1
|
Liu Y, Tahir Ul Qamar M, Feng JW, Ding Y, Wang S, Wu G, Ke L, Xu Q, Chen LL. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species. BMC PLANT BIOLOGY 2019; 19:140. [PMID: 30987586 PMCID: PMC6466647 DOI: 10.1186/s12870-019-1757-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/04/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons are ubiquitous in plants genomes, and highly important in their evolution and diversity. However, their mechanisms of insertion/amplification and roles in Citrus genome's evolution/diversity are still poorly understood. RESULTS To address this knowledge gap, we developed different computational pipelines to analyze, annotate and classify MITEs and LTR retrotransposons in six different sequenced Citrus species. We identified 62,010 full-length MITEs from 110 distinguished families. We observed MITEs tend to insert in gene related regions and enriched in promoters. We found that DTM63 is possibly an active Mutator-like MITE family in the traceable past and may still be active in Citrus. The insertion of MITEs resulted in massive polymorphisms and played an important role in Citrus genome diversity and gene structure variations. In addition, 6630 complete LTR retrotransposons and 13,371 solo-LTRs were identified. Among them, 12 LTR lineages separated before the differentiation of mono- and dicotyledonous plants. We observed insertion and deletion of LTR retrotransposons was accomplished with a dynamic balance, and their half-life in Citrus was ~ 1.8 million years. CONCLUSIONS These findings provide insights into MITEs and LTR retrotransposons and their roles in genome diversity in different Citrus genomes.
Collapse
Affiliation(s)
- Yan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Tahir Ul Qamar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jia-Wu Feng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuduan Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shuo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guizhi Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lingjun Ke
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
2
|
Terol J, Nueda MJ, Ventimilla D, Tadeo F, Talon M. Transcriptomic analysis of Citrus clementina mandarin fruits maturation reveals a MADS-box transcription factor that might be involved in the regulation of earliness. BMC PLANT BIOLOGY 2019; 19:47. [PMID: 30704398 PMCID: PMC6357379 DOI: 10.1186/s12870-019-1651-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/14/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Harvest time is a relevant economic trait in citrus, and selection of cultivars with different fruit maturity periods has a remarkable impact in the market share. Generation of early- and late-maturing cultivars is an important target for citrus breeders, therefore, generation of knowledge regarding the genetic mechanisms controlling the ripening process and causing the early and late phenotypes is crucial. In this work we analyze the evolution of the transcriptome during fruit ripening in 3 sport mutations derived from the Fina clementine (Citrus clementina) mandarin: Clemenules (CLE), Arrufatina (ARR) and Hernandina (HER) that differ in their harvesting periods. CLE is considered a mid-season cultivar while ARR and HER are early- and late-ripening mutants, respectively. RESULTS We used RNA-Seq technology to carry out a time course analysis of the transcriptome of the 3 mutations along the ripening period. The results indicated that in these mutants, earliness and lateness during fruit ripening correlated with the advancement or delay in the expression of a set of genes that may be implicated in the maturation process. A detailed analysis of the transcription factors known to be involved in the regulation of fruit ripening identified a member of the MADS box family whose expression was lower in ARR, the early-ripening mutant, and higher in HER, the late-ripening mutant. The pattern of expression of this gene during the maturation period was basically contrary to those of the ethylene biosynthetic genes, SAM and ACC synthases and ACC oxidase. The gene was present in hemizygous dose in the early-ripening mutant. CONCLUSIONS Our analysis provides new clues about the genetic control of fruit ripening in citrus and allowed the identification of a transcription factor that could be involved in the early phenotype.
Collapse
Affiliation(s)
- Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia Spain
| | - M. José Nueda
- Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Daniel Ventimilla
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia Spain
| | - Francisco Tadeo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia Spain
| |
Collapse
|
3
|
Rey-Baños R, Sáenz de Miera LE, García P, Pérez de la Vega M. Obtaining retrotransposon sequences, analysis of their genomic distribution and use of retrotransposon-derived genetic markers in lentil (Lens culinaris Medik.). PLoS One 2017; 12:e0176728. [PMID: 28448614 PMCID: PMC5407846 DOI: 10.1371/journal.pone.0176728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/14/2017] [Indexed: 12/02/2022] Open
Abstract
Retrotransposons with long terminal repeats (LTR-RTs) are widespread mobile elements in eukaryotic genomes. We obtained a total of 81 partial LTR-RT sequences from lentil corresponding to internal retrotransposon components and LTRs. Sequences were obtained by PCR from genomic DNA. Approximately 37% of the LTR-RT internal sequences presented premature stop codons, pointing out that these elements must be non-autonomous. LTR sequences were obtained using the iPBS technique which amplifies sequences between LTR-RTs. A total of 193 retrotransposon-derived genetic markers, mainly iPBS, were used to obtain a genetic linkage map from 94 F7 inbred recombinant lines derived from the cross between the cultivar Lupa and the wild ancestor L. culinaris subsp. orientalis. The genetic map included 136 markers located in eight linkage groups. Clusters of tightly linked retrotransposon-derived markers were detected in linkage groups LG1, LG2, and LG6, hence denoting a non-random genomic distribution. Phylogenetic analyses identified the LTR-RT families in which internal and LTR sequences are included. Ty3-gypsy elements were more frequent than Ty1-copia, mainly due to the high Ogre element frequency in lentil, as also occurs in other species of the tribe Vicieae. LTR and internal sequences were used to analyze in silico their distribution among the contigs of the lentil draft genome. Up to 8.8% of the lentil contigs evidenced the presence of at least one LTR-RT similar sequence. A statistical analysis suggested a non-random distribution of these elements within of the lentil genome. In most cases (between 97% and 72%, depending on the LTR-RT type) none of the internal sequences flanked by the LTR sequence pair was detected, suggesting that defective and non-autonomous LTR-RTs are very frequent in lentil. Results support that LTR-RTs are abundant and widespread throughout of the lentil genome and that they are a suitable source of genetic markers useful to carry out further genetic analyses.
Collapse
Affiliation(s)
- Rita Rey-Baños
- Área de Genética, Dpto. de Biología Molecular, Universidad de León, León, Spain
| | - Luis E. Sáenz de Miera
- Área de Genética, Dpto. de Biología Molecular, Universidad de León, León, Spain
- * E-mail:
| | - Pedro García
- Área de Genética, Dpto. de Biología Molecular, Universidad de León, León, Spain
| | | |
Collapse
|
4
|
Velasco-Ramírez AP, Torres-Morán MI, Molina-Moret S, Sánchez-González JDJ, Santacruz-Ruvalcaba F. Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.). ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
5
|
Schulman AH, Flavell AJ, Paux E, Ellis THN. The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol 2012; 859:115-153. [PMID: 22367869 DOI: 10.1007/978-1-61779-603-6_7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Retrotransposons are a major agent of genome evolution. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. The key methods, SSAP, IRAP, REMAP, RBIP, and ISBP, all detect the sites at which the retrotransposon DNA, which is conserved between families of elements, is integrated into the genome. Marker systems exploiting these methods can be easily developed and inexpensively deployed in the absence of extensive genome sequence data. They offer access to the dynamic and polymorphic, nongenic portion of the genome and thereby complement methods, such as gene-derived SNPs, that target primarily the genic fraction.
Collapse
Affiliation(s)
- Alan H Schulman
- Plant Genomics, MTT Agrifood Research Finland, Jokioinen, Finland.
| | | | | | | |
Collapse
|
6
|
Belknap WR, Wang Y, Huo N, Wu J, Rockhold DR, Gu YQ, Stover E. Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing. Genome 2011; 54:1005-15. [DOI: 10.1139/g11-070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The citrus cultivar Carrizo is the single most important rootstock to the US citrus industry and has resistance or tolerance to a number of major citrus diseases, including citrus tristeza virus, foot rot, and Huanglongbing (HLB, citrus greening). A Carrizo genomic sequence database providing approximately 3.5× genome coverage (haploid genome size approximately 367 Mb) was populated through 454 GS FLX shotgun sequencing. Analysis of the repetitive DNA fraction indicated a total interspersed repeat fraction of 36.5%. Assembly and characterization of abundant citrus Ty3/gypsy elements revealed a novel type of element containing open reading frames encoding a viral RNA-silencing suppressor protein (RNA binding protein, rbp) and a plant cytokinin riboside 5′-monophosphate phosphoribohydrolase-related protein (LONELY GUY, log). Similar gypsy elements were identified in the Populus trichocarpa genome. Gene-coding region analysis indicated that 24.4% of the nonrepetitive reads contained genic regions. The depth of genome coverage was sufficient to allow accurate assembly of constituent genes, including a putative phloem-expressed gene. The development of the Carrizo database ( http://citrus.pw.usda.gov/ ) will contribute to characterization of agronomically significant loci and provide a publicly available genomic resource to the citrus research community.
Collapse
Affiliation(s)
| | - Yi Wang
- USDA-ARS, Western Regional Research Center, Albany, CA 94710, USA
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Naxin Huo
- USDA-ARS, Western Regional Research Center, Albany, CA 94710, USA
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jiajie Wu
- USDA-ARS, Western Regional Research Center, Albany, CA 94710, USA
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | - Yong Q. Gu
- USDA-ARS, Western Regional Research Center, Albany, CA 94710, USA
| | - Ed Stover
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| |
Collapse
|
7
|
|
8
|
Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity (Edinb) 2010; 106:520-30. [PMID: 20683483 DOI: 10.1038/hdy.2010.93] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retrotransposons are both major generators of genetic diversity and tools for detecting the genomic changes associated with their activity because they create large and stable insertions in the genome. After the demonstration that retrotransposons are ubiquitous, active and abundant in plant genomes, various marker systems were developed to exploit polymorphisms in retrotransposon insertion patterns. These have found applications ranging from the mapping of genes responsible for particular traits and the management of backcrossing programs to analysis of population structure and diversity of wild species. This review provides an insight into the spectrum of retrotransposon-based marker systems developed for plant species and evaluates the contributions of retrotransposon markers to the analysis of population diversity in plants.
Collapse
Affiliation(s)
- R Kalendar
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
9
|
Distefano G, Caruso M, La Malfa S, Gentile A, Tribulato E. Histological and molecular analysis of pollen-pistil interaction in clementine. PLANT CELL REPORTS 2009; 28:1439-51. [PMID: 19636563 DOI: 10.1007/s00299-009-0744-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/19/2009] [Accepted: 07/09/2009] [Indexed: 05/13/2023]
Abstract
In contrast to model species, the self-incompatibility reaction in citrus has been poorly studied. It is assumed to be gametophytically determined and genetically controlled by the S-locus, which in other species encodes for glycoproteins (S-RNases) showing ribonuclease activity. To investigate pollen-pistil interaction, the pollen tube growth of two clementine varieties, 'Comune' (self-incompatible) and 'Monreal' (a 'Comune' self-compatible mutation) was analysed by histological assays in self- and cross-pollination conditions. Cross-pollination assays demonstrated that the mutation leading to self-compatibility in 'Monreal' occurred in the stylar tissues. Similar rates of pollen germination were observed in both genotypes. However, 'Comune' pollen tubes showed altered morphology and arrested growth in the upper style while in 'Monreal' they grew straight toward the ovary. Moreover, to identify genes putatively involved in pollen-pistil interaction and self-incompatibility, research based on the complementary DNA-amplified fragment length polymorphism technique was carried out to compare the transcript profiles of unpollinated and self-pollinated styles and stigmas of the two cultivars. This analysis identified 96 unigenes such as receptor-like kinases, stress-induced genes, transcripts involved in the phenylpropanoid pathway, transcription factors and genes related to calcium and hormone signalling. Surprisingly, a high percentage of active long terminal repeat (LTR) and non-LTR retrotransposons were identified among the unigenes, indicating their activation in response to pollination and their possible role in the regulation of self-incompatibility genes. The quantitative reverse trascription-polymerase chain reaction analysis of selected gene tags showed transcriptional differences between the two genotypes during pollen germination and pollen tube elongation.
Collapse
Affiliation(s)
- Gaetano Distefano
- Dipartimento di OrtoFloroArboricoltura e Tecnologie Agroalimentari, University of Catania, Via Valdisavoia 5, Catania, 95123, Italy
| | | | | | | | | |
Collapse
|
10
|
Mlinarec J, Chester M, Siljak-Yakovlev S, Papes D, Leitch AR, Besendorfer V. Molecular structure and chromosome distribution of three repetitive DNA families in Anemone hortensis L. (Ranunculaceae). Chromosome Res 2009; 17:331-46. [PMID: 19224381 DOI: 10.1007/s10577-009-9025-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
Abstract
The structure, abundance and location of repetitive DNA sequences on chromosomes can characterize the nature of higher plant genomes. Here we report on three new repeat DNA families isolated from Anemone hortensis L.; (i) AhTR1, a family of satellite DNA (stDNA) composed of a 554-561 bp long EcoRV monomer; (ii) AhTR2, a stDNA family composed of a 743 bp long HindIII monomer and; (iii) AhDR, a repeat family composed of a 945 bp long HindIII fragment that exhibits some sequence similarity to Ty3/gypsy-like retroelements. Fluorescence in-situ hybridization (FISH) to metaphase chromosomes of A. hortensis (2n = 16) revealed that both AhTR1 and AhTR2 sequences co-localized with DAPI-positive AT-rich heterochromatic regions. AhTR1 sequences occur at intercalary DAPI bands while AhTR2 sequences occur at 8-10 terminally located heterochromatic blocks. In contrast AhDR sequences are dispersed over all chromosomes as expected of a Ty3/gypsy-like element. AhTR2 and AhTR1 repeat families include polyA- and polyT-tracks, AT/TA-motifs and a pentanucleotide sequence (CAAAA) that may have consequences for chromatin packing and sequence homogeneity. AhTR2 repeats also contain TTTAGGG motifs and degenerate variants. We suggest that they arose by interspersion of telomeric repeats with subtelomeric repeats, before hybrid unit(s) amplified through the heterochromatic domain. The three repetitive DNA families together occupy approximately 10% of the A. hortensis genome. Comparative analyses of eight Anemone species revealed that the divergence of the A. hortensis genome was accompanied by considerable modification and/or amplification of repeats.
Collapse
Affiliation(s)
- Jelena Mlinarec
- Department of Molecular Biology, Biology Division, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
11
|
Liu Q, Zhu A, Chai L, Zhou W, Yu K, Ding J, Xu J, Deng X. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:801-13. [PMID: 19218315 PMCID: PMC2652045 DOI: 10.1093/jxb/ern329] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/19/2008] [Accepted: 11/21/2008] [Indexed: 05/23/2023]
Abstract
Bud mutations often arise in citrus. The selection of mutants is one of the most important breeding channels in citrus. However, the molecular basis of bud mutation has rarely been studied. To identify differentially expressed genes in a spontaneous sweet orange [C. sinensis (L.) Osbeck] bud mutation which causes lycopene accumulation, low citric acid, and high sucrose in fruit, suppression subtractive hybridization and microarray analysis were performed to decipher this bud mutation during fruit development. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained and 182 (68.2%) of them shared homology (E-value < or = 1x10(-10)) with known gene products. Few genes were constitutively up- or down-regulated (fold change > or = 2) in the bud mutation during fruit development. Self-organizing tree algorithm analysis results showed that 95.1% of the differentially expressed genes were extensively coordinated with the initiation of lycopene accumulation. Metabolic process, cellular process, establishment of localization, response to stimulus, and biological regulation-related transcripts were among the most regulated genes. These genes were involved in many biological processes such as organic acid metabolism, lipid metabolism, transport, and pyruvate metabolism, etc. Moreover, 13 genes which were differentially regulated at 170 d after flowering shared homology with previously described signal transduction or transcription factors. The information generated in this study provides new clues to aid in the understanding of bud mutation in citrus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiuxin Deng
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Terol J, Naranjo MA, Ollitrault P, Talon M. Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics 2008; 9:423. [PMID: 18801166 PMCID: PMC2561056 DOI: 10.1186/1471-2164-9-423] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 09/18/2008] [Indexed: 11/24/2022] Open
Abstract
Background Citrus species constitute one of the major tree fruit crops of the subtropical regions with great economic importance. However, their peculiar reproductive characteristics, low genetic diversity and the long-term nature of tree breeding mostly impair citrus variety improvement. In woody plants, genomic science holds promise of improvements and in the Citrus genera the development of genomic tools may be crucial for further crop improvements. In this work we report the characterization of three BAC libraries from Clementine (Citrus clementina), one of the most relevant citrus fresh fruit market cultivars, and the analyses of 46.000 BAC end sequences. Clementine is a diploid plant with an estimated haploid genome size of 367 Mb and 2n = 18 chromosomes, which makes feasible the use of genomics tools to boost genetic improvement. Results Three genomic BAC libraries of Citrus clementina were constructed through EcoRI, MboI and HindIII digestions and 56,000 clones, representing an estimated genomic coverage of 19.5 haploid genome-equivalents, were picked. BAC end sequencing (BES) of 28,000 clones produced 28.1 Mb of genomic sequence that allowed the identification of the repetitive fraction (12.5% of the genome) and estimation of gene content (31,000 genes) of this species. BES analyses identified 3,800 SSRs and 6,617 putative SNPs. Comparative genomic studies showed that citrus gene homology and microsyntheny with Populus trichocarpa was rather higher than with Arabidopsis thaliana, a species phylogenetically closer to citrus. Conclusion In this work, we report the characterization of three BAC libraries from C. clementina, and a new set of genomic resources that may be useful for isolation of genes underlying economically important traits, physical mapping and eventually crop improvement in Citrus species. In addition, BAC end sequencing has provided a first insight on the basic structure and organization of the citrus genome and has yielded valuable molecular markers for genetic mapping and cloning of genes of agricultural interest. Paired end sequences also may be very helpful for whole-genome sequencing programs.
Collapse
Affiliation(s)
- Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Carretera Moncada, Náquera, Km. 4,5 Moncada, Valencia, E46113, Spain.
| | | | | | | |
Collapse
|
13
|
Ma Y, Sun H, Zhao G, Dai H, Gao X, Li H, Zhang Z. Isolation and characterization of genomic retrotransposon sequences from octoploid strawberry (Fragaria x ananassa Duch.). PLANT CELL REPORTS 2008; 27:499-507. [PMID: 18026732 DOI: 10.1007/s00299-007-0476-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 10/21/2007] [Accepted: 10/29/2007] [Indexed: 05/25/2023]
Abstract
Strawberry (Fragaria spp.) is a kind of herbaceous perennial plant that propagates vegetatively. The conserved domains of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy groups of LTR retrotransposons were amplified from the cultivated strawberry (Fragaria x ananassa Duch.). Sequence analysis of clones demonstrated that 5 of 19 Ty1-copia group unique sequences and 2 of 10 Ty3-gypsy unique sequences in F. x ananassa genome possessed either stop codon or frameshift. Ty1-copia group sequences are highly heterogeneous (divergence ranged from 1 to 69.8%), but the Ty3-gypsy group sequences are less (divergence ranged from 1 to 10%). Southern dot blot hybridization result suggested that both of the LTR retrotransposons are present in the genome of cultivated strawberry with high copy number (Ty1-copia group 2,875 Ty3-gypsy group 348). RT-PCR amplification from total RNA, which was extracted from leaves of micropropagated strawberry plants, did not yield either of the RT fragments. This is the first report on the presence of RT sequences of Ty1-copia and Ty3-gypsy group retrotransposons in F. x ananassa genome.
Collapse
Affiliation(s)
- Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, PR China
| | | | | | | | | | | | | |
Collapse
|
14
|
Talon M, Gmitter Jr. FG. Citrus genomics. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2008; 2008:528361. [PMID: 18509486 PMCID: PMC2396216 DOI: 10.1155/2008/528361] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 03/15/2008] [Indexed: 05/18/2023]
Abstract
Citrus is one of the most widespread fruit crops globally, with great economic and health value. It is among the most difficult plants to improve through traditional breeding approaches. Currently, there is risk of devastation by diseases threatening to limit production and future availability to the human population. As technologies rapidly advance in genomic science, they are quickly adapted to address the biological challenges of the citrus plant system and the world's industries. The historical developments of linkage mapping, markers and breeding, EST projects, physical mapping, an international citrus genome sequencing project, and critical functional analysis are described. Despite the challenges of working with citrus, there has been substantial progress. Citrus researchers engaged in international collaborations provide optimism about future productivity and contributions to the benefit of citrus industries worldwide and to the human population who can rely on future widespread availability of this health-promoting and aesthetically pleasing fruit crop.
Collapse
Affiliation(s)
- Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain
| | - Fred G. Gmitter Jr.
- Citrus Research and Education Center (CREC), University of Florida, IFAS, Lake Alfred, FL 33850, USA
- *Fred G. Gmitter Jr.:
| |
Collapse
|
15
|
Rico-Cabanas L, Martínez-Izquierdo JA. CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis. Mol Genet Genomics 2007; 277:365-77. [PMID: 17216224 DOI: 10.1007/s00438-006-0200-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 12/01/2006] [Indexed: 01/22/2023]
Abstract
LTR retrotransposons (LTR-RTNs) are widespread constituents of eukaryote genomes, particularly plant genomes. Although LTR-RTNs from plants were thought to be transcriptionally silent in somatic tissues, evidences of activity under certain conditions are available for some of them. In order to investigate LTR-RTNs in the Citrus sinensis genome, we analysed them by PCR using degenerate primers corresponding to highly conserved domains. All elements of the two types of LTR-RTN comprise about 23% of the genome, the copia group contribution being higher (13%) than the gypsy one (10%). From dendogram analysis, we report seven new copia RTN families, named CIRE1 to CIRE7. Here, we report on the first complete retrotransposon identified in Citrus (named CIRE1), which has all the features of a typical copia RTN. CIRE1 retrotransposon has around 2,200 full-length copies, contributing to 2.9% of the C. sinensis genome. CIRE1 has a root-specific expression in sweet orange plants. We have also determined that wounding and exogenous application of plant hormones, as methyl jasmonate and auxin, increase the transcription level of CIRE1 in leaf tissues. In addition, we show that CIRE1 5'LTR promoter can drive transient expression of the gus reporter gene in heterologous plant systems. These findings confirm CIRE1 as one of the few transcriptionally active RTNs described in plants and to our knowledge the first one to be reported in Citrus species.
Collapse
Affiliation(s)
- Laura Rico-Cabanas
- Department of Molecular Genetics, Consorci CSIC-IRTA, C/Jordi Girona 18-26, 08034, Barcelona, Spain,
| | | |
Collapse
|
16
|
Dixit A, Ma KH, Yu JW, Cho EG, Park YJ. Reverse transcriptase domain sequences from Mungbean (Vigna radiata) LTR retrotransposons: sequence characterization and phylogenetic analysis. PLANT CELL REPORTS 2006; 25:100-11. [PMID: 16402250 DOI: 10.1007/s00299-005-0008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 04/18/2005] [Accepted: 04/18/2005] [Indexed: 05/06/2023]
Abstract
The conserved domains of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy groups of long terminal repeat (LTR) retrotransposons were amplified from mungbean (Vigna radiata) genome using degenerate primers, cloned and sequenced. Among these 34% and 65% of respective clones of copia and gypsy RT sequences possessed stop codons or frame-shifts or both. The RT sequences corresponding to both the groups exhibit significant levels of heterogeneity. Presence of mungbean copia and gypsy RT sequences in other papilionoid legumes of the same (Phaseoleae) and different lineages (Loteae, Trifoleae, Cicereae) indicates existence of these elements prior to the radiation of papilionoid legumes and also supports the recent interpretations of close relationship between Phaseoleae and Loteae tribes of Papilionoideae subfamily. On the other hand significant homologies of some mungbean copia as well as gypsy RT sequences with those of unrelated plant species suggest their origin from different plant lineages and also that heterogeneous population of related elements were already existed throughout (even before the divergence of monocot and dicot) the evolution of these genera from their common ancestor.
Collapse
Affiliation(s)
- Anupam Dixit
- Genetic Resources Division, National Institute of Agricultural Biotechnology, RDA, 225, Seodun-dong, Suwon, Kyunggi 441-707, Republic of Korea
| | | | | | | | | |
Collapse
|
17
|
Bernet GP, Bretó MP, Asins MJ. Expressed sequence enrichment for candidate gene analysis of citrus tristeza virus resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:592-602. [PMID: 14624336 DOI: 10.1007/s00122-003-1479-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 09/02/2003] [Indexed: 05/24/2023]
Abstract
Several studies have reported markers linked to a putative resistance gene from Poncirus trifoliata ( Ctv-R) located at linkage group 4 that confers resistance against one of the most important citrus pathogens, citrus tristeza virus (CTV). To be successful in both marker-assisted selection and transformation experiments, its accurate mapping is needed. Several factors may affect its localization, among them two are considered here: the definition of resistance and the genetic background of progeny. Two progenies derived from P. trifoliata, by self-pollination and by crossing with sour orange ( Citrus aurantium), a citrus rootstock well-adapted to arid and semi-arid areas, were used for linkage group-4 marker enrichment. Two new methodologies were used to enrich this region with expressed sequences. The enrichment of group 4 resulted in the fusion of several C. aurantium linkage groups. The new one A(7+3+4) is now saturated with 48 markers including expressed sequences. Surprisingly, sour orange was as resistant to the CTV isolate tested as was P. trifoliata, and three hybrids that carry Ctv-R, as deduced from its flanking markers, are susceptible to CTV. The new linkage maps were used to map Ctv-R under the hypothesis of monogenic inheritance. Its position on linkage group 4 of P. trifoliata differs from the location previously reported in other progenies. The genetic analysis of virus-plant interaction in the family derived from C. aurantium after a CTV chronic infection showed the segregation of five types of interaction, which is not compatible with the hypothesis of a single gene controlling resistance. Two major issues are discussed: another type of genetic analysis of CTV resistance is needed to avoid the assumption of monogenic inheritance, and transferring Ctv-R from P. trifoliata to sour orange might not avoid the CTV decline of sweet orange trees.
Collapse
Affiliation(s)
- G P Bernet
- Instituto Valenciano de Investigaciones Agrarias, Apdo. Oficial, 46113 Moncada, Valencia, Spain
| | | | | |
Collapse
|
18
|
Asins MJ, Bernet GP, Ruiz C, Cambra M, Guerri J, Carbonell EA. QTL analysis of citrus tristeza virus-citradia interaction. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:603-11. [PMID: 14614564 DOI: 10.1007/s00122-003-1486-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 09/02/2003] [Indexed: 05/20/2023]
Abstract
Citrus tristeza virus (CTV) has caused the death of millions of trees grafted on sour orange ( Citrus aurantium). However, this rootstock is very well adapted to the Mediterranean, semi-arid conditions. The aim of the present research is to genetically analyze the accumulation of CTV in a progeny derived from the cross between C. aurantium and Poncirus trifoliata, both resistant to CTV isolate T-346. Graft propagation of 104 hybrids was done on healthy sweet orange as a rootstock. Three months later, each rootstock was graft inoculated with two patches of infected tissue (isolate T-346). One, 2, and sometimes, 3 and 4 years after inoculation, hybrids and infected patches were tested for CTV by tissue-blot immuno-assay. Additionally, CTV multiplication was evaluated every year as the optical density of double-antibody sandwich enzyme-linked immuno-sorbent assay reactions. Linkage maps for P. trifoliata based on 63 markers, and for C. aurantium based on 157 markers, were used. Most molecular markers were microsatellites and IRAP (inter-retrotransposon amplified polymorphisms). Some analogues of resistance and expressed sequences were also included for candidate gene analysis. Resistance against CTV was analyzed as a quantitative trait (CTV accumulation) by QTL (quantitative trait loci) analysis to avoid the assumption of monogenic control. Three major resistance QTLs were detected where the P. trifoliata resistance gene, Ctv-R, had been previously located in other progenies. Up to five minor QTLs were detected ( Ctv-A(1) to Ctv-A(5)). A significant epistatic interaction involving Ctv-R(1) and Ctv-A(1) was also found. An analogue of a resistance gene is a candidate for Ctv-A(3), and two expressed sequences are candidates for Ctv-A(1) and Ctv-A(5). Single-strand conformational polymorphism analysis of CTV genes QTL P20 and P25 (coat protein) in susceptible hybrids, was carried out to test whether or not any QTL accumulation was a defeated resistance gene. Since the same haplotype of the virus was visualized independently on the CTV titer, differences in the amount of virions are not explained through the selection of CTV genotypes by the host, but through differences among citradias in CTV replication and/or movement.
Collapse
Affiliation(s)
- M J Asins
- Instituto Valenciano de Investigaciones Agrarias, Apdo. Oficial, 46113 Moncada ,Valencia, Spain.
| | | | | | | | | | | |
Collapse
|