously unrecognized functions of ERG in undermining adult prostate progenitor niche through cell autonomous and non-autonomous mechanisms. Overall, by supporting the survival and proliferation of prostate progenitors in the absence of growth stimuli and promoting the accumulation of DNA damage through destabilization of Nkx3.1, ERG could orchestrate the prelude to neoplastic transformation. Expression of ERGM40 in mouse prostate organoids promotes their survival and growth in the absence of Egf. ERGM40 alters the extracellular signaling network of mouse prostate organoids. Canonical Wnt pathway is substantially reduced in ERG + prostate organoids due to decreased autocrine signaling of Wnt4. Gsk3b promotes Nkx3.1 proteolysis and, in turn, accumulation of double strand breaks in ERG + prostate organoids. Paracrine signaling of ERG + prostate organoids modulates Arginase 1 expression in M1-polarized macrophages.
Collapse
Affiliation(s)
- Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Giorgia Di Donato
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Arianna Bertossi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesco Cambuli
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Alessia Cimadamore
- Pathological Anatomy, School of Medicine, United Hospitals, Polytechnic University of the Marche Region, Ancona, Italy
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Polytechnic University of the Marche Region, Via Tronto, 10, Ancona, Italy
| | - Veronica Weber
- Unit of Surgical Pathology, Santa Chiara Hospital, Trento, Italy
| | | | | | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giannino Del Sal
- University of Trieste Department Life Sciences, ICGEB-Area Science Park Trieste, IFOM, Milan, Italy
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland; Translational Organoid Resource CORE, Department for BioMedical Research, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland; Department of Urology, Inselspital, University Hospital of Bern, Bern, Switzerland
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
3
|
Genetic variations of α -methylacyl-CoA racemase are associated with sporadic prostate cancer risk in ethnically homogenous Koreans. BIOMED RESEARCH INTERNATIONAL 2013; 2013:394285. [PMID: 24383053 PMCID: PMC3870614 DOI: 10.1155/2013/394285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022]
Abstract
Background. To assess if the variants of (R)-alpha-methyl-CoA racemase (AMACR) gene would be associated with the risk of sporadic prostate cancer in ethnically homogenous Koreans. Materials and Methods. We enrolled 194 patients with prostate cancer and 169 healthy controls. A total of 17 single nucleotide polymorphisms of the AMACR gene were selected. The distribution of each genotype and haplotype was analyzed and their association with the incidence of prostate cancer was evaluated. Further, we detected AMACR expression in tumor with immunohistochemistry and analyzed its association with genotype regarding prostate cancer risk. Results. AG or GG genotype of rs2278008 (E277K) tended to lower prostate cancer risk. The minor G allele was found to be a significant allele that decreased the risk of prostate cancer (adjusted OR, 0.57; 95% CI, 0.35–0.93, P value = 0.025). In patients expression AMACR, AG or GG genotype was also significant genotype in terms of prostate cancer risk (adjusted OR, 0.47; 95% CI, 0.26–0.87, P value = 0.017). Further, [GGCGG] haplotype consisted of five coding SNPs of rs2278008, rs34677, rs2287939, rs10941112, and rs3195676 which decreased the risk of prostate cancer (P value = 0.047). Conclusions. Genetic variations of AMACR are associated with the risk of sporadic prostate cancer that underwent radical prostatectomy in Koreans.
Collapse
|
4
|
Thieme S, Groth P. Genome Fusion Detection: a novel method to detect fusion genes from SNP-array data. ACTA ACUST UNITED AC 2013; 29:671-7. [PMID: 23341502 PMCID: PMC3597144 DOI: 10.1093/bioinformatics/btt028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Fusion genes result from genomic rearrangements, such as deletions, amplifications and translocations. Such rearrangements can also frequently be observed in cancer and have been postulated as driving event in cancer development. to detect them, one needs to analyze the transition region of two segments with different copy number, the location where fusions are known to occur. Finding fusion genes is essential to understanding cancer development and may lead to new therapeutic approaches. RESULTS Here we present a novel method, the Genomic Fusion Detection algorithm, to predict fusion genes on a genomic level based on SNP-array data. This algorithm detects genes at the transition region of segments with copy number variation. With the application of defined constraints, certain properties of the detected genes are evaluated to predict whether they may be fused. We evaluated our prediction by calculating the observed frequency of known fusions in both primary cancers and cell lines. We tested a set of cell lines positive for the BCR-ABL1 fusion and prostate cancers positive for the TMPRSS2-ERG fusion. We could detect the fusions in all positive cell lines, but not in the negative controls.
Collapse
Affiliation(s)
- Sebastian Thieme
- Department of Theoretical Biophysics, Humboldt-University of Berlin, 10115 Berlin, Germany and Therapeutic Research Group Oncology, Bayer Pharma AG, 13353 Berlin, Germany
| | | |
Collapse
|
7
|
Lu B, Maqsodi B, Yang W, McMaster GK, Perner S, Regan M, Bubley GJ, Balk SP, Rubin M, Sanda MG. Detection of TMPRSS2-ERG fusion gene expression in prostate cancer specimens by a novel assay using branched DNA. Urology 2009; 74:1156-61. [PMID: 19647299 DOI: 10.1016/j.urology.2009.01.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To develop a novel assay that uses branched DNA technology to measure TMPRSS2-ERG fusion, as genetic rearrangement of TMPRSS2 regulatory sequences and coding sequences of the ERG gene has been detected in nearly half of prostate cancers, but quantitative assays to detect such TMPRSS2-ERG gene fusion have been limited to real-time polymerase chain reaction (PCR) techniques that rely on reverse transcriptase-based amplification. METHODS Branched DNA probes were designed to detect TMPRSS2-ERG gene fusion in prostate cancer cell lines. Nonquantitative nested reverse transcription (RT)-PCR and fluorescence in situ hybridization (FISH) were used to ascertain TMPRSS2-ERG gene fusion status in prostate tissues. RESULTS The branched DNA assay detected TMPRSS2-ERG gene fusion from less than 200 pg of prostate cancer RNA, whereas more than 600 pg of RNA was required for fusion gene detection by one step real-time RT-PCR. In evaluation of clinical prostatectomy specimens, the branched DNA assay showed a concordant detectable fusion signal in all 9 clinical samples that had fusion detected by nested RT-PCR or FISH. Moreover, branched DNA detected gene fusion in 2 of 16 prostate cancer tissue specimens that was not detected by FISH or nested RT-PCR. CONCLUSIONS Our findings demonstrate a branched DNA assay that is effective for detection of TMPRSS2-ERG gene fusion in prostate cancer clinical specimens, thus providing an alternative method to ascertain TMPRSS2-ERG gene fusion in human prostate cancer tissue.
Collapse
Affiliation(s)
- Bin Lu
- Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|