1
|
Koul B, Sharma K, Sehgal V, Yadav D, Mishra M, Bharadwaj C. Chickpea ( Cicer arietinum L.) Biology and Biotechnology: From Domestication to Biofortification and Biopharming. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212926. [PMID: 36365379 PMCID: PMC9654780 DOI: 10.3390/plants11212926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 05/13/2023]
Abstract
Chickpea (Cicer arietinum L.), the world's second most consumed legume crop, is cultivated in more than 50 countries around the world. It is a boon for diabetics and is an excellent source of important nutrients such as vitamins A, C, E, K, B1-B3, B5, B6, B9 and minerals (Fe, Zn, Mg and Ca) which all have beneficial effects on human health. By 2050, the world population can cross 9 billion, and in order to feed the teaming millions, chickpea production should also be increased, as it is a healthy alternative to wheat flour and a boon for diabetics. Moreover, it is an important legume that is crucial for food, nutrition, and health security and the livelihood of the small-scale farmers with poor resources, in developing countries. Although marvelous improvement has been made in the development of biotic and abiotic stress-resistant varieties, still there are many lacunae, and to fulfill that, the incorporation of genomic technologies in chickpea breeding (genomics-assisted breeding, high-throughput and precise-phenotyping and implementation of novel breeding strategies) will facilitate the researchers in developing high yielding, climate resilient, water use efficient, salt-tolerant, insect/pathogen resistant varieties, acceptable to farmers, consumers, and industries. This review focuses on the origin and distribution, nutritional profile, genomic studies, and recent updates on crop improvement strategies for combating abiotic and biotic stresses in chickpea.
Collapse
Affiliation(s)
- Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India
- Correspondence: (B.K.); (D.Y.); (M.M.)
| | - Komal Sharma
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India
| | - Vrinda Sehgal
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (B.K.); (D.Y.); (M.M.)
| | - Meerambika Mishra
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (B.K.); (D.Y.); (M.M.)
| | - Chellapilla Bharadwaj
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi 110012, India
| |
Collapse
|
2
|
|
3
|
Madrid E, Rajesh PN, Rubio J, Gil J, Millán T, Chen W. Characterization and genetic analysis of an EIN4-like sequence (CaETR-1) located in QTL(AR1) implicated in ascochyta blight resistance in chickpea. PLANT CELL REPORTS 2012; 31:1033-1042. [PMID: 22238063 DOI: 10.1007/s00299-011-1221-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/13/2011] [Accepted: 12/24/2011] [Indexed: 05/31/2023]
Abstract
Two alleles of a chickpea (Cicer arietinum L.) ethylene receptor-like sequence (CaETR-1) were sequence-characterized using synteny analysis with genome sequences of Medicago truncatula L. The full length of the sequence obtained in the accession FLIP84-92C resistant to ascochyta blight (CaETR-1a) span 4,428 bp, including the polyadenylation signal in the 3'-untranslated region (UTR), whereas it has a 730 bp deletion in the 3'-UTR region in the susceptible accession PI359075 (CaETR-1b). The deduced protein belongs to subfamily II of the ethylene receptors and contains all the domains that define EIN4 homologs in Arabidopsis. The EIN4-like sequence (CaETR-1) has been mapped using a recombinant inbred line (RIL) population derived from an intraspecific cross between ILC3279 and WR315, resistant and susceptible to blight, respectively. The locus was located in LGIVa of the genetic map, flanked by markers NCPGR91 and GAA47 (at distances of 11.3 and 17.9 cM, respectively). This is the first potentially functional sequence identified under a QTL peak for ascochyta blight resistance in chickpea (QTL(AR1)). This EIN4-like (CaETR-1) sequence explained up to 33.8% of the total phenotypic variation. This sequence could be directly related to blight resistance, together with other QTLs that have been found to be involved in resistance to this major chickpea disease.
Collapse
Affiliation(s)
- E Madrid
- Departamento de Genética, Universidad de Córdoba, Campus Rabanales, Edif. C5, 14071 Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
4
|
Choudhary S, Gaur R, Gupta S. EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1449-62. [PMID: 22301907 DOI: 10.1007/s00122-012-1800-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/05/2012] [Indexed: 05/17/2023]
Abstract
Well-saturated linkage maps especially those based on expressed sequence tag (EST)-derived genic molecular markers (GMMs) are a pre-requisite for molecular breeding. This is especially true in important legumes such as chickpea where few simple sequence repeats (SSR) and even fewer GMM-based maps have been developed. Therefore, in this study, 2,496 ESTs were generated from chickpea seeds and utilized for the development of 487 novel EST-derived functional markers which included 125 EST-SSRs, 151 intron targeted primers (ITPs), 109 expressed sequence tag polymorphisms (ESTPs), and 102 single nucleotide polymorphisms (SNPs). Whereas ESTSSRs, ITPs, and ESTPs were developed by in silico analysis of the developed EST sequences, SNPs were identified by allele resequencing and their genotyping was performedusing the Illumina GoldenGate Assay. Parental polymorphism was analyzed between C. arietinum ICC4958 and C. reticulatum PI489777, parents of the reference chickpea mapping population, using a total of 872 markers: 487 new gene-based markers developed in this study along with 385 previously published markers, of which 318 (36.5%) were found to be polymorphic and were used for genotyping. The genotypic data were integrated with the previously published data of 108 markers and an advanced linkage map was generated that contained 406 loci distributed on eight linkage groups that spanned 1,497.7 cM. The average marker density was 3.68 cM and the average number of markers per LG was 50.8. Among the mapped markers, 303 new genomic locations were defined that included 177 gene-based and 126 gSSRs (genomic SSRs) thereby producing the most advanced gene-rich map of chickpea solely based on co-dominant markers.
Collapse
Affiliation(s)
- Shalu Choudhary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No 10531, New Delhi 110067, India
| | | | | |
Collapse
|
5
|
Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, Thirunavukkarasu N, Gudipati S, Gaur PM, Kulwal PL, Upadhyaya HD, KaviKishor PB, Winter P, Kahl G, Town CD, Kilian A, Cook DR, Varshney RK. Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS One 2011; 6:e27275. [PMID: 22102885 PMCID: PMC3216927 DOI: 10.1371/journal.pone.0027275] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/12/2011] [Indexed: 12/17/2022] Open
Abstract
Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes.
Collapse
Affiliation(s)
- Mahendar Thudi
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Abhishek Bohra
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Spurthi N. Nayak
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics, Osmania University, Hyderabad, India
| | - Nicy Varghese
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Trushar M. Shah
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - R. Varma Penmetsa
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | | | - Srivani Gudipati
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pooran M. Gaur
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Pawan L. Kulwal
- State Level Biotechnology Centre, Mahatma Phule Agricultural University, Ahmednagar, India
| | - Hari D. Upadhyaya
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | | | - Günter Kahl
- Molecular BioSciences, University of Frankfurt, Frankfurt am Main, Germany
| | - Christopher D. Town
- J. Craig Venter Institute (JCVI), Rockville, Maryland, United States of America
| | | | - Douglas R. Cook
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Rajeev K. Varshney
- Grain Legumes Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- CGIAR Generation Challenge Programme (GCP), CIMMYT, Mexico DF, Mexico
- * E-mail:
| |
Collapse
|
6
|
Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M. Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. PLANT PHYSIOLOGY 2011; 156:1661-78. [PMID: 21653784 PMCID: PMC3149962 DOI: 10.1104/pp.111.178616] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/07/2011] [Indexed: 05/17/2023]
Abstract
Chickpea (Cicer arietinum) is an important food legume crop but lags in the availability of genomic resources. In this study, we have generated about 2 million high-quality sequences of average length of 372 bp using pyrosequencing technology. The optimization of de novo assembly clearly indicated that hybrid assembly of long-read and short-read primary assemblies gave better results. The hybrid assembly generated a set of 34,760 transcripts with an average length of 1,020 bp representing about 4.8% (35.5 Mb) of the total chickpea genome. We identified more than 4,000 simple sequence repeats, which can be developed as functional molecular markers in chickpea. Putative function and Gene Ontology terms were assigned to at least 73.2% and 71.0% of chickpea transcripts, respectively. We have also identified several chickpea transcripts that showed tissue-specific expression and validated the results using real-time polymerase chain reaction analysis. Based on sequence comparison with other species within the plant kingdom, we identified two sets of lineage-specific genes, including those conserved in the Fabaceae family (legume specific) and those lacking significant similarity with any non chickpea species (chickpea specific). Finally, we have developed a Web resource, Chickpea Transcriptome Database, which provides public access to the data and results reported in this study. The strategy for optimization of de novo assembly presented here may further facilitate the transcriptome sequencing and characterization in other organisms. Most importantly, the data and results reported in this study will help to accelerate research in various areas of genomics and implementing breeding programs in chickpea.
Collapse
|
7
|
Bacterial artificial chromosome libraries of pulse crops: characteristics and applications. J Biomed Biotechnol 2011; 2012:493186. [PMID: 21811383 PMCID: PMC3144660 DOI: 10.1155/2012/493186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/29/2011] [Accepted: 05/30/2011] [Indexed: 12/01/2022] Open
Abstract
Pulse crops are considered minor on a global scale despite their nutritional value for human consumption. Therefore, they are relatively less extensively studied in comparison with the major crops. The need to improve pulse crop production and quality will increase with the increasing global demand for food security and people's awareness of nutritious food. The improvement of pulse crops will require fully utilizing all their genetic resources. Bacterial artificial chromosome (BAC) libraries of pulse crops are essential genomic resources that have the potential to accelerate gene discovery and enhance molecular breeding in these crops. Here, we review the availability, characteristics, applications, and potential applications of the BAC libraries of pulse crops.
Collapse
|
8
|
Staginnus C, Desel C, Schmidt T, Kahl G. Assembling a puzzle of dispersed retrotransposable sequences in the genome of chickpea (Cicer arietinum L.). Genome 2011; 53:1090-102. [PMID: 21164541 DOI: 10.1139/g10-093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several repetitive elements are known to be present in the genome of chickpea (Cicer arietinum L.) including satellite DNA and En/Spm transposons as well as two dispersed, highly repetitive elements, CaRep1 and CaRep2. PCR was used to prove that CaRep1, CaRep2, and previously isolated CaRep3 of C. arietinum represent different segments of a highly repetitive Ty3-gypsy-like retrotransposon (Metaviridae) designated CaRep that makes up large parts of the intercalary heterochromatin. The full sequence of this element including the LTRs and untranslated internal regions was isolated by selective amplification. The restriction pattern of CaRep was different within the annual species of the genus Cicer, suggesting its rearrangement during the evolution of the genus during the last 100 000 years. In addition to CaRep, another LTR and a non-LTR retrotransposon family were isolated, and their restriction patterns and physical localization in the chickpea genome were characterized. The LINE-like element CaLin is only of comparatively low abundance and reveals a considerable heterogeneity. The Ty1-copia-like element (Pseudoviridae) CaTy is located in the distal parts of the intercalary heterochromatin and adjacent euchromatic regions, but it is absent from the centromeric regions. These results together with earlier findings allow to depict the distribution of retroelements on chickpea chromosomes, which extensively resembles the retroelement landscape of the genome of the model legume Medicago truncatula Gaertn.
Collapse
Affiliation(s)
- C Staginnus
- Molecular BioSciences, Biocentre, University of Frankfurt am Main, Max-von-Laue-Straße 9, D-60438 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
9
|
Zhang X, Scheuring CF, Zhang M, Dong JJ, Zhang Y, Huang JJ, Lee MK, Abbo S, Sherman A, Shtienberg D, Chen W, Muehlbauer F, Zhang HB. A BAC/BIBAC-based physical map of chickpea, Cicer arietinum L. BMC Genomics 2010; 11:501. [PMID: 20849583 PMCID: PMC2996997 DOI: 10.1186/1471-2164-11-501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 09/17/2010] [Indexed: 11/20/2022] Open
Abstract
Background Chickpea (Cicer arietinum L.) is the third most important pulse crop worldwide. Despite its importance, relatively little is known about its genome. The availability of a genome-wide physical map allows rapid fine mapping of QTL, development of high-density genome maps, and sequencing of the entire genome. However, no such a physical map has been developed in chickpea. Results We present a genome-wide, BAC/BIBAC-based physical map of chickpea developed by fingerprint analysis. Four chickpea BAC and BIBAC libraries, two of which were constructed in this study, were used. A total of 67,584 clones were fingerprinted, and 64,211 (~11.7 ×) of the fingerprints validated and used in the physical map assembly. The physical map consists of 1,945 BAC/BIBAC contigs, with each containing an average of 28.3 clones and having an average physical length of 559 kb. The contigs collectively span approximately 1,088 Mb. By using the physical map, we identified the BAC/BIBAC contigs containing or closely linked to QTL4.1 for resistance to Didymella rabiei (RDR) and QTL8 for days to first flower (DTF), thus further verifying the physical map and confirming its utility in fine mapping and cloning of QTL. Conclusion The physical map represents the first genome-wide, BAC/BIBAC-based physical map of chickpea. This map, along with other genomic resources previously developed in the species and the genome sequences of related species (soybean, Medicago and Lotus), will provide a foundation necessary for many areas of advanced genomics research in chickpea and other legume species. The inclusion of transformation-ready BIBACs in the map greatly facilitates its utility in functional analysis of the legume genomes.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843-2474, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Millan T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ. A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. EUPHYTICA 2010. [PMID: 0 DOI: 10.1007/s10681-010-0157-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
11
|
Iruela M, Pistón F, Cubero JI, Millán T, Barro F, Gil J. The marker SCK13(603) associated with resistance to ascochyta blight in chickpea is located in a region of a putative retrotransposon. PLANT CELL REPORTS 2009; 28:53-60. [PMID: 18815788 DOI: 10.1007/s00299-008-0609-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 09/04/2008] [Accepted: 09/07/2008] [Indexed: 05/08/2023]
Abstract
The sequence characterized amplified region (SCAR) marker SCK13(603), associated with ascochyta blight resistance in a chickpea recombinant inbred line (RIL) population, was used as anchored sequence for genome walking. The PCRs performed in the walking steps to walk in the same direction produced eight bands in 5' direction and five bands in 3' direction with a length ranking from 530 to 2,871 bp. The assembly of the bands sequences along with the sequence of SCK13(603) resulted in 7,815 bp contig. Blastn analyses showed stretches of DNA sequence mainly distributed from the nucleotides 1,500 to 4,500 significantly similar to Medicago truncatula genomic DNA. Three open reading frames (ORFs) were identified and blastp analysis of predicted amino acids sequences revealed that ORF1, ORF2 and ORF3 had significant similarity to a CCHC zinc finger protein, to an integrase, and to a precursor of the glucoamylase s1/s2, respectively, from M. truncatula. The high homology of the putative proteins derived from ORF1 and ORF2 with retrotransposon proteins and the prediction of the existence of conserved domains usually present in retrotransposon proteins indicate that the marker SCK13(603) is located in a region of a putative retrotransposon. The information generated in this study has contributed to increase the knowledge of this important region for blight resistance in chickpea.
Collapse
Affiliation(s)
- Marta Iruela
- Dpto. Mejora Genética Vegetal, IAS-CSIC, Córdoba, 14080, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Rajesh PN, O'Bleness M, Roe BA, Muehlbauer FJ. Analysis of genome organization, composition and microsynteny using 500 kb BAC sequences in chickpea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:449-58. [PMID: 18504542 DOI: 10.1007/s00122-008-0789-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 05/02/2008] [Indexed: 05/08/2023]
Abstract
The small genome size (740 Mb), short life cycle (3 months) and high economic importance as a food crop legume make chickpea (Cicer arietinum L.) an important system for genomics research. Although several genetic linkage maps using various markers and genomic tools have become available, sequencing efforts and their use are limited in chickpea genomic research. In this study, we explored the genome organization of chickpea by sequencing approximately 500 kb from 11 BAC clones (three representing ascochyta blight resistance QTL1 (ABR-QTL1) and eight randomly selected BAC clones). Our analysis revealed that these sequenced chickpea genomic regions have a gene density of one per 9.2 kb, an average gene length of 2,500 bp, an average of 4.7 exons per gene, with an average exon and intron size of 401 and 316 bp, respectively, and approximately 8.6% repetitive elements. Other features analyzed included exon and intron length, number of exons per gene, protein length and %GC content. Although there are reports on high synteny among legume genomes, the microsynteny between the 500 kb chickpea and available Medicago truncatula genomic sequences varied depending on the region analyzed. The GBrowse-based annotation of these BACs is available at http://www.genome.ou.edu/plants_totals.html . We believe that our work provides significant information that supports a chickpea genome sequencing effort in the future.
Collapse
Affiliation(s)
- P N Rajesh
- U.S. Department of Agriculture, Agricultural Research Service, and Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6434, USA.
| | | | | | | |
Collapse
|
13
|
Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK. Chickpea Improvement: Role of Wild Species and Genetic Markers. Biotechnol Genet Eng Rev 2008; 25:267-313. [DOI: 10.5661/bger-25-267] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Coram TE, Mantri NL, Ford R, Pang ECK. Functional genomics in chickpea: an emerging frontier for molecular-assisted breeding. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:861-873. [PMID: 32689415 DOI: 10.1071/fp07169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 08/08/2007] [Indexed: 06/11/2023]
Abstract
Chickpea is a valuable and important agricultural crop, but yield potential is limited by a series of biotic and abiotic stresses, including Ascochyta blight, Fusarium wilt, drought, cold and salinity. To accelerate molecular breeding efforts for the discovery and introgression of stress tolerance genes into cultivated chickpea, functional genomics approaches are rapidly growing. Recently a series of genetic tools for chickpea have become available that have allowed high-powered functional genomics studies to proceed, including a dense genetic map, large insert genome libraries, expressed sequence tag libraries, microarrays, serial analysis of gene expression, transgenics and reverse genetics. This review summarises the development of these genomic tools and the achievements made in initial and emerging functional genomics studies. Much of the initial research focused on Ascochyta blight resistance, and a resistance model has been synthesised based on the results of various studies. Use of the rich comparative genomics resources from the model legumes Medicago truncatula and Lotus japonicus is also discussed. Finally, perspectives on the future directions for chickpea functional genomics, with the goal of developing elite chickpea cultivars, are discussed.
Collapse
Affiliation(s)
- Tristan E Coram
- RMIT University, School of Applied Sciences, Biotechnology and Environmental Biology, Building 223, Level 1, Plenty Road, Bundoora, Victoria 3083, Australia
| | - Nitin L Mantri
- RMIT University, School of Applied Sciences, Biotechnology and Environmental Biology, Building 223, Level 1, Plenty Road, Bundoora, Victoria 3083, Australia
| | - Rebecca Ford
- BioMarka, Faculty of Land and Food Resources, The University of Melbourne, Victoria 3010, Australia
| | - Edwin C K Pang
- RMIT University, School of Applied Sciences, Biotechnology and Environmental Biology, Building 223, Level 1, Plenty Road, Bundoora, Victoria 3083, Australia
| |
Collapse
|
15
|
Wang XF, Ma J, Wang WS, Zheng YM, Zhang GY, Liu CJ, Ma ZY. Construction and characterization of the first bacterial artificial chromosome library for the cotton species Gossypium barbadense L. Genome 2006; 49:1393-8. [PMID: 17426754 DOI: 10.1139/g06-113] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As the second most widely cultivated cotton, Gossypium barbadense is well known for its superior fiber properties and its high levels of resistance to Fusarium and Verticillium wilts. To enhance our ability to exploit these properties in breeding programs, we constructed the first bacterial artificial chromosome (BAC) library for this species. The library contains 167 424 clones (49 920 BamHI and 117 504 HindIII clones), with an estimated average insert size of 130 kb. About 94.0% of the clones had inserts over 100 kb, and the empty clones accounted for less than 4.0%. Contamination of the library with chloroplast clones was very low (0.2%). Screening the library with locus-specific probes showed that BAC clones represent 6.5-fold genome equivalents. This high-quality library provides an additional asset with which to exploit genetic variation for cotton improvement.
Collapse
Affiliation(s)
- X F Wang
- Key Laboratory of Crop Germplasm Resources of Hebei Province, Agricultural University of Hebei, Baoding 071001, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Iruela M, Rubio J, Barro F, Cubero JI, Millán T, Gil J. Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:278-87. [PMID: 16328235 DOI: 10.1007/s00122-005-0126-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 09/28/2005] [Indexed: 05/05/2023]
Abstract
Two quantitative trait loci (QTLs), (QTL(AR1) and QTL(AR2)) associated with resistance to ascochyta blight, caused by Ascochyta rabiei, have been identified in a recombinant inbred line population derived from a cross of kabulixdesi chickpea. The population was evaluated in two cropping seasons under field conditions and the QTLs were found to be located in two different linkage groups (LG4a and LG4b). LG4b was saturated with RAPD markers and four of them associated with resistance were sequenced to give sequence characterized amplified regions (SCARs) that segregated with QTL(AR2). This QTL explained 21% of the total phenotypic variation. However, QTL(AR1), located in LG4a, explained around 34% of the total phenotypic variation in reaction to ascochyta blight when scored in the second cropping season. This LG4a region only includes a few markers, the flower colour locus (B/b), STMS GAA47, a RAPD marker and an inter-simple-sequence-repeat and corresponds with a previously reported QTL. From the four SCARs tagging QTL(AR2), SCAR (SCY17(590)) was co-dominant, and the other three were dominant. All SCARs segregated in a 1:1 (presence:absence) ratio and the scoring co-segregated with their respective RAPD markers. QTL(AR2) on LG4b was mapped in a highly saturated genomic region covering a genetic distance of 0.8 cM with a cluster of nine markers (three SCARs, two sequence-tagged microsatellite sites (STMS) and four RAPDs). Two of the four SCARs showed significant alignment with genes or proteins related to disease resistance in other species and one of them (SCK13(603)) was sited in the highly saturated region linked to QTL(AR2). STMS TA72 and TA146 located in LG4b were described in previous maps where QTL for blight resistance were also localized in both inter and intraspecific crosses. These findings may improve the precision of molecular breeding for QTL(AR2) as they will allow the choice of as much polymorphism as possible in any population and could be the starting point for finding a candidate resistant gene for ascochyta blight resistance in chickpea.
Collapse
Affiliation(s)
- M Iruela
- Dpto. de Mejora y Agronomía, IFAPA, Córdoba, 14080 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Shen B, Wang DM, McIntyre CL, Liu CJ. A 'Chinese Spring' wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1489-94. [PMID: 16187119 DOI: 10.1007/s00122-005-0077-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 08/02/2005] [Indexed: 05/04/2023]
Abstract
A bacterial artificial chromosome (BAC) library was constructed from the bread wheat (Triticum aestivum L.) genotype 'Chinese Spring' ('CS'). The library consists of 395,136 clones with an estimated average insert size of 157 kb. This library provides an estimated 3.4-fold genome coverage for this hexaploid species. The genome coverage was confirmed by RFLP analysis of single-copy RFLP clones. The CS BAC library was used to develop simple sequence repeat (SSR) markers for targeted genome regions using five sequence-tagged-site (STS) markers designed from the chromosome arm of 3BS. The SSR markers for the targeted genome region were successfully obtained. However, similar numbers of new SSR markers were also generated for the other two homologous group 3 chromosomes. This data suggests that BAC clones belonging to all three chromosomes of homologous group 3 were isolated using the five STS primers. The potential impacts of these results on marker isolation in wheat and on library screening in general are discussed.
Collapse
Affiliation(s)
- B Shen
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | | | | | | |
Collapse
|
18
|
Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG. Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1504-13. [PMID: 16195885 DOI: 10.1007/s00122-005-0079-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 08/01/2005] [Indexed: 05/04/2023]
Abstract
The genetically anchored physical map of peach is a valuable tool for identifying loci controlling economically important traits in Prunus. Breeding for disease resistance is a key component of most breeding programs. The identification of loci for pathogen resistance in peach provides information about resistance loci, the organization of resistance genes throughout the genome, and permits comparison of resistance regions among other genomes in the Rosaceae. This information will facilitate the breeding of resistant species of Prunus. A candidate gene approach was implemented for locating resistance loci in the genome of peach. Candidate genes representing NBS-LRR, kinase, transmembrane domain classes, as well as, pathogen response (PR) proteins and resistance-associated transcription factors were hybridized to a peach BAC library and mapped by using the peach physical map database and the Genome Database for Rosaceae (GDR). A resistance map for Prunus was generated and currently contains 42 map locations for putative resistance regions distributed among 7 of the 8 linkage groups.
Collapse
Affiliation(s)
- D A Lalli
- Department of Genetics, Biochemistry, and Life Science Studies, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Adam-Blondon AF, Bernole A, Faes G, Lamoureux D, Pateyron S, Grando MS, Caboche M, Velasco R, Chalhoub B. Construction and characterization of BAC libraries from major grapevine cultivars. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:1363-71. [PMID: 15834699 DOI: 10.1007/s00122-005-1924-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 01/05/2005] [Indexed: 05/20/2023]
Abstract
Genome projects were initiated on grapevine (Vitis vinifera L., 2n=38, genome size 475 Mb) through the successful construction of four bacterial artificial chromosome (BAC) libraries from three major cultivars, Cabernet Sauvignon (Cabernet S), Syrah and two different clones of Pinot Noir (Pinot N). Depending on the library, the genome coverage represented 4.5-14.8 genome equivalents with clones having a mean insert size of 93-158 kb. BAC pools suitable for PCR screening were constructed for two of these BAC libraries [Cabernet S and Pinot N clone (cl) 115] and subsequently used to confirm the genome coverage of both libraries by PCR anchoring of 74 genetic markers sampled from the 19 linkage groups. For ten of these markers, two bands on separate BAC pools were differentiated that could correspond either to different alleles or to a duplication of the locus being studied. Finally, a preliminary assessment of the correspondence between genetic and physical distances was made through the anchoring of all the markers mapped along linkage group 1 of the V. vinifera genetic map. A pair of markers, 2.1 cM apart, anchored the same BAC clones, which allowed us to estimate that 1 cM corresponded in this particular region to a maximum length of 130 kb.
Collapse
Affiliation(s)
- A-F Adam-Blondon
- Unité Mixte de Recherches sur les Génomes des Végétaux, INRA, 2 rue Gaston Crémieux, 5708 91 057, Evry Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB. Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, Cicer arietinum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:492-510. [PMID: 15712010 DOI: 10.1007/s00122-004-1857-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 10/20/2004] [Indexed: 05/24/2023]
Abstract
Large-insert bacterial artificial chromosome (BAC) libraries, plant-transformation-competent binary BAC (BIBAC) libraries, and simple sequence repeat (SSR) markers are essential for many aspects of genomics research. We constructed a BAC library and a BIBAC library from the nuclear DNA of chickpea, Cicer arietinum L., cv. Hadas, partially digested with HindIII and BamHI, respectively. The BAC library has 14,976 clones, with an average insert size of 121 kb, and the BIBAC library consists of 23,040 clones, with an average insert size of 145 kb. The combined libraries collectively cover ca. 7.0 x genomes of chickpea. We screened the BAC library with eight synthetic SSR oligos, (GA)10, (GAA)7, (AT)10, (TAA)7, (TGA)7, (CA)10, (CAA)7, and (CCA)7. Positive BACs were selected, subcloned, and sequenced for SSR marker development. Two hundred and thirty-three new chickpea SSR markers were developed and characterized by PCR, using chickpea DNA as template. These results have demonstrated that BACs are an excellent source for SSR marker development in chickpea. We also estimated the distribution of the SSR loci in the chickpea genome. The SSR motifs (TAA)n and (GA)n were much more abundant than the others, and the distribution of the SSR loci appeared non-random. The BAC and BIBAC libraries and new SSR markers will provide valuable resources for chickpea genomics research and breeding (the libraries and their filters are available to the public at http://hbz.tamu.edu).
Collapse
Affiliation(s)
- J Lichtenzveig
- Institute of Plant Science and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | | | | | | | |
Collapse
|