1
|
Liu J, Rasheed A, He Z, Imtiaz M, Arif A, Mahmood T, Ghafoor A, Siddiqui SU, Ilyas MK, Wen W, Gao F, Xie C, Xia X. Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2509-2523. [PMID: 31139853 DOI: 10.1007/s00122-019-03367-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 05/17/2019] [Indexed: 05/21/2023]
Abstract
Genetic diversity, population structure, LD decay, and selective sweeps in 687 wheat accessions were analyzed, providing relevant guidelines to facilitate the use of the germplasm in wheat breeding. Common wheat (Triticum aestivum L.) is one of the most widely grown crops in the world. Landraces were subjected to strong human-mediated selection in developing high-yielding, good quality, and widely adapted cultivars. To investigate the genome-wide patterns of allelic variation, population structure and patterns of selective sweeps during modern wheat breeding, we tested 687 wheat accessions, including landraces (148) and cultivars (539) mainly from China and Pakistan in a wheat 90 K single nucleotide polymorphism array. Population structure analysis revealed that cultivars and landraces from China and Pakistan comprised three relatively independent genetic clusters. Cultivars displayed lower nucleotide diversity and a wider average LD decay across whole genome, indicating allelic erosion and a diversity bottleneck due to the modern breeding. Analysis of genetic differentiation between landraces and cultivars from China and Pakistan identified allelic variants subjected to selection during modern breeding. In total, 477 unique genome regions showed signatures of selection, where 109 were identified in both China and Pakistan germplasm. The majority of genomic regions were located in the B genome (225), followed by the A genome (175), and only 77 regions were located in the D genome. EigenGWAS was further used to identify key selection loci in modern wheat cultivars from China and Pakistan by comparing with global winter wheat and spring wheat diversity panels, respectively. A few known functional genes or loci found within these genome regions corresponded to known phenotypes for disease resistance, vernalization, quality, adaptability and yield-related traits. This study uncovered molecular footprints of modern wheat breeding and explained the genetic basis of polygenic adaptation in wheat. The results will be useful for understanding targets of modern wheat breeding, and in devising future breeding strategies to target beneficial alleles currently not pursued.
Collapse
Affiliation(s)
- Jindong Liu
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Plant Genetics and Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Awais Rasheed
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
- Quaid-i-Azam University, Islamabad, Pakistan
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT) Pakistan Office, c/o National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Anjuman Arif
- National Institute of Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | | | - Abdul Ghafoor
- Bio-resources Conservation Institute (BCI), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Sadar Uddin Siddiqui
- Bio-resources Conservation Institute (BCI), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Muhammad Kashif Ilyas
- Bio-resources Conservation Institute (BCI), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Weie Wen
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Fengmei Gao
- Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Chaojie Xie
- Department of Plant Genetics and Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
2
|
Hu J, Wang J, Deng X, Yan Y. Cloning and characterization of special HMW glutenin subunit genes from Aegilops longissima L. and their potential for wheat quality improvement. 3 Biotech 2019; 9:267. [PMID: 31218178 PMCID: PMC6570732 DOI: 10.1007/s13205-019-1803-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/07/2019] [Indexed: 11/28/2022] Open
Abstract
Identification and cloning of new glutenin genes from wheat-related species can provide candidate gene resources for quality improvement of wheat. In this study, ten special high-molecular-weight glutenin subunits (HMW-GS), including five x-type (1Sl2x, 1Sl16x, 1Sl17x, 1Sl23x, and 1Sl25x) and five y-type (1Sl2y, 1Sl6y1, 1Sl16y, 1Sl17y, and 1Sl23y) from Aegilops longissima L. (SlSl, 2n = 2x = 14) were identified, and their complete encoding genes were cloned by allelic-specific polymerase chain reaction (AS-PCR). The deduced amino acid (aa) residues of the x-type subunit genes ranged from 821 aa (2469 bp) to 941 aa (2829 bp), while those of the y-type subunit genes varied from 749 aa (2250 bp) to 771 aa (2361 bp). These special HMW-GS had a longer central repetitive domain with more glutamine repeats and glutamine residues compared to the previously characterized HMW-GS in common wheat, which provided a structural basis for superior gluten quality formation. The authenticity of the four cloned genes were verified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Abundant single-nucleotide polymorphism (SNP) and insertion/deletion (InDel) variations among these genes were identified, which would benefit for developing specific molecular markers used for wheat gluten quality improvement. Phylogenetic analysis revealed that the 1Sl-encoded HMW-GS had close relationships with those from bread wheat, which were divergent from Triticum species at 2.10-10.00 million years ago. Our results indicate that the 1Sl genome contains superior candidate glutenin genes that have potential application values for the improvement of wheat bread making quality.
Collapse
Affiliation(s)
- Jinxin Hu
- College of Life Science, Capital Normal University, Beijing, Xisanhuan Beilu 105, Beijing, 100048 China
| | - Jian Wang
- College of Life Science, Capital Normal University, Beijing, Xisanhuan Beilu 105, Beijing, 100048 China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Beijing, Xisanhuan Beilu 105, Beijing, 100048 China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, Xisanhuan Beilu 105, Beijing, 100048 China
- Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, 434025 China
| |
Collapse
|
3
|
Kumar A, Kapoor P, Chunduri V, Sharma S, Garg M. Potential of Aegilops sp. for Improvement of Grain Processing and Nutritional Quality in Wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2019; 10:308. [PMID: 30936886 PMCID: PMC6431632 DOI: 10.3389/fpls.2019.00308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Wheat is one of the most important staple crops in the world and good source of calories and nutrition. Its flour and dough have unique physical properties and can be processed to make unique products like bread, cakes, biscuits, pasta, noodles etc., which is not possible from other staple crops. Due to domestication, the genetic variability of the genes coding for different economically important traits in wheat is narrow. This genetic variability can be increased by utilizing its wild relatives. Its closest relative, genus Aegilops can be an important source of new alleles. Aegilops has played a very important role in evolution of tetraploid and hexaploid wheat. It consists of 22 species with C, D, M, N, S, T and U genomes with high allelic diversity relative to wheat. Its utilization for wheat improvement for various abiotic and biotic stresses has been reported by various scientific publications. Here in, for the first time, we review the potential of Aegilops for improvement of processing and nutritional traits in wheat. Among processing quality related gluten proteins; high molecular weight glutenins (HMW GS), being easiest to study have been explored in highest number of accessions or lines i.e., 681 belonging to 13 species and selected ones like Ae. searsii, Ae. geniculata and Ae. longissima have been linked with improved bread making quality of wheat. Gliadins and low molecular weight glutenins (LMW GS) have also been extensively explored for wheat improvement and Ae. umbellulata specific LMW GS have been linked with wheat bread making quality improvement. Aegilops has been explored for seed texture diversity and proteins like puroindolins (Pin) and grain softness proteins (GSP). For nutrition quality improvement, it has been screened for essential micronutrients like Fe, Zn, phytochemicals like carotenoids and dietary fibers like arabinoxylan and β-glucan. Ae. kotschyi and Ae. biuncialis transfer in wheat have been associated with higher Fe, Zn content. In this article we have tried to compile information available on exploration of nutritional and processing quality related traits in Aegilops section and their utilization for wheat improvement by different approaches.
Collapse
|
4
|
Zhu GR, Yan X, Zhu D, Deng X, Wu JS, Xia J, Yan YM. Lysine acetylproteome profiling under water deficit reveals key acetylated proteins involved in wheat grain development and starch biosynthesis. J Proteomics 2018; 185:8-24. [DOI: 10.1016/j.jprot.2018.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 01/17/2023]
|
5
|
Subburaj S, Luo N, Lu X, Li X, Cao H, Hu Y, Li J, Yan Y. Molecular characterization and evolutionary origins of farinin genes in Brachypodium distachyon L. J Appl Genet 2015; 57:287-303. [PMID: 26519166 DOI: 10.1007/s13353-015-0316-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 10/22/2022]
Abstract
Farinins are one of the oldest members of the gluten family in wheat and Aegilops species, and they influence dough properties. Here, we performed the first detailed molecular genetic study on farinin genes in Brachypodium distachyon L., the model species for Triticum aestivum. A total of 51 b-type farinin genes were cloned and characterized, including 27 functional and 24 non-functional pseudogenes from 14 different B. distachyon accessions. All genes were highly similar to those previously reported from wheat and Aegilops species. The identification of deduced amino acid sequences showed that b-type farinins across Triticeae genomes could be classified as b1-, b2-, b3-, and b4-type farinins; however, B. distachyon had only b3- and b4-type farinins. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed that farinin genes are transcribed into mRNA in B. distachyon at much lower levels than in Triticeae, despite the presence of cis-acting elements in promoter regions. Phylogenetic analysis suggested that Brachypodium farinins may have closer relationships with common wheat and further confirmed four different types of b-type farinins in Triticeae and Brachypodium genomes, corresponding to b1, b2, b3 (group 1), and b4 (group 2). A putative evolutionary origin model of farinin genes in Brachypodium, Triticum, and the related species suggests that all b-type farinins diverged from their common ancestor ~3.2 million years ago (MYA). The b3 and b4 types could be considered older in the farinin family. The results explain the loss of b1- and b2-type farinin alleles in Brachypodium.
Collapse
Affiliation(s)
| | - Nana Luo
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Xiaobing Lu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Xiaohui Li
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Hui Cao
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China. .,Hubei Collaborative Innovation Center for Grain Industry (HCICGI), 434025, Jingzhou, China.
| |
Collapse
|
6
|
Shao H, Liu TH, Ran CF, Li LQ, Yu J, Gao X, Li XJ. Isolation and molecular characterization of two novel HMW-GS genes from Chinese wheat (Triticum aestivum L.) landrace Banjiemang. Genes Genomics 2015. [DOI: 10.1007/s13258-014-0228-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Geng Y, Pang B, Hao C, Tang S, Zhang X, Li T. Expression of wheat high molecular weight glutenin subunit 1Bx is affected by large insertions and deletions located in the upstream flanking sequences. PLoS One 2014; 9:e105363. [PMID: 25133580 PMCID: PMC4136844 DOI: 10.1371/journal.pone.0105363] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022] Open
Abstract
To better understand the transcriptional regulation of high molecular weight glutenin subunit (HMW-GS) expression, we isolated four Glu-1Bx promoters from six wheat cultivars exhibiting diverse protein expression levels. The activities of the diverse Glu-1Bx promoters were tested and compared with β-glucuronidase (GUS) reporter fusions. Although all the full-length Glu-1Bx promoters showed endosperm-specific activities, the strongest GUS activity was observed with the 1Bx7OE promoter in both transient expression assays and stable transgenic rice lines. A 43 bp insertion in the 1Bx7OE promoter, which is absent in the 1Bx7 promoter, led to enhanced expression. Analysis of promoter deletion constructs confirmed that a 185 bp MITE (miniature inverted-repeat transposable element) in the 1Bx14 promoter had a weak positive effect on Glu-1Bx expression, and a 54 bp deletion in the 1Bx13 promoter reduced endosperm-specific activity. To investigate the effect of the 43 bp insertion in the 1Bx7OE promoter, a functional marker was developed to screen 505 Chinese varieties and 160 European varieties, and only 1Bx7-type varieties harboring the 43 bp insertion in their promoters showed similar overexpression patterns. Hence, the 1Bx7OE promoter should be important tool in crop genetic engineering as well as in molecular assisted breeding.
Collapse
Affiliation(s)
- Yuke Geng
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Biological sciences, China Agricultural University, Beijing, China
| | - Binshuang Pang
- Beijing Engineering and Technique Research Center of Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Saijun Tang
- College of Biological sciences, China Agricultural University, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (XZ); (TL)
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (XZ); (TL)
| |
Collapse
|
8
|
Subburaj S, Chen G, Han C, Lv D, Li X, Zeller FJ, Hsam SLK, Yan Y. Molecular characterisation and evolution of HMW glutenin subunit genes in Brachypodium distachyon L. J Appl Genet 2013; 55:27-42. [PMID: 24306693 DOI: 10.1007/s13353-013-0187-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/10/2013] [Accepted: 11/19/2013] [Indexed: 01/13/2023]
Abstract
Brachypodium distachyon, a small wild grass within the Pooideae family, is a new model organism for exploring the functional genomics of cereal crops. It was shown to have close relationships to wheat, barley and rice. Here, we describe the molecular characterisation and evolutionary relationships of high molecular weight glutenin subunits (HMW-GS) genes from B. distachyon. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), high performance capillary electrophoresis (HPCE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses demonstrated that there was no HMW-GS expression in the Brachypodium grains due to the silencing of their encoding genes. Through allele-specific polymerase chain reaction (AS-PCR) amplification and cloning, a total of 13 HMW-GS encoding genes from diploid, tetraploid and hexaploid Brachypodium species were obtained, and all of them had typical structural features of y-type HMW-GS genes from common wheat and related species, particularly more similar to the 1Dy12 gene. However, the presence of an in-frame premature stop codon (TAG) at position 1521 in the coding region resulted in the conversion of all the genes to pseudogenes. Further, quantitative real-time PCR (qRT-PCR) analysis revealed that HMW-GS genes in B. distachyon displayed a similar trend, but with a low transcriptional expression profile during grain development due to the occurrence of the stop codon. Phylogenetic analysis showed that the highly conserved Glu-1-2 loci were presented in B. distachyon, which displayed close phylogenetic evolutionary relationships with Triticum and related species.
Collapse
|
9
|
Wang S, Yu Z, Cao M, Shen X, Li N, Li X, Ma W, Weißgerber H, Zeller F, Hsam S, Yan Y. Molecular mechanisms of HMW glutenin subunits from 1S(l) genome of Aegilops longissima positively affecting wheat breadmaking quality. PLoS One 2013; 8:e58947. [PMID: 23593125 PMCID: PMC3617193 DOI: 10.1371/journal.pone.0058947] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
A wheat cultivar “Chinese Spring” chromosome substitution line CS-1Sl(1B), in which the 1B chromosome was substituted by 1Sl from Aegilops longissima, was developed and found to possess superior dough and breadmaking quality. The molecular mechanism of its super quality conformation is studied in the aspects of high molecular glutenin genes, protein accumulation patterns, glutenin polymeric proteins, protein bodies, starch granules, and protein disulfide isomerase (PDI) and PDI-like protein expressions. Results showed that the introduced HMW-GS 1Sl×2.3* and 1Sly16* in the substitution line possesses long repetitive domain, making both be larger than any known x- and y-type subunits from B genome. The introduced subunit genes were also found to have a higher level of mRNA expressions during grain development, resulting in more HMW-GS accumulation in the mature grains. A higher abundance of PDI and PDI-like proteins was observed which possess a known function of assisting disulfide bond formation. Larger HMW-GS deposited in protein bodies were also found in the substitution line. The CS substitution line is expected to be highly valuable in wheat quality improvement since the novel HMW-GS are located on chromosome 1Sl, making it possible to combine with the known superior D×5+Dy10 subunits encoded by Glu-D1 for developing high quality bread wheat.
Collapse
Affiliation(s)
- Shunli Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zitong Yu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | - Min Cao
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | - Xixi Shen
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | - Ning Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | - Xiaohui Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | - Wujun Ma
- State Agriculture Biotechnology Centre, Murdoch University, Western Australian Department of Agriculture and Food, Perth, Western Australia, Australia
- * E-mail: (YY); (WM)
| | - H. Weißgerber
- Division of Plant Breeding and Applied Genetics, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Friedrich Zeller
- Division of Plant Breeding and Applied Genetics, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Sai Hsam
- Division of Plant Breeding and Applied Genetics, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
- * E-mail: (YY); (WM)
| |
Collapse
|
10
|
Wang S, Wang K, Chen G, Lv D, Han X, Yu Z, Li X, Ye X, Hsam SLK, Ma W, Appels R, Yan Y. Molecular characterization of LMW-GS genes in Brachypodium distachyon L. reveals highly conserved Glu-3 loci in Triticum and related species. BMC PLANT BIOLOGY 2012; 12:221. [PMID: 23171363 PMCID: PMC3547698 DOI: 10.1186/1471-2229-12-221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/30/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Brachypodium distachyon L. is a newly emerging model plant system for temperate cereal crop species. However, its grain protein compositions are still not clear. In the current study, we carried out a detailed proteomics and molecular genetics study on grain glutenin proteins in B. distachyon. RESULTS SDS-PAGE and RP-HPLC analysis of grain proteins showed that Brachypodium has few gliadins and high molecular weight glutenin subunits. In contrast the electrophoretic patterns for the albumin, globulin and low molecular weight glutenin subunit (LMW-GS) fractions of the grain protein were similar to those in wheat. In particular, the LMW-C type subunits in Brachypodium were more abundant than the equivalent proteins in common wheat. Southern blotting analysis confirmed that Brachypodium has 4-5 copies of LMW-GS genes. A total of 18 LMW-GS genes were cloned from Brachypodium by allele specific PCR. LMW-GS and 4 deduced amino acid sequences were further confirmed by using Western-blotting and MALDI-TOF-MS. Phylogenetic analysis indicated that Brachypodium was closer to Ae. markgrafii and Ae. umbellulata than to T. aestivum. CONCLUSIONS Brachypodium possessed a highly conserved Glu-3 locus that is closely related to Triticum and related species. The presence of LMW-GS in B. distachyon grains indicates that B. distachyon may be used as a model system for studying wheat quality attributes.
Collapse
Affiliation(s)
- Shunli Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, 100081, Beijing, China
| | - Guanxing Chen
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Dongwen Lv
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xiaofeng Han
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Zitong Yu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xiaohui Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, 100081, Beijing, China
| | - SLK Hsam
- Division of Plant Breeding and Applied Genetics, Technical University of Munich, D-85350, Freising-Weihenstephan, Germany
| | - Wujun Ma
- State Agriculture Biotechnology Centre, Murdoch University; Western Australian Department of Agriculture and Food, Perth, WA, 6150, Australia
| | - Rudi Appels
- State Agriculture Biotechnology Centre, Murdoch University; Western Australian Department of Agriculture and Food, Perth, WA, 6150, Australia
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048, Beijing, China
| |
Collapse
|
11
|
|
12
|
Li J, Wang S, Yu Z, Li X, Guo G, Feng S, Ma W, Yan Y. Optimization and development of capillary electrophoresis for separating and identifying wheat low molecular weight glutenin subunits. J Cereal Sci 2012. [DOI: 10.1016/j.jcs.2011.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Wang K, An XL, Pan LP, Dong K, Gao LY, Wang SL, Xie ZZ, Zhang Z, Appels R, Ma W, Yan YM. Molecular characterization of HMW-GS 1Dx3(t) and 1Dx4(t) genes from Aegilops tauschii and their potential value for wheat quality improvement. Hereditas 2012; 149:41-9. [PMID: 22458440 DOI: 10.1111/j.1601-5223.2011.02215.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Two x-type high molecular weight glutenin subunits (HMW-GS) in Aegilops tauschii, 1Dx3(t) and 1Dx4(t) were identified by SDS-PAGE and MALDI-TOF-MS. Their complete coding sequences were isolated by AS-PCR. 1Dx3(t) and 1Dx4(t) genes consist of 2535 bp and 2508 bp and encode 845 and 836 amino acid residues, respectively. The deduced molecular masses of 1Dx3(t) and 1Dx4(t) gene products are 87655.26 Da and 86664.24 Da, respectively, well corresponding to the molecular masses measured by MALDI-TOF-MS. A total of 18 SNPs were identified between 1Dx3(t) and 1Dx4(t). Comparing with 1Dx5 subunit, 1Dx3(t) had a six amino acid insertion at 146-151 while the 1Dx4(t) had a nine amino acid deletion when compared with 1Dx3(t) subunit. The authenticity of the cloned 1Dx3(t) and 1Dx4(t) genes were confirmed by successful expression of their ORFs in E. coli. Comparison and phylogenetic tree based on the amino acid and nucleotide sequences confirmed that 1Dx3(t) was most closely related to 1Dx5 subunit that is widely accepted as a superior subunit for bread-making property. The secondary structure prediction demonstrated that 1Dx3(t) subunit has significantly high α-helix and β-strand contents, suggesting it might have positive effects on dough quality.
Collapse
Affiliation(s)
- K Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang K, Gao L, Wang S, Zhang Y, Li X, Zhang M, Xie Z, Yan Y, Belgard M, Ma W. Phylogenetic relationship of a new class of LMW-GS genes in the M genome of Aegilops comosa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:1411-1425. [PMID: 21301802 DOI: 10.1007/s00122-011-1541-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/14/2011] [Indexed: 05/26/2023]
Abstract
A new class of low molecular weight glutenin subunit (LMW-GS) genes was isolated and characterized from Aegilops comosa (2n = 2x = 14, MM). Although their DNA structure displayed high similarity to LMW-i type genes, there are some key differences. The deduced amino acid sequences of their mature proteins showed that the first amino acid residue of each gene was leucine and therefore they were designated as LMW-l type subunits. An extra cysteine residue was present in the signal peptide and the first cysteine residue of mature proteins located at the end of repetitive domain. Additionally, a long insertion of 10-22 residues (LGQQPQ(5-17)) occurred in the end of the C-terminal II. Comparative analysis demonstrated that LMW-l type glutenin genes possessed a great number of single-nucleotide polymorphisms and insertions/deletions. A new classification system was proposed according to the gene structure and phylogenetic analysis. In this new system, LMW-GS is classified into two major classes, LMW-M and LMW-I, with each including two subclasses. The former included LMW-m and LMW-s types while the latter contained LMW-l and LMW-i types. Analysis of their evolutionary origin showed that the LMW-l genes diverged from the group 2 of LMW-m type genes at about 12-14 million years ago (MYA) while LMW-i type evolved from LMW-l type at approximately 8-12 MYA. The LMW-s type was a variant form of group 1 of LMW-m type and their divergence occurred about 4-6 MYA. In addition to homologous recombination, non-homologous illegitimate recombination could be an important molecular mechanism for the origin and evolution of LMW-GS gene family. The secondary structure prediction suggested that the novel LMW-l type subunits, such as AcLMW-L1 and AcLMW-L2, may have positive effects on dough properties.
Collapse
Affiliation(s)
- Ke Wang
- College of Life Science, Capital Normal University, 100048, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li XH, Wang K, Wang SL, Gao LY, Xie XX, Hsam SLK, Zeller FJ, Yan YM. Molecular characterization and comparative transcriptional analysis of LMW-m-type genes from wheat (Triticum aestivum L.) and Aegilops species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:845-56. [PMID: 20490445 DOI: 10.1007/s00122-010-1354-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 05/01/2010] [Indexed: 05/24/2023]
Abstract
Twelve new LMW-GS genes were characterized from bread wheat (Triticum aestivum L.) cultivar Zhongyou 9507 and five Aegilops species by AS-PCR. These genes belong to the LMW-m type and can be classified into two subclasses designated as 1 and 2, with the latter predominant in both wheat and related wild species. Genes in the two subclasses were significantly different from each other in SNPs and InDels variations. In comparison to subclass 1, the structural features of subclass 2 differs in possessing 21 amino acid residue substitutions, two fragment deletions (each with 7 amino acid residues), and a double-residue deletion and two fragment insertions (12 and 2-5 residues). Phylogenetic analysis revealed that the two subclasses were divergent at about 6.8 MYA, earlier than the divergence of C, M, N, S(s) and U genomes. The S(s) and B genomes displayed a very close relationship, whereas the C, M, N and U genomes appeared to be related to the D genome of bread wheat. The presently characterized genes ZyLMW-m1 and ZyLMW-m2 from Zhongyou 9507 were assigned to the D genome. Moreover, these genes were expressed successfully in Escherichia coli. Their transcriptional levels during grain developmental stages detected by quantitative real-time PCR (qRT-PCR) showed that both genes started to express at 5 days post-anthesis (DPA), reaching the maximum at 14 DPA after which their expressions decreased. Furthermore, the expression level of ZyLMW-m2 genes was much higher than that of ZyLMW-m1 during all grain developmental stages, suggesting that the expression efficiency of LMW-GS genes between the two subclasses was highly discrepant.
Collapse
Affiliation(s)
- X H Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, 100048, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cloning, Chromosomal Location, and Evolutionary Analysis of α-gliadin Genes from Aegilops tauschii and Common Wheat ( Triticum aestivum L.). ZUOWU XUEBAO 2010. [DOI: 10.3724/sp.j.1006.2010.00580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Gao L, Ma W, Chen J, Wang K, Li J, Wang S, Bekes F, Appels R, Yan Y. Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2777-86. [PMID: 20146422 DOI: 10.1021/jf903363z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High molecular weight glutenin subunits (HMW-GS) from 60 germplasms including 30 common wheat cultivars and 30 related species were separated and characterized by a suite of separation methods including sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), reversed-phase high-performance liquid chromatography (RP-HPLC), high-performance capillary electrophoresis (HPCE), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Comparative analysis demonstrated that each methodology has its own advantages and disadvantages. The main drawback of SDS-PAGE was its overestimation of molecular mass and incorrect identification of HMW-GS due to its low resolution. However, it had the advantages of technical simplicity and low requirements of equipment; thus, it is suitable for large-scale and high-throughput HMW-GS screening for breeding programs, especially when the glutenin composition is clear in the breeding material. MALDI-TOF-MS clearly expressed many technical advantages among the four methods evaluated, including high throughput, high resolution, and accuracy; it was, however, associated with high equipment cost, thus preventing many breeding companies from accessing the technology. RP-HPLC and HPCE were found to be intermediate between SDS-PAGE and MALDI-TOF-MS. Both RP-HPLC and HPCE demonstrated higher resolution and reproducibility over SDS-PAGE but lower detection power than MALDI-TOF-MS. Results demonstrated that MALDI-TOF-MS is suitable for analyzing HMW-GS for routine breeding line screening and for identifying new genotypes.
Collapse
Affiliation(s)
- Liyan Gao
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, 100048 Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cloning, expression and functional analysis of HMW glutenin subunit 1By8 gene from Italy pasta wheat (Triticum turgidum L. ssp. durum). J Cereal Sci 2009. [DOI: 10.1016/j.jcs.2009.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
SU YR, ZHANG DL, ZHANG M, LI SP. Characterization, Molecular Cloning, and Phylogenetic Analysis of Three y-Type High Molecular Weight Glutenin Subunit Genes from Aegilops tauschii of the Middle Reaches of Yellow River. ACTA AGRONOMICA SINICA 2009. [DOI: 10.3724/sp.j.1006.2009.01224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Di Luccia A, Lamacchia C, Mamone G, Picariello G, Trani A, Masi P, Addeo F. Application of Capillary Electrophoresis to Determine the Technological Properties of Wheat Flours by a Glutenin Index. J Food Sci 2009; 74:C307-11. [DOI: 10.1111/j.1750-3841.2009.01117.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Zhao X, Yang Y, He Z, Lei Z, Ma W, Sun Q, Xia X. Characterization of novel LMW-GS genes at Glu-D3 locus on chromosome 1D in Aegilops tauschii. Hereditas 2009; 145:238-50. [PMID: 19076692 DOI: 10.1111/j.1601-5223.2008.02046.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The objectives of this study were to clarify the relationship between LMW-GS Glu-D3 gene of Ae. tauschii registered in GenBank and the six Glu-D3 genes including 12 allelic variants of common wheat characterized in our previous studies, and identify novel Glu-D3 genes and haplotypes from Ae. tauschii using gene specific PCR amplification. By searching the NCBI database, 13 LMW-GS genes/pseudogenes of Ae. tauschii were retrieved and classified into five gene families based on their nucleotide similarity with the six Glu-D3 genes of common wheat. Of them, four Ae. tauschii genes, AY585350, AY585354, AY585355 and AY585356 matched GluD3-4, GluD3-5, GluD3-1 and GluD3-2 of common wheat, respectively, and one pseudogene AY585351 matched to GluD3-6, but none of them matched to GluD3-3. In order to identify the Glu-D3 genes from Ae. tauschii corresponding to GluD3-3 and GluD3-6 of common wheat, gene specific primers were developed to amplify 8-18 Ae. tauschii entries. As a result, two novel Glu-D3 genes, designated as GluDt3-3 and GluDt3-6, were identified. GluDt3-3 showed seven allelic variants or haplotypes at the DNA level in eight Ae. tauschii entries, designated as GluDt3-31, GluDt3-32, GluDt3-33, GluDt3-34, GluDt3-35, GluDt3-36 and GluDt3-37, respectively. Two to eight SNPs were found among the seven haplotypes and 1-4 amino acid substitutions among the deduced peptides. Multiple sequence alignments showed that the DNA similarity was 99.6-99.9% among the seven GluDt3-3 haplotypes, and 99.4-99.7% between these haplotypes and those of common wheat GluD3-3 gene. GluDt3-6 presented seven haplotypes in 18 Ae. tauschii entries, designated as GluDt3-61, GluDt3-62, GluDt3-63, GluDt3-64, GluDt3-65, GluDt3-66 and GluDt3-67, respectively. GluDt3-61 from Ae. tauschii entry Ae38 was the only one haplotype with complete coding sequence, and the other six were all pseudogenes. Compared with GluD3-6 gene of common wheat, GluDt3-61 exhibited a 3-bp insertion, a 42-bp deletion and 11 base substitutions, leading to a glutamine insertion in position 52, 14 amino acid deletion in position 84-97 and 10 amino acid mutations in its deduced peptide; GluDt3-62 and GluDt3-63 showed a 6-bp insertion, a 24-bp deletion and 15-21 base substitutions in coding region, of which a nonsense mutation from C to T at position 622 resulted in pseudogenes; GluDt3-64 had five base substitution, including a nonsense mutation at the position 742. GluDt3-65, GluDt3-66 and GluDt3-67 all had a base deletion at position 247, as well as 7-8 base substitutions, which resulted in frameshift mutations in the three haplotypes. The results indicated that Ae. tauschii also contains six Glu-D3 genes and their allelic variants are even richer than those in common wheat.
Collapse
Affiliation(s)
- Xianlin Zhao
- Institute of Crop Science, National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
A novel chimeric low-molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops kotschyi and Ae. juvenalis: evolution at the Glu-3 loci. Genetics 2008; 180:93-101. [PMID: 18757939 DOI: 10.1534/genetics.108.092403] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four LMW-m and one novel chimeric (between LMW-i and LMW-m types) low-molecular-weight glutenin subunit (LMW-GS) genes from Aegilops neglecta (UUMM), Ae. kotschyi (UUSS), and Ae. juvenalis (DDMMUU) were isolated and characterized. Sequence structures showed that the 4 LMW-m-type genes, assigned to the M genome of Ae. neglecta, displayed a high homology with those from hexaploid common wheat. The novel chimeric gene, designed as AjkLMW-i, was isolated from both Ae. kotschyi and Ae. juvenalis and shown to be located on the U genome. Phylogentic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. A total of 20 single nucleotide polymorphisms (SNPs) were detected among the 4 LMW-m genes, with 13 of these being nonsynonymous SNPs that resulted in amino acid substitutions in the deduced mature proteins. Phylogenetic analysis demonstrated that it had higher identity to the LMW-m-type than the LMW-i-type genes. The divergence time estimation showed that the M and D genomes were closely related and diverged at 5.42 million years ago (MYA) while the differentiation between the U and A genomes was 6.82 MYA. We propose that, in addition to homologous recombination, an illegitimate recombination event on the U genome may have occurred 6.38 MYA and resulted in the generation of the chimeric gene AjkLMW-i, which may be an important genetic mechanism for the origin and evolution of LMW-GS Glu-3 alleles as well as other prolamin genes.
Collapse
|
23
|
Jiang C, Pei Y, Zhang Y, Li X, Yao D, Yan Y, Ma W, Hsam SLK, Zeller FJ. Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima, Triticum dicoccoides and T. zhukovskyi. Hereditas 2008; 145:92-8. [PMID: 18503711 DOI: 10.1111/j.0018-0661.2008.02035.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
This paper reports cloning and characterisation of four novel low-molecular-weight glutenin subunit (LMW-GS) genes (designated as TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2) from the genomic DNA of Triticum dicoccoides, T. zhukovskyi and Aegilops longissima. The coding regions of TzLMW-m2, TzLMW-m1, TdLMW-m1 and AlLMW-m2 were 1056 bp, 903 bp, 1056 bp and 1050 bp in length, encoding 350, 300, 350 and 348 amino acid residues, respectively. The deduced amino acid sequences showed that the four novel genes were classified as LMW-m types and the comparison results indicated that the four genes had a more similar structure and a higher level of homology with the LMW-m genes than the LMW-s and -i types genes. However, the first cysteine residue's positions of TzLMW-m2, TdLMW-m1 and AlLMW-m2 were different from the others. Moreover, AlLMW-m2, TdLMW-m1 and TzLMW-m2 all possessed a longer repetitive domain, which was considered to be associated with good quality of wheat. The secondary structure prediction revealed that the content of beta-strand in AlLMW-m2 and TdLMW-m1 exceeded the positive control, suggesting that AlLMW-m2 and TdLMW-m1 should be considered as candidate genes that may have positive effect on dough quality. In order to investigate the evolutionary relationship of the novel genes with the other LMW-GSs, a phylogenetic tree was constructed. The results lead to a speculation that AlLMW-m2, TdLMW-m1 and TzLMW-m2 may be the middle types during the evolution of LMW-m and LMW-s.
Collapse
Affiliation(s)
- Chengxi Jiang
- Agricultural College, Anhui Agricultural University, Hefei, Anhui, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of HMW glutenin subunits in common wheat and related species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2007.04.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Zhang Y, Li X, Wang A, An X, Zhang Q, Pei Y, Gao L, Ma W, Appels R, Yan Y. Novel x-type high-molecular-weight glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1-1 proteins. Genetics 2008; 178:23-33. [PMID: 18202355 PMCID: PMC2206073 DOI: 10.1534/genetics.107.077412] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 10/07/2007] [Indexed: 11/18/2022] Open
Abstract
Two new x-type high-molecular-weight glutenin subunits with similar size to 1Dx5, designated 1Dx5*t and 1Dx5.1*t in Aegilops tauschii, were identified by SDS-PAGE, RP-HPLC, and MALDI-TOF-MS. The coding sequences were isolated by AS-PCR and the complete ORFs were obtained. Allele 1Dx5*t consists of 2481 bp encoding a mature protein of 827 residues with deduced Mr of 85,782 Da whereas 1Dx5.1*t comprises 2526 bp encoding 842 residues with Mr of 87,663 Da. The deduced Mr's of both genes were consistent with those determined by MALDI-TOF-MS. Molecular structure analysis showed that the repeat motifs of 1Dx5*t were correspondingly closer to the consensus compared to 1Dx5.1*t and 1Dx5 subunits. A total of 11 SNPs (3 in 1Dx5*t and 8 in 1Dx5.1*t) and two indels in 1Dx5*t were identified, among which 8 SNPs were due to C-T or A-G transitions (an average of 73%). Expression of the cloned ORFs and N-terminal sequencing confirmed the authenticities of the two genes. Interestingly, several hybrid clones of 1Dx5*t expressed a slightly smaller protein relative to the authentic subunit present in seed proteins; this was confirmed to result from a deletion of 180 bp through illegitimate recombination as well as an in-frame stop codon. Network analysis demonstrated that 1Dx5*t, 1Dx2t, 1Dx1.6t, and 1Dx2.2* represent a root within a network and correspond to the common ancestors of the other Glu-D-1-1 alleles in an associated star-like phylogeny, suggesting that there were at least four independent origins of hexaploid wheat. In addition to unequal homologous recombination, duplication and deletion of large fragments occurring in Glu-D-1-1 alleles were attributed to illegitimate recombination.
Collapse
Affiliation(s)
- Yanzhen Zhang
- Key Laboratory of Genetics and Biotechnology, College of Life Sciences, Capital Normal University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Guo ZF, Yan ZH, Wang JR, Wei YM, Zheng YL. Characterization of HMW prolamines and their coding sequences from Crithopsis delileana. Hereditas 2006; 142:56-64. [PMID: 16970613 DOI: 10.1111/j.1601-5223.2005.01916.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The high-molecular-weight (HMW) prolamines subunits and their coding sequences from wheat-related diploid species Crithopsis delileana were investigated. Only one HMW prolamine subunit with the similar electrophoresis mobility to the y-type HMW glutenin subunit of hexaploid wheat was observed in two accessions of C. delileana by SDS-PAGE analyses of the total storage protein fractions. It was confirmed by sequencing and expression analysis that this prolamine subunit was an x-type subunit. The amino acid sequence of this subunit had the similar typical structure to those of x-type HMW glutenin genes previously described in wheat. An in-frame stop codon was found in the coding sequences of y-type prolamine subunits. It was found by specifically extraction of HMW prolamines and sequence analysis that the coding regions of Ky prolamine subunit gene is very likely to be not expressed as a full-length protein. Phylogenetic analysis indicated that the Kx subunit could be clustered together with 1Ax1 subunit by an interior paralleled branch, and Ky subunit (inactive) was most closely related to the 1Ay subunit. The coding sequences of Kx subunit could successfully be expressed in bacterial expression system, and the expressed protein had the same electrophoresis mobility as the Kx subunit from the seed of C. delileana. It was the first time that the HMW prolamines subunits encoded by K genome of C. delileana were characterized.
Collapse
Affiliation(s)
- Zhi-Fu Guo
- Triticeae Research Institute, Sichuan Agricultural University, Dujiangyan, China.
| | | | | | | | | |
Collapse
|
27
|
Zhang Y, Li Q, Yan Y, Zheng J, An X, Xiao Y, Wang A, Pei Y, Wang H, Hsam SLK, Zeller FJ. Molecular characterization and phylogenetic analysis of a novel glutenin gene (Dy10.1t) fromAegilops tauschii. Genome 2006; 49:735-45. [PMID: 16936782 DOI: 10.1139/g06-032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel y-type high molecular mass glutenin subunit (HMM-GS) possessing a mobility that is slightly slower than that of the subunit Dy10 obtained by SDS–PAGE, named Dy10.1t, in the wild wheat Aegilops tauschii was identified by 1- and 2-dimensional gel electrophoresis, capillary electrophoresis, and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI–TOF–MS). The gene encoding the HMM subunit Dy10.1twas amplified with allele-specific PCR primers, and the amplified products were cloned and sequenced. The coding domain of the Dy10.1tsubunit gene consisted of 1980 bp encoding a protein of 658 residues with an Mrsof 68 611 Da, which was similar to the Mrsdetermined by MALDI–TOF–MS. The deduced amino acid sequence indicated that Dy10.1tsubunit displayed a greater similarity to the Dy12 subunit, differing by only 8 amino acid substitutions. Six coding region single-nucleotide polymorphisms were discovered in the Dy10.1tgene by multiple alignments (1 per 330 bp), 1 in the N-terminal domain and the others in the central repeats. Five of them resulted in residue substitutions, whereas 3 created enzyme site changes. The homology and neighbour-joining trees constructed from code domain sequences of 20 x- and y-type glutenin genes from different Triticum species separated into 2 halves, which corresponded to the x-type and y-type HMM glutenin alleles. Phylogenetic analysis revealed that the Glu-1 gene duplication event probably occurred at about 16.83 million years ago, whereas the divergence times of A, B, and D genomes within x-type and y-type halves were before 7.047 and 10.54 million years ago, respectively.Key words: HMW glutenin genes, MALDI-TOF-MS, AS-PCR, cSNP, phylogenetic analysis, Aegilops tauschii.
Collapse
Affiliation(s)
- Yanzhen Zhang
- Key Laboratoty of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Isolation and Sequence Analysis of HMW Glutenin Subunit 1Dy10.1 Ecoding Gene from Xinjiang Wheat (Triticum petropavlovskyi Udacz. et Migusch). ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1671-2927(06)60023-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Pestsova EG, Börner A, Röder MS. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:634-47. [PMID: 16341683 DOI: 10.1007/s00122-005-0166-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/17/2005] [Indexed: 05/05/2023]
Abstract
A set of 84 bread wheat lines, each containing a single homozygous introgression of the Aegilops tauschii genome was produced in the 'Chinese Spring' background via backcrossing of the D-genome chromosome substitution lines 'Chinese Spring'/Sears's 'Synthetic 6x' with the recurrent parent and subsequent selfing. The development of the lines was accompanied by microsatellite marker assisted selection. With the exception of three telomeric regions at chromosomes 1DL, 4DL and 7DS, and a region of less than 24 cM on the chromosome arm 3DL, the genome of Ae. tauschii is fully represented in these lines. The newly developed lines were used for the discovery of morphological and agronomical quantitative trait loci (QTLs) from the wild species. Fifty-two introgression lines were grown in the field and evaluated for six traits including flowering time, plant height, ear length, spikelet number, fertility and grain weight per ear. Seventeen significant QTLs were detected, Ae. tauschii contributed favourable alleles at nine loci influencing five traits. The whole set of 84 homozygous lines provides a tool for further testing the effects and stability of the detected QTLs and for the evaluation of new traits.
Collapse
Affiliation(s)
- Elena G Pestsova
- Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany.
| | | | | |
Collapse
|
30
|
GUO ZHIFU, YAN ZEHONG, WANG JIRUI, WEI YUMING, ZHENG YOULIANG. Characterization of HMW prolamines and their coding sequences from Crithopsis delileana. Hereditas 2005. [DOI: 10.1111/j.2005.0018-0661.01916.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|