1
|
Singh C, Yadav S, Khare V, Gupta V, Kamble UR, Gupta OP, Kumar R, Saini P, Bairwa RK, Khobra R, Sheoran S, Kumar S, Kurhade AK, Mishra CN, Gupta A, Tyagi BS, Ahlawat OP, Singh G, Tiwari R. Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2855. [PMID: 39458802 PMCID: PMC11511103 DOI: 10.3390/plants13202855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In response to the escalating challenges posed by unpredictable environmental conditions, the pursuit of early maturation in bread wheat has emerged as a paramount research endeavor. This comprehensive review delves into the multifaceted landscape of strategies and implications surrounding the unlocking of early maturation in bread wheat varieties. Drawing upon a synthesis of cutting-edge research in genetics, physiology, and environmental science, this review elucidates the intricate mechanisms underlying early maturation and its potential ramifications for wheat cultivation in dynamic environments. By meticulously analyzing the genetic determinants, physiological processes, and environmental interactions shaping early maturation, this review offers valuable insights into the complexities of this trait and its relevance in contemporary wheat breeding programs. Furthermore, this review critically evaluates the trade-offs inherent in pursuing early maturation, navigating the delicate balance between accelerated development and optimal yield potential. Through a meticulous examination of both challenges and opportunities, this review provides a comprehensive framework for researchers, breeders, and agricultural stakeholders to advance our understanding and utilization of early maturation in bread wheat cultivars, ultimately fostering resilience and sustainability in wheat production systems worldwide.
Collapse
Affiliation(s)
- Charan Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sapna Yadav
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Vikrant Khare
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vikas Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Umesh R. Kamble
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ravindra Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Pawan Saini
- Central Sericultural Research and Training Institute, Pampore 192121, India
| | - Rakesh K. Bairwa
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rinki Khobra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sonia Sheoran
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Satish Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ankita K. Kurhade
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Chandra N. Mishra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Arun Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Bhudeva S. Tyagi
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Ahlawat
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Gyanendra Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ratan Tiwari
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| |
Collapse
|
2
|
Ahmed MIY, Gorafi YSA, Kamal NM, Balla MY, Tahir ISA, Zheng L, Kawakami N, Tsujimoto H. Mining Aegilops tauschii genetic diversity in the background of bread wheat revealed a novel QTL for seed dormancy. FRONTIERS IN PLANT SCIENCE 2023; 14:1270925. [PMID: 38107013 PMCID: PMC10723804 DOI: 10.3389/fpls.2023.1270925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Due to the low genetic diversity in the current wheat germplasm, gene mining from wild relatives is essential to develop new wheat cultivars that are more resilient to the changing climate. Aegilops tauschii, the D-genome donor of bread wheat, is a great gene source for wheat breeding; however, identifying suitable genes from Ae. tauschii is challenging due to the different morphology and the wide intra-specific variation within the species. In this study, we developed a platform for the systematic evaluation of Ae. tauschii traits in the background of the hexaploid wheat cultivar 'Norin 61' and thus for the identification of QTLs and genes. To validate our platform, we analyzed the seed dormancy trait that confers resistance to preharvest sprouting. We used a multiple synthetic derivative (MSD) population containing a genetic diversity of 43 Ae. tauschii accessions representing the full range of the species. Our results showed that only nine accessions in the population provided seed dormancy, and KU-2039 from Afghanistan had the highest level of seed dormancy. Therefore, 166 backcross inbred lines (BILs) were developed by crossing the synthetic wheat derived from KU-2039 with 'Norin 61' as the recurrent parent. The QTL mapping revealed one novel QTL, Qsd.alrc.5D, associated with dormancy explaining 41.7% of the phenotypic variation and other five unstable QTLs, two of which have already been reported. The Qsd.alrc.5D, identified for the first time within the natural variation of wheat, would be a valuable contribution to breeding after appropriate validation. The proposed platform that used the MSD population derived from the diverse Ae. tauschii gene pool and recombinant inbred lines proved to be a valuable platform for mining new and important QTLs or alleles, such as the novel seed dormancy QTL identified here. Likewise, such a platform harboring genetic diversity from wheat wild relatives could be a useful source for mining agronomically important traits, especially in the era of climate change and the narrow genetic diversity within the current wheat germplasm.
Collapse
Affiliation(s)
| | - Yasir Serag Alnor Gorafi
- International Platform for Dryland Research and Education, Tottori University, Tottori, Japan
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
| | - Nasrein Mohamed Kamal
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Mohammed Yousif Balla
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Izzat Sidahmed Ali Tahir
- Gezira Research Station, Agricultural Research Corporation (ARC), Wad-Medani, Sudan
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | | |
Collapse
|
3
|
Itam MO, Gorafi YSA, Tahir ISA, Tsujimoto H. Genetic variation in drought resilience-related traits among wheat multiple synthetic derivative lines: insights for climate resilience breeding. BREEDING SCIENCE 2021; 71:435-443. [PMID: 34912170 PMCID: PMC8661488 DOI: 10.1270/jsbbs.20162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/18/2021] [Indexed: 05/03/2023]
Abstract
Twenty-four wheat lines, developed by Aegilops tauschii Coss. introgressions and previously selected for heat or salinity stress tolerance, were evaluated under a drought-rewatering-drought cycle for two years. The objective was to select breeding lines that are resilient to more than one abiotic stress. The experiment was designed in alpha lattice with three replications. Drought was imposed by withholding water during flowering. The results revealed considerable genetic variability in physio-agronomic traits, reflecting the variation in the introgressed segments. High heritability estimates (above 47%) were recorded for most traits, including days to 50% heading, plant height, and thousand-grain weight, indicating the genetic control of these traits which may be useful for cultivar development. The trait-trait correlations within and between water regimes highlighted a strong association among the genetic factors controlling these traits. Some lines exhibited superior performance in terms of stress tolerance index and mean productivity compared with their backcross parent and elite cultivars commonly grown in hot and dry areas. Graphical genotyping revealed unique introgressed segments on chromosomes 4B, 6B, 2D, and 3D in some drought-resilient lines which may be linked to drought resilience. Therefore, we recommend these lines for further breeding to develop climate-resilient wheat varieties.
Collapse
Affiliation(s)
- Michael O. Itam
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Yasir S. A. Gorafi
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan
- Agricultural Research Corporation, Wheat research Program, Wad Medani P.O. Box 126, Sudan
- Corresponding author (e-mail: )
| | - Izzat S. A. Tahir
- Agricultural Research Corporation, Wheat research Program, Wad Medani P.O. Box 126, Sudan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori 680-0001, Japan
| |
Collapse
|
4
|
Semagn K, Iqbal M, Chen H, Perez-Lara E, Bemister DH, Xiang R, Zou J, Asif M, Kamran A, N'Diaye A, Randhawa H, Pozniak C, Spaner D. Physical Mapping of QTL in Four Spring Wheat Populations under Conventional and Organic Management Systems. I. Earliness. PLANTS 2021; 10:plants10050853. [PMID: 33922551 PMCID: PMC8144964 DOI: 10.3390/plants10050853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/08/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
In previous studies, we reported quantitative trait loci (QTL) associated with the heading, flowering, and maturity time in four hard red spring wheat recombinant inbred line (RIL) populations but the results are scattered in population-specific genetic maps, which is challenging to exploit efficiently in breeding. Here, we mapped and characterized QTL associated with these three earliness traits using the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map. Our data consisted of (i) 6526 single nucleotide polymorphisms (SNPs) and two traits evaluated at five conventionally managed environments in the 'Cutler' × 'AC Barrie' population; (ii) 3158 SNPs and two traits evaluated across three organic and seven conventional managements in the 'Attila' × 'CDC Go' population; (iii) 5731 SilicoDArT and SNP markers and the three traits evaluated at four conventional and organic management systems in the 'Peace' × 'Carberry' population; and (iv) 1058 SNPs and two traits evaluated across two conventionally and organically managed environments in the 'Peace' × 'CDC Stanley' population. Using composite interval mapping, the phenotypic data across all environments, and the IWGSC RefSeq v2.0 physical maps, we identified a total of 44 QTL associated with days to heading (11), flowering (10), and maturity (23). Fifteen of the 44 QTL were common to both conventional and organic management systems, and the remaining QTL were specific to either the conventional (21) or organic (8) management systems. Some QTL harbor known genes, including the Vrn-A1, Vrn-B1, Rht-A1, and Rht-B1 that regulate photoperiodism, flowering time, and plant height in wheat, which lays a solid basis for cloning and further characterization.
Collapse
Affiliation(s)
- Kassa Semagn
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Muhammad Iqbal
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Hua Chen
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agronomy, School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
| | - Enid Perez-Lara
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Darcy H Bemister
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Rongrong Xiang
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jun Zou
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Muhammad Asif
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Department of Agronomy, 2004 Throckmorton Plant Science Center, Kansas State University, Manhattan, KS 66506, USA
- Heartland Plant Innovations, Kansas Wheat Innovation Center, 1990 Kimball Avenue, Manhattan, KS 66502, USA
| | - Atif Kamran
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Seed Centre, Department of Botany, The University of Punjab, New Campus, Lahore 54590, Pakistan
| | - Amidou N'Diaye
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Harpinder Randhawa
- Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Curtis Pozniak
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Dean Spaner
- Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
5
|
Ullah S, Randhawa IAS, Trethowan R. Genome-wide association study of multiple traits linked to heat tolerance in emmer-derived hexaploid wheat genotypes. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:29. [PMID: 37309354 PMCID: PMC10236052 DOI: 10.1007/s11032-021-01222-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/17/2021] [Indexed: 06/13/2023]
Abstract
Heat stress tolerance in plants is a complex trait controlled by multiple genes of minor effect which are influenced by the environment and this makes breeding and selection complicated. Emmer wheat (Triticum dicoccon Schrank) carries valuable diversity that can be used to improve the heat tolerance of modern bread wheat. A diverse set of emmer-based genotypes was developed by crossing emmer wheat with hexaploid wheat. These materials, along with their hexaploid recurrent parents and commercial cultivars, were evaluated at optimum (E1) and heat stressed (E2) sowing times in the field for three consecutive years (2014-2016). The material was genotyped using the Infinium iSelect SNP 90K SNP Assay. The phenotypic data were combined across years within each sowing time and best linear unbiased estimators calculated for each genotype in each environment. These estimates were used for GWAS analysis. Significant phenotypic and genotypic variation was observed for all traits. A total of 125 and 142 marker-trait associations (MTAs) were identified in E1 and E2, respectively. The highest number of MTAs were observed on the A genome (106), followed by the B (105) and D (56) genomes. MTAs with pleiotropic effects within and across the environments were observed. Many of the MTAs found were reported previously for various traits, and a few significant MTAs under heat stress were new and linked to emmer genome. Genomic regions identified on chromosomes 2B and 3A had a significant positive impact on grain yield under stress with a 7% allelic effect. Genomic regions on chromosomes 1A and 4B contributed 11% and 9% of the variation for thousand kernel weight (TKW) under heat stress respectively. Following fine mapping, these regions could be used for marker-assisted selection to improve heat tolerance in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01222-3.
Collapse
Affiliation(s)
- Smi Ullah
- School of Life and Environmental Sciences, Plant Breeding Institute and Sydney Institute of Agriculture, The University of Sydney, Narrabri, New South Wales 2390 Australia
| | - Imtiaz A. S. Randhawa
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343 Australia
| | - Richard Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute and Sydney Institute of Agriculture, The University of Sydney, Narrabri, New South Wales 2390 Australia
- School of Life and Environmental Sciences, Plant Breeding Institute and Sydney Institute of Agriculture, The University of Sydney, Cobbitty, New South Wales 2570 Australia
| |
Collapse
|
6
|
Bogard M, Hourcade D, Piquemal B, Gouache D, Deswartes JC, Throude M, Cohan JP. Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1085-1103. [PMID: 33068400 DOI: 10.1093/jxb/eraa477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
Wheat phenology allows escape from seasonal abiotic stresses including frosts and high temperatures, the latter being forecast to increase with climate change. The use of marker-based crop models to identify ideotypes has been proposed to select genotypes adapted to specific weather and management conditions and anticipate climate change. In this study, a marker-based crop model for wheat phenology was calibrated and tested. Climate analysis of 30 years of historical weather data in 72 locations representing the main wheat production areas in France was performed. We carried out marker-based crop model simulations for 1019 wheat cultivars and three sowing dates, which allowed calculation of genotypic stress avoidance frequencies of frost and heat stress and identification of ideotypes. The phenology marker-based crop model allowed prediction of large genotypic variations for the beginning of stem elongation (GS30) and heading date (GS55). Prediction accuracy was assessed using untested genotypes and environments, and showed median genotype prediction errors of 8.5 and 4.2 days for GS30 and GS55, respectively. Climate analysis allowed the definition of a low risk period for each location based on the distribution of the last frost and first heat days. Clustering of locations showed three groups with contrasting levels of frost and heat risks. Marker-based crop model simulations showed the need to optimize the genotype depending on sowing date, particularly in high risk environments. An empirical validation of the approach showed that it holds good promises to improve frost and heat stress avoidance.
Collapse
Affiliation(s)
- Matthieu Bogard
- Arvalis - Institut du Végétal, 6 Chemin de la côte vieille, Baziège, France
| | - Delphine Hourcade
- Arvalis - Institut du Végétal, 6 Chemin de la côte vieille, Baziège, France
| | - Benoit Piquemal
- Arvalis - Institut du Végétal, station expérimentale, Boigneville, France
| | | | - Jean-Charles Deswartes
- Arvalis - Institut du Végétal, Route de Châteaufort ZA des graviers, Villiers-le-Bâcle, France
| | - Mickael Throude
- Biogemma: Centre de Recherche de Chappes, Route d'Ennezat, CS, Chappes, France
| | - Jean-Pierre Cohan
- Arvalis - Institut du Végétal, Station expérimentale de La Jaillière, La Chapelle Saint-Sauveur, Loireauxence, France
| |
Collapse
|
7
|
Akram S, Arif MAR, Hameed A. A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.). J Appl Genet 2020; 62:27-41. [PMID: 33128382 DOI: 10.1007/s13353-020-00593-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 01/20/2023]
Abstract
Wheat is a foremost food grain of Pakistan and occupies a vital position in agricultural policies of the country. Wheat demand will be increased by 60% by 2050 which is a serious concern to meet this demand. Conventional breeding approaches are not enough to meet the demand of growing human population. It is paramount to integrate underutilized genetic diversity into wheat gene pool through efficient and accurate breeding tools and technology. In this study, we present the genetic analysis of a 312 diverse pre-breeding lines using DArT-seq SNPs seeking to elucidate the genetic components of emergence percentage, heading time, plant height, lodging, thousand kernel weight, and yield (Yd) which resulted in detection of 201 significant (p value < 10-3) and 61 highly significant associations (p value < 1.45 × 10-4). More importantly, chromosomes 1B and 2A carried loci linked to Yd in two different seasons, and an increase of up to 8.20% is possible in Yd by positive allele mining. We identified seven lines with > 4 positive alleles for Yd whose pedigree carried Aegilops squarrosa as one of the parents providing evidence that Aegilops species, apart from imparting resistance against biotic stresses, may also provide alleles for yield enhancement.
Collapse
Affiliation(s)
- Saba Akram
- Nuclear Institute for Agriculture and Biology College. Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, Pakistan
| | - Mian Abdur Rehman Arif
- Nuclear Institute for Agriculture and Biology College. Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, Pakistan.
| | - Amjad Hameed
- Nuclear Institute for Agriculture and Biology College. Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
8
|
Zaïm M, Kabbaj H, Kehel Z, Gorjanc G, Filali-Maltouf A, Belkadi B, Nachit MM, Bassi FM. Combining QTL Analysis and Genomic Predictions for Four Durum Wheat Populations Under Drought Conditions. Front Genet 2020; 11:316. [PMID: 32435259 PMCID: PMC7218065 DOI: 10.3389/fgene.2020.00316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/16/2020] [Indexed: 11/28/2022] Open
Abstract
Durum wheat is an important crop for the human diet and its consumption is gaining popularity. In order to ensure that durum wheat production maintains the pace with the increase in demand, it is necessary to raise productivity by approximately 1.5% per year. To deliver this level of annual genetic gain the incorporation of molecular strategies has been proposed as a key solution. Here, four RILs populations were used to conduct QTL discovery for grain yield (GY) and 1,000 kernel weight (TKW). A total of 576 individuals were sown at three locations in Morocco and one in Lebanon. These individuals were genotyped by sequencing with 3,202 high-confidence polymorphic markers, to derive a consensus genetic map of 2,705.7 cM, which was used to impute any missing data. Six QTLs were found to be associated with GY and independent from flowering time on chromosomes 2B, 4A, 5B, 7A and 7B, explaining a phenotypic variation (PV) ranging from 4.3 to 13.4%. The same populations were used to train genomic prediction models incorporating the relationship matrix, the genotype by environment interaction, and marker by environment interaction, to reveal significant advantages for models incorporating the marker effect. Using training populations (TP) in full sibs relationships with the validation population (VP) was shown to be the only effective strategy, with accuracies reaching 0.35–0.47 for GY. Reducing the number of markers to 10% of the whole set, and the TP size to 20% resulted in non-significant changes in accuracies. The QTLs identified were also incorporated in the models as fixed effects, showing significant accuracy gain for all four populations. Our results confirm that the prediction accuracy depends considerably on the relatedness between TP and VP, but not on the number of markers and size of TP used. Furthermore, feeding the model with information on markers associated with QTLs increased the overall accuracy.
Collapse
Affiliation(s)
- Meryem Zaïm
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| | - Hafssa Kabbaj
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| | - Zakaria Kehel
- ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| | - Gregor Gorjanc
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelkarim Filali-Maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Bouchra Belkadi
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Miloudi M Nachit
- ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| | - Filippo M Bassi
- ICARDA, Biodiversity and Integrated Gene Management, Rabat, Morocco
| |
Collapse
|
9
|
Royo C, Dreisigacker S, Soriano JM, Lopes MS, Ammar K, Villegas D. Allelic Variation at the Vernalization Response ( Vrn-1) and Photoperiod Sensitivity ( Ppd-1) Genes and Their Association With the Development of Durum Wheat Landraces and Modern Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:838. [PMID: 32655598 PMCID: PMC7325763 DOI: 10.3389/fpls.2020.00838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/26/2020] [Indexed: 05/17/2023]
Abstract
Wheat adaptability to a wide range of environmental conditions is mostly determined by allelic diversity within genes controlling vernalization requirement (Vrn-1) and photoperiod sensitivity (Ppd-1). We characterized a panel of 151 durum wheat Mediterranean landraces and 20 representative locally adapted modern cultivars for their allelic composition at Vrn-1 and Ppd-1 gene using diagnostic molecular markers and studied their association with the time needed to reach six growth stages under field conditions over 6 years. Compared with the more diverse and representative landrace collection, the set of modern cultivars were characterized by a reduction of 50% in the number of allelic variants at the Vrn-A1 and Vrn-B1 genes, and the high frequency of mutant alleles conferring photoperiod insensitivity at Ppd-A1, which resulted on a shorter cycle length. Vrn-A1 played a greater role than Vrn-B1 in regulating crop development (Vrn-A1 > Vrn-B1). The results suggest that mutations in the Vrn-A1 gene may have been the most important in establishing the spring growth habit of Mediterranean landraces and modern durum cultivars. The allele Vrn-A1d, found in 10 landraces, delayed development. The relative effects of single Vrn-A1 alleles on delaying the development of the landraces were vrn-A1 = Vrn-A1d > Vrn-A1b > Vrn-A1c. Allele vrn-B1 was present in all except two landraces and in all modern cultivars. The null allele at Ppd-A1 (a deletion first observed in the French bread wheat cultivar 'Capelle-Desprez') was found for the first time in durum wheat in the present study that identified it in 30 landraces from 13 Mediterranean countries. Allele Ppd-A1a (GS105) was detected in both germplasm types, while the allele Ppd-A1a (GS100) was found only in modern North American and Spanish cultivars. The relative effect of single Ppd-A1 alleles on extending phenological development was Ppd-A1(DelCD) > Ppd-A1b > Ppd-A1a (GS105) > Ppd-A1a (GS100). Sixteen Vrn-1+Ppd-1 allelic combinations were found in landraces and six in modern cultivars, but only three were common to both panels. Differences in the number of days to reach anthesis were 10 days in landraces and 3 days in modern cultivars. Interactive effects between Vrn-1 and Ppd-1 genes were detected.
Collapse
Affiliation(s)
- Conxita Royo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
- *Correspondence: Conxita Royo,
| | | | - Jose Miguel Soriano
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Marta S. Lopes
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Dolors Villegas
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| |
Collapse
|
10
|
Ladejobi O, Mackay IJ, Poland J, Praud S, Hibberd JM, Bentley AR. Reference Genome Anchoring of High-Density Markers for Association Mapping and Genomic Prediction in European Winter Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:1278. [PMID: 31781130 PMCID: PMC6857554 DOI: 10.3389/fpls.2019.01278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 09/12/2019] [Indexed: 05/28/2023]
Abstract
In this study, we anchored genotyping-by-sequencing data to the International Wheat Genome Sequencing Consortium Reference Sequence v1.0 assembly to generate over 40,000 high quality single nucleotide polymorphism markers on a panel of 376 elite European winter wheat varieties released between 1946 and 2007. We compared association mapping and genomic prediction accuracy for a range of productivity traits with previous results based on lower density dominant DArT markers. The results demonstrate that the availability of RefSeq v1.0 supports higher precision trait mapping and provides the density of markers required to obtain accurate predictions of traits controlled by multiple small effect loci, including grain yield.
Collapse
Affiliation(s)
- Olufunmilayo Ladejobi
- The John Bingham Laboratory, NIAB, Cambridge, United Kingdom
- Department of Plant Sciences, The University of Cambridge, Cambridge, United Kingdom
| | - Ian J. Mackay
- The John Bingham Laboratory, NIAB, Cambridge, United Kingdom
- IMplant Consultancy Ltd., Chelmsford, United Kingdom
| | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | | | - Julian M. Hibberd
- Department of Plant Sciences, The University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
11
|
Li T, Ma J, Zou Y, Chen G, Ding P, Zhang H, Yang C, Mu Y, Tang H, Liu Y, Jiang Q, Chen G, Qi P, Wei Y, Zheng Y, Lan X. Quantitative trait loci for seeding root traits and the relationships between root and agronomic traits in common wheat. Genome 2019; 63:27-36. [PMID: 31580743 DOI: 10.1139/gen-2019-0116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A completely developed and vigorous root system can provide a stable platform for aboveground plant organs. To identify loci controlling root traits that could be used in wheat (Triticum aestivum L.) breeding, 199 recombinant inbred lines were used to measure and analyze eight root traits. A total of 18 quantitative trait loci (QTL) located on chromosomes 1A, 2A, 2B, 2D, 4B, 4D, 6A, 7A, and 7B were identified. The phenotypic variation explained by these 18 QTL ranged from 3.27% to 11.75%, and the logarithm of odds scores ranged from 2.50 to 6.58. A comparison of physical intervals indicated several new QTL for root traits were identified. In addition, significant correlations between root and agronomic traits were detected and discussed. The results presented in this study, along with those of previous reports, suggest that chromosomes 2 and 7 likely play important roles in the growth and development of wheat roots.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yaya Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Puyang Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Han Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Congcong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, P.R. China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| |
Collapse
|
12
|
Kidane YG, Gesesse CA, Hailemariam BN, Desta EA, Mengistu DK, Fadda C, Pè ME, Dell'Acqua M. A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1380-1393. [PMID: 30575264 PMCID: PMC6576139 DOI: 10.1111/pbi.13062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 05/11/2023]
Abstract
The Ethiopian plateau hosts thousands of durum wheat (Triticum turgidum subsp. durum) farmer varieties (FV) with high adaptability and breeding potential. To harness their unique allelic diversity, we produced a large nested association mapping (NAM) population intercrossing fifty Ethiopian FVs with an international elite durum wheat variety (Asassa). The Ethiopian NAM population (EtNAM) is composed of fifty interconnected bi-parental families, totalling 6280 recombinant inbred lines (RILs) that represent both a powerful quantitative trait loci (QTL) mapping tool, and a large pre-breeding panel. Here, we discuss the molecular and phenotypic diversity of the EtNAM founder lines, then we use an array featuring 13 000 single nucleotide polymorphisms (SNPs) to characterize a subset of 1200 EtNAM RILs from 12 families. Finally, we test the usefulness of the population by mapping phenology traits and plant height using a genome wide association (GWA) approach. EtNAM RILs showed high allelic variation and a genetic makeup combining genetic diversity from Ethiopian FVs with the international durum wheat allele pool. EtNAM SNP data were projected on the fully sequenced AB genome of wild emmer wheat, and were used to estimate pairwise linkage disequilibrium (LD) measures that reported an LD decay distance of 7.4 Mb on average, and balanced founder contributions across EtNAM families. GWA analyses identified 11 genomic loci individually affecting up to 3 days in flowering time and more than 1.6 cm in height. We argue that the EtNAM is a powerful tool to support the production of new durum wheat varieties targeting local and global agriculture.
Collapse
Affiliation(s)
- Yosef G. Kidane
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Bioversity InternationalAddis AbabaEthiopia
| | - Cherinet A. Gesesse
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Amhara Regional Agricultural Research Institute (ARARI)Adet Agricultural Research CenterBahir DarEthiopia
| | | | - Ermias A. Desta
- Amhara Regional Agricultural Research Institute (ARARI)Adet Agricultural Research CenterBahir DarEthiopia
| | - Dejene K. Mengistu
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
- Department of Dryland Crop and Horticultural SciencesMekelle UniversityMekelleEthiopia
| | | | - Mario Enrico Pè
- Institute of Life SciencesScuola Superiore Sant'AnnaPisaItaly
| | | |
Collapse
|
13
|
Xu J, Dai X, Ramasamy RK, Wang L, Zhu T, McGuire PE, Jorgensen CM, Dehghani H, Gulick PJ, Luo MC, Müller HG, Dvorak J. Aegilops tauschii Genome Sequence: A Framework for Meta-analysis of Wheat QTLs. G3 (BETHESDA, MD.) 2019; 9:841-853. [PMID: 30670607 PMCID: PMC6404623 DOI: 10.1534/g3.118.200921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/12/2019] [Indexed: 12/22/2022]
Abstract
Numerous quantitative trait loci (QTL) have been mapped in tetraploid and hexaploid wheat and wheat relatives, mostly with simple sequence repeat (SSR) or single nucleotide polymorphism (SNP) markers. To conduct meta-analysis of QTL requires projecting them onto a common genomic framework, either a consensus genetic map or genomic sequence. The latter strategy is pursued here. Of 774 QTL mapped in wheat and wheat relatives found in the literature, 585 (75.6%) were successfully projected onto the Aegilops tauschii pseudomolecules. QTL mapped with SNP markers were more successfully projected (92.2%) than those mapped with SSR markers (66.2%). The QTL were not distributed homogeneously along chromosome arms. Their frequencies increased in the proximal-to-distal direction but declined in the most distal regions and were weakly correlated with recombination rates along the chromosome arms. Databases for projected SSR markers and QTL were constructed and incorporated into the Ae. tauschii JBrowse. To facilitate meta-QTL analysis, eight clusters of QTL were used to estimate standard deviations ([Formula: see text]) of independently mapped QTL projected onto the Ae. tauschii genome sequence. The standard deviations [Formula: see text] were modeled as an exponential decay function of recombination rates along the Ae. tauschii chromosomes. We implemented four hypothesis tests for determining the membership of query QTL. The hypothesis tests and estimation procedure for [Formula: see text] were implemented in a web portal for meta-analysis of projected QTL. Twenty-one QTL for Fusarium head blight resistance mapped on wheat chromosomes 3A, 3B, and 3D were analyzed to illustrate the use of the portal for meta-QTL analyses.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Plant Sciences, University of California, Davis, California
| | - Xiongtao Dai
- Department of Statistics, Iowa State University, Iowa
| | - Ramesh K Ramasamy
- Department of Plant Sciences, University of California, Davis, California
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, California
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, California
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, California
| | - Chad M Jorgensen
- Department of Plant Sciences, University of California, Davis, California
| | - Hamid Dehghani
- Department of Plant Sciences, University of California, Davis, California
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran, and
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California
| | - Hans-Georg Müller
- Department of Statistics, University of California, Davis, California
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, California,
| |
Collapse
|
14
|
Chen L, Du Y, Lu Q, Chen H, Meng R, Cui C, Lu S, Yang Y, Chai Y, Li J, Liu L, Qi X, Li H, Mishina K, Yu F, Hu YG. The Photoperiod-Insensitive Allele Ppd-D1a Promotes Earlier Flowering in Rht12 Dwarf Plants of Bread Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1312. [PMID: 30405643 PMCID: PMC6204387 DOI: 10.3389/fpls.2018.01312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/20/2018] [Indexed: 05/03/2023]
Abstract
The gibberellin-responsive dwarfing gene Rht12 can significantly reduce plant height without changing seedling vigor and substantially increase ear fertility in bread wheat (Triticum aestivum. L). However, Rht12 delays heading date and anthesis date, hindering the use of Rht12 in wheat improvement. To promote early flowering of the Rht12 dwarf plants, the photoperiod-insensitive allele Ppd-D1a was introduced through a cross between Jinmai47 (Ppd-D1a) and Karcagi (Rht12). The results showed that Ppd-D1a can rescue the delaying effect of Rht12 on flowering time and promote earlier flowering by 9.0 days (163.2°Cd) in the Rht12 dwarf plants by shortening the late reproduction phase. Plant height was reduced by Rht12 (43.2%) and Ppd-D1a (10.9%), achieving dwarf plants with higher lodging resistance. Ear fertility, like the grain number per spike, was significantly increased by Rht12 (21.3%), while it was reduced by Ppd-D1a (6.5%). However, thousand kernel weight was significantly reduced by Rht12 (12.9%) but significantly increased by Ppd-D1a (16.9%). Finally, plant yield was increased by 16.4 and 8.2%, and harvest index was increased by 24.9 and 15.4% in the Rht12 dwarf lines and tall lines with Ppd-D1a, respectively. Clearly, there was an additive interaction between Rht12 and Ppd-D1 and the introduction of Ppd-D1a advanced the flowering time and improved the yield traits of Rht12 dwarf plants, suggesting that the combination of Rht12 and Ppd-D1a would be conducive to the successful use of Rht12 in wheat breeding programs.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yingying Du
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Qiumei Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Hua Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ruishuang Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Chunge Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yongmao Chai
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Juan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Lulu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Xiangning Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Hang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
| | - Kohei Mishina
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Fei Yu
- College of Life Sciences, Northwest A&F University, Xianyang, China
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Xianyang, China
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Xianyang, China
| |
Collapse
|
15
|
Arjona JM, Royo C, Dreisigacker S, Ammar K, Villegas D. Effect of Ppd-A1 and Ppd-B1 Allelic Variants on Grain Number and Thousand Kernel Weight of Durum Wheat and Their Impact on Final Grain Yield. FRONTIERS IN PLANT SCIENCE 2018; 9:888. [PMID: 30008727 PMCID: PMC6033988 DOI: 10.3389/fpls.2018.00888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/07/2018] [Indexed: 05/16/2023]
Abstract
The main yield components in durum wheat are grain number per unit area (GN) and thousand kernel weight (TKW), both of which are affected by environmental conditions. The most critical developmental stage for their determination is flowering time, which partly depends on photoperiod sensitivity genes at Ppd-1 loci. Fifteen field experiments, involving 23 spring durum wheat genotypes containing all known allelic variants at the PHOTOPERIOD RESPONSE LOCUS (Ppd-A1 and Ppd-B1) were carried out at three sites at latitudes ranging from 41° to 27° N (Spain, Mexico-north, and Mexico-south, the latter in spring planting). Allele GS100 at Ppd-A1, which causes photoperiod insensitivity and results in early-flowering genotypes, tended to increase TKW and yield, albeit not substantially. Allele Ppd-B1a, also causing photoperiod insensitivity, did not affect flowering time or grain yield. Genotypes carrying the Ppd-B1b allele conferring photoperiod sensitivity had consistently higher GN, which did not translate into higher yield due to under-compensation in TKW. This increased GN was due to a greater number of grains spike-1 as a result of a higher number of spikelets spike-1. Daylength from double ridge to terminal spikelet stage was strongly and positively associated with the number of spikelets spike-1 in Spain. This association was not found in the Mexico sites, thereby indicating that Ppd-B1b had an intrinsic effect on spikelets spike-1 independently of environmental cues. Our results suggest that, in environments where yield is limited by the incapacity to produce a high GN, selecting for Ppd-B1b may be advisable.
Collapse
Affiliation(s)
- Jose M. Arjona
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | - Conxita Royo
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| | | | - Karim Ammar
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Dolors Villegas
- Sustainable Field Crops Programme, Institute for Food and Agricultural Research and Technology (IRTA), Lleida, Spain
| |
Collapse
|
16
|
Würschum T, Langer SM, Longin CFH, Tucker MR, Leiser WL. A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin. PLANT, CELL & ENVIRONMENT 2018; 41:1407-1416. [PMID: 29480543 DOI: 10.1111/pce.13167] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
The broad adaptability of heading time has contributed to the global success of wheat in a diverse array of climatic conditions. Here, we investigated the genetic architecture underlying heading time in a large panel of 1,110 winter wheat cultivars of worldwide origin. Genome-wide association mapping, in combination with the analysis of major phenology loci, revealed a three-component system that facilitates the adaptation of heading time in winter wheat. The photoperiod sensitivity locus Ppd-D1 was found to account for almost half of the genotypic variance in this panel and can advance or delay heading by many days. In addition, copy number variation at Ppd-B1 was the second most important source of variation in heading, explaining 8.3% of the genotypic variance. Results from association mapping and genomic prediction indicated that the remaining variation is attributed to numerous small-effect quantitative trait loci that facilitate fine-tuning of heading to the local climatic conditions. Collectively, our results underpin the importance of the two Ppd-1 loci for the adaptation of heading time in winter wheat and illustrate how the three components have been exploited for wheat breeding globally.
Collapse
Affiliation(s)
- Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Simon M Langer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - C Friedrich H Longin
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Matthew R Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
17
|
Kiseleva AA, Potokina EK, Salina EA. Features of Ppd-B1 expression regulation and their impact on the flowering time of wheat near-isogenic lines. BMC PLANT BIOLOGY 2017; 17:172. [PMID: 29143607 PMCID: PMC5688470 DOI: 10.1186/s12870-017-1126-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND Photoperiod insensitive Ppd-1a alleles determine early flowering of wheat. Increased expression of homoeologous Ppd-D1a and Ppd-A1a result from deletions in the promoter region, and elevated expression of Ppd-B1a is determined by an increased copy number. RESULTS In this study, using bread wheat cultivars Sonora and PSL2, which contrast in flowering time, and near-isogenic lines resulting from their cross, "Ppd-m" and "Ppd-w" with Ppd-B1a introgressed from Sonora, we investigated the putative factors that influence Ppd-B1a expression. By analyzing the Ppd-B1a three distinct copies, we identified an indel and the two SNPs, which distinguished the investigated allele from other alleles with a copy number variation. We studied the expression of the Ppd-A1, Ppd-B1a, and Ppd-D1 genes along with genes that are involved in light perception (PhyA, PhyB, PhyC) and the flowering initiation (Vrn-1, TaFT1) and discussed their interactions. Expression of Ppd-B1a in the "Ppd-m" line, which flowered four days earlier than "Ppd-w", was significantly higher. We found PhyC to be up-regulated in lines with Ppd-B1a alleles. Expression of PhyC was higher in "Ppd-m". Microsatellite genotyping demonstrated that in the line "Ppd-m", there is an introgression in the pericentromeric region of chromosome 5B from the early flowering parental Sonora, while the "Ppd-w" does not have this introgression. FHY3/FAR1 is known to be located in this region. Expression of the transcription factor FHY3/FAR1 was higher in the "Ppd-m" line than in "Ppd-w", suggesting that FHY3/FAR1 is important for the wheat flowering time and may cause earlier flowering of "Ppd-m" as compared to "Ppd-w". CONCLUSIONS We propose that there is a positive bidirectional regulation of Ppd-B1a and PhyC with an FHY3/FAR1 contribution. The bidirectional regulation can be proposed for Ppd-A1a and Ppd-D1a. Using in silico analysis, we demonstrated that the specificity of the Ppd-B1 regulation compared to that of homoeologous genes involves not only a copy number variation but also distinct regulatory elements.
Collapse
Affiliation(s)
- Antonina A Kiseleva
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, Russian Federation, 630090.
| | - Elena K Potokina
- N.I. Vavilov Research Institute of Plant Genetic Resources, B.Morskaya Street 42-44, St. Petersburg, Russian Federation, 190000
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
18
|
Marcotuli I, Gadaleta A, Mangini G, Signorile AM, Zacheo SA, Blanco A, Simeone R, Colasuonno P. Development of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat. Int J Mol Sci 2017. [PMID: 28635630 PMCID: PMC5486150 DOI: 10.3390/ijms18061329] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-density genetic linkage maps of crop species are particularly useful in detecting qualitative and quantitative trait loci for important agronomic traits and in improving the power of classical approaches to identify candidate genes. The aim of this study was to develop a high-density genetic linkage map in a durum wheat recombinant inbred lines population (RIL) derived from two elite wheat cultivars and to identify, characterize and correlate Quantitative Trait Loci (QTL) for β-glucan, protein content, grain yield per spike and heading time. A dense map constructed by genotyping the RIL population with the wheat 90K iSelect array included 5444 single nucleotide polymorphism (SNP) markers distributed in 36 linkage groups. Data for β-glucan and protein content, grain yield per spike and heading time were obtained from replicated trials conducted at two locations in southern Italy. A total of 19 QTL were detected in different chromosome regions. In particular, three QTL for β-glucan content were detected on chromosomes 2A and 2B (two loci); eight QTL controlling grain protein content were detected on chromosomes 1B, 2B, 3B (two loci), 4A, 5A, 7A and 7B; seven QTL for grain yield per spike were identified on chromosomes 1A, 2B, 3A (two loci), 3B (two loci) and 6B; and one marker-trait association was detected on chromosome 2A for heading time. The last was co-located with a β-glucan QTL, and the two QTL appeared to be negatively correlated. A genome scan for genomic regions controlling the traits and SNP annotated sequences identified five putative candidate genes involved in different biosynthesis pathways (β-glucosidase, GLU1a; APETALA2, TaAP2; gigantea 3, TaGI3; 14-3-3 protein, Ta14A; and photoperiod sensitivity, Ppd-A1). This study provides additional information on QTL for important agronomic traits that could be useful for marker-assisted breeding to obtain new genotypes with commercial and nutritional relevance.
Collapse
Affiliation(s)
- Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Giacomo Mangini
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Antonio Massimo Signorile
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Silvana Addolorata Zacheo
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Antonio Blanco
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Rosanna Simeone
- Department of Soil, Plant and Food Sciences, Section of Genetic and Plant Breeding, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| | - Pasqualina Colasuonno
- Department of Agricultural and Environmental Science, University of Bari "Aldo Moro", Via G. Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|
19
|
Soriano JM, Malosetti M, Roselló M, Sorrells ME, Royo C. Dissecting the old Mediterranean durum wheat genetic architecture for phenology, biomass and yield formation by association mapping and QTL meta-analysis. PLoS One 2017; 12:e0178290. [PMID: 28542488 PMCID: PMC5444813 DOI: 10.1371/journal.pone.0178290] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/10/2017] [Indexed: 12/01/2022] Open
Abstract
Association mapping was used to identify genome regions affecting yield formation, crop phenology and crop biomass in a collection of 172 durum wheat landraces representative of the genetic diversity of ancient local durum varieties from the Mediterranean Basin. The collection was genotyped with 1,149 DArT markers and phenotyped in Spanish northern and southern locations during three years. A total of 245 significant marker trait associations (MTAs) (P<0.01) were detected. Some of these associations confirmed previously identified quantitative trait loci (QTL) and/or candidate genes, and others are reported for the first time here. Eighty-six MTAs corresponded with yield and yield component traits, 70 to phenology and 89 to biomass production. Twelve genomic regions harbouring stable MTAs (significant in three or more environments) were identified, while five and two regions showed specific MTAs for northern and southern environments, respectively. Sixty per cent of MTAs were located on the B genome and 29% on the A genome. The marker wPt-9859 was detected in 12 MTAs, associated with six traits in four environments and the mean across years. To refine QTL positions, a meta-analysis was performed. A total of 477 unique QTLs were projected onto a durum wheat consensus map and were condensed to 71 meta-QTLs and left 13 QTLs as singletons. Sixty-one percent of QTLs explained less than 10% of the phenotypic variance confirming the high genetic complexity of the traits analysed.
Collapse
Affiliation(s)
- Jose Miguel Soriano
- Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain
| | - Marcos Malosetti
- Biometrics, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Martina Roselló
- Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain
| | - Mark Earl Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States of America
| | - Conxita Royo
- Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), Lleida, Spain
| |
Collapse
|
20
|
Farré A, Sayers L, Leverington-Waite M, Goram R, Orford S, Wingen L, Mumford C, Griffiths S. Application of a library of near isogenic lines to understand context dependent expression of QTL for grain yield and adaptive traits in bread wheat. BMC PLANT BIOLOGY 2016; 16:161. [PMID: 27436187 PMCID: PMC4952066 DOI: 10.1186/s12870-016-0849-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/08/2016] [Indexed: 05/28/2023]
Abstract
BACKGROUND Previous quantitative trait loci (QTLs) studies using the Avalon × Cadenza doubled haploid (DH) population identified eleven QTLs determining plant height, heading date and grain yield. The objectives of this study were: (i) to provide insight into the effects of these QTLs using reciprocal multiple near isogenic lines (NILs) with each pair of alleles compared in both parental backgrounds (Avalon or Cadenza), (ii) quantifying epistasis by looking at the background effects and (iii) predict favourable allelic combinations to develop superior genotypes adapted to a target environment. RESULTS To this aim, a library of 553 BC2 NILs and their recurrent parents were tested over two growing seasons (2012/2013 and 2013/2014). The results obtained in the present study validated the plant height, heading date and grain yield QTLs previously identified. Epistatic interactions were detected for the 6B QTL for plant height and heading date, 3A QTL for heading date and grain yield and 2A QTL for grain yield. CONCLUSION The marker assisted backcrossing strategy used provided an efficient method of resolving QTL for key agronomic traits in wheat as Mendelian factors determining possible epistatic interactions. The study shows that these QTLs are amenable to marker assisted selection, fine mapping, future positional cloning, and physiological trait dissection.
Collapse
Affiliation(s)
- Alba Farré
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH UK
| | - Liz Sayers
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH UK
| | | | - Richard Goram
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH UK
| | - Simon Orford
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH UK
| | - Luzie Wingen
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH UK
| | - Cathy Mumford
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH UK
| | - Simon Griffiths
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH UK
| |
Collapse
|
21
|
Merchuk-Ovnat L, Barak V, Fahima T, Ordon F, Lidzbarsky GA, Krugman T, Saranga Y. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:452. [PMID: 27148287 PMCID: PMC4832586 DOI: 10.3389/fpls.2016.00452] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/22/2016] [Indexed: 05/21/2023]
Abstract
Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690-710 mm) and water-limited (290-320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass-specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.
Collapse
Affiliation(s)
- Lianne Merchuk-Ovnat
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Vered Barak
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Tzion Fahima
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Julius Kuehn-Institute, Institute for Resistance Research and Stress ToleranceQuedlinburg, Germany
| | - Gabriel A. Lidzbarsky
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Tamar Krugman
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
22
|
Kiseleva AA, Shcherban AB, Leonova IN, Frenkel Z, Salina EA. Identification of new heading date determinants in wheat 5B chromosome. BMC PLANT BIOLOGY 2016; 16 Suppl 1:8. [PMID: 26821813 PMCID: PMC4895781 DOI: 10.1186/s12870-015-0688-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Variability of heading date may assist in wheat adaptation to local environments. Thereafter, discovery of new heading date determinants is important for cereal improvement. In this study we used common wheat cultivar Chinese Spring (CS) and the substitution line of CS with 5B chromosome from T. dicoccoides (CS-5Bdic), different in their heading date by two weeks, to detect determinants of heading date on 5B chromosome. RESULTS The possible influence of the VRN-B1 gene, the most powerful regulator of flowering, located on 5B chromosome, to differences in heading time between CS and CS-5Bdic was studied. The sequencing of this gene from CS-5Bdic showed that an insertion of a nucleotide triplet produced an additional amino acid in the corresponding protein. No changes in the transcription levels of each homoeologous VRN-1 loci were found in CS-5Bdic by comparison with CS. To ascertain the loci determining heading date difference, a set of 116 recombinant inbred 5В chromosomal lines as a result of hybridization of CS with CS-5Bdic were developed and their heading dates were estimated. Using the Illumina Infinium 15 k Wheat platform, 379 5B-specific polymorphic markers were detected and a genetic map with 82 skeletal markers was constructed. Phenotype (heading date) - genotype association analysis revealed seventy eight markers in pericentromeric region of 5B chromosome significantly associated with heading date variation. Based on this estimation and synteny with model crop genomes we identified the three best candidate genes: WRKY, ERF/AP2 and FHY3/FAR1. CONCLUSIONS We supposed that the difference in activity of WRKY, ERF/AP2 and/or FHY3/FAR1 transcription factors between CS and CS-5Bdic to be a probable reason for the observed difference in heading dates. Data obtained in this study provide a good basis for the subsequent investigation of heading time pathways in wheat.
Collapse
Affiliation(s)
- Antonina A Kiseleva
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation.
| | - Andrey B Shcherban
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Irina N Leonova
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | - Zeev Frenkel
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences", Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
23
|
Bogard M, Ravel C, Paux E, Bordes J, Balfourier F, Chapman SC, Le Gouis J, Allard V. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5849-65. [PMID: 25148833 PMCID: PMC4203124 DOI: 10.1093/jxb/eru328] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base , representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology.
Collapse
Affiliation(s)
- Matthieu Bogard
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, F-63177 Aubière Cedex, France
| | - Catherine Ravel
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, F-63177 Aubière Cedex, France
| | - Etienne Paux
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, F-63177 Aubière Cedex, France
| | - Jacques Bordes
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, F-63177 Aubière Cedex, France
| | - François Balfourier
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, F-63177 Aubière Cedex, France
| | - Scott C Chapman
- CSIRO, Queensland Bioscience Precinct - St Lucia, 306 Carmody Road, St Lucia QLD 4067, Australia
| | - Jacques Le Gouis
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, F-63177 Aubière Cedex, France
| | - Vincent Allard
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France Université Blaise Pascal, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, F-63177 Aubière Cedex, France
| |
Collapse
|
24
|
Maccaferri M, Cane' MA, Sanguineti MC, Salvi S, Colalongo MC, Massi A, Clarke F, Knox R, Pozniak CJ, Clarke JM, Fahima T, Dubcovsky J, Xu S, Ammar K, Karsai I, Vida G, Tuberosa R. A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping. BMC Genomics 2014; 15:873. [PMID: 25293821 PMCID: PMC4287192 DOI: 10.1186/1471-2164-15-873] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 09/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Durum wheat (Triticum durum Desf.) is a tetraploid cereal grown in the medium to low-precipitation areas of the Mediterranean Basin, North America and South-West Asia. Genomics applications in durum wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for T. durum will greatly facilitate genetic mapping, functional genomics and marker-assisted improvement. RESULTS High quality genotypic data from six core recombinant inbred line populations were used to obtain a consensus framework map of 598 simple sequence repeats (SSR) and Diversity Array Technology® (DArT) anchor markers (common across populations). Interpolation of unique markers from 14 maps allowed us to position a total of 2,575 markers in a consensus map of 2,463 cM. The T. durum A and B genomes were covered in their near totality based on the reference SSR hexaploid wheat map. The consensus locus order compared to those of the single component maps showed good correspondence, (average Spearman's rank correlation rho ρ value of 0.96). Differences in marker order and local recombination rate were observed between the durum and hexaploid wheat consensus maps. The consensus map was used to carry out a whole-genome search for genetic differentiation signatures and association to heading date in a panel of 183 accessions adapted to the Mediterranean areas. Linkage disequilibrium was found to decay below the r2 threshold=0.3 within 2.20 cM, on average. Strong molecular differentiations among sub-populations were mapped to 87 chromosome regions. A genome-wide association scan for heading date from 27 field trials in the Mediterranean Basin and in Mexico yielded 50 chromosome regions with evidences of association in multiple environments. CONCLUSIONS The consensus map presented here was used as a reference for genetic diversity and mapping analyses in T. durum, providing nearly complete genome coverage and even marker density. Markers previously mapped in hexaploid wheat constitute a strong link between the two species. The consensus map provides the basis for high-density single nucleotide polymorphic (SNP) marker implementation in durum wheat.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Agricultural Sciences (DipSA), Viale Fanin 44, University of Bologna, 40127 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Maphosa L, Langridge P, Taylor H, Parent B, Emebiri LC, Kuchel H, Reynolds MP, Chalmers KJ, Okada A, Edwards J, Mather DE. Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1607-24. [PMID: 24865506 DOI: 10.1007/s00122-014-2322-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 05/02/2014] [Indexed: 05/24/2023]
Abstract
Genetic analysis of the yield and physical quality of wheat revealed complex genetic control, including strong effects of photoperiod-sensitivity loci. Environmental conditions such as moisture deficit and high temperatures during the growing period affect the grain yield and grain characteristics of bread wheat (Triticum aestivum L.). The aim of this study was to map quantitative trait loci (QTL) for grain yield and grain quality traits using a Drysdale/Gladius bread wheat mapping population grown under a range of environmental conditions in Australia and Mexico. In general, yield and grain quality were reduced in environments exposed to drought and/or heat stress. Despite large effects of known photoperiod-sensitivity loci (Ppd-B1 and Ppd-D1) on crop development, grain yield and grain quality traits, it was possible to detect QTL elsewhere in the genome. Some of these QTL were detected consistently across environments. A locus on chromosome 6A (TaGW2) that is known to be associated with grain development was associated with grain width, thickness and roundness. The grain hardness (Ha) locus on chromosome 5D was associated with particle size index and flour extraction and a region on chromosome 3B was associated with grain width, thickness, thousand grain weight and yield. The genetic control of grain length appeared to be largely independent of the genetic control of the other grain dimensions. As expected, effects on grain yield were detected at loci that also affected yield components. Some QTL displayed QTL-by-environment interactions, with some having effects only in environments subject to water limitation and/or heat stress.
Collapse
Affiliation(s)
- Lancelot Maphosa
- Australian Centre for Plant Functional Genomics and School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Laidò G, Marone D, Russo MA, Colecchia SA, Mastrangelo AM, De Vita P, Papa R. Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PLoS One 2014; 9:e95211. [PMID: 24759998 PMCID: PMC3997356 DOI: 10.1371/journal.pone.0095211] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/25/2014] [Indexed: 11/18/2022] Open
Abstract
Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker–trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker–trait associations.
Collapse
Affiliation(s)
- Giovanni Laidò
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Daniela Marone
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Maria A. Russo
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Salvatore A. Colecchia
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Anna M. Mastrangelo
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Pasquale De Vita
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
| | - Roberto Papa
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy
- * E-mail:
| |
Collapse
|
27
|
Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal MW, Röder MS. Genetic architecture of main effect QTL for heading date in European winter wheat. FRONTIERS IN PLANT SCIENCE 2014; 5:217. [PMID: 24904613 PMCID: PMC4033046 DOI: 10.3389/fpls.2014.00217] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/01/2014] [Indexed: 05/20/2023]
Abstract
A genome-wide association study (GWAS) for heading date (HD) was performed with a panel of 358 European winter wheat (Triticum aestivum L.) varieties and 14 spring wheat varieties through the phenotypic evaluation of HD in field tests in eight environments. Genotyping data consisted of 770 mapped microsatellite loci and 7934 mapped SNP markers derived from the 90K iSelect wheat chip. Best linear unbiased estimations (BLUEs) were calculated across all trials and ranged from 142.5 to 159.6 days after the 1st of January with an average value of 151.4 days. Considering only associations with a -log10 (P-value) ≥ 3.0, a total of 340 SSR and 2983 SNP marker-trait associations (MTAs) were detected. After Bonferroni correction for multiple testing, a total of 72 SSR and 438 SNP marker-trait associations remained significant. Highly significant MTAs were detected for the photoperiodism gene Ppd-D1, which was genotyped in all varieties. Consistent associations were found on all chromosomes with the highest number of MTAs on chromosome 5B. Linear regression showed a clear dependence of the HD score BLUEs on the number of favorable alleles (decreasing HD) and unfavorable alleles (increasing HD) per variety meaning that genotypes with a higher number of favorable or a low number of unfavorable alleles showed lower HD and therefore flowered earlier. For the vernalization gene Vrn-A2 co-locating MTAs on chromosome 5A, as well as for the photoperiodism genes Ppd-A1 and Ppd-B1 on chromosomes 2A and 2B were detected. After the construction of an integrated map of the SSR and SNP markers and by exploiting the synteny to sequenced species, such as rice and Brachypodium distachyon, we were able to demonstrate that a marker locus on wheat chromosome 5BL with homology to the rice photoperiodism gene Hd6 played a significant role in the determination of the heading date in wheat.
Collapse
Affiliation(s)
- Christine Zanke
- Department of Cytogenetics and Genome Analyses, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | - Jie Ling
- Department of Cytogenetics and Genome Analyses, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | | | | | | | | | | | | | | | - Sebastian Beier
- Department of Cytogenetics and Genome Analyses, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
| | | | - Marion S. Röder
- Department of Cytogenetics and Genome Analyses, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben, Germany
- *Correspondence: Marion S. Röder, Department of Cytogenetics and Genome Analyses, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben 06466, Germany e-mail:
| |
Collapse
|
28
|
Milec Z, Valárik M, Bartoš J, Šafář J. Can a late bloomer become an early bird? Tools for flowering time adjustment. Biotechnol Adv 2014; 32:200-14. [DOI: 10.1016/j.biotechadv.2013.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/25/2022]
|
29
|
Langer SM, Longin CFH, Würschum T. Flowering time control in European winter wheat. FRONTIERS IN PLANT SCIENCE 2014; 5:537. [PMID: 25346745 PMCID: PMC4191279 DOI: 10.3389/fpls.2014.00537] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/21/2014] [Indexed: 05/18/2023]
Abstract
Flowering time is an important trait in wheat breeding as it affects adaptation and yield potential. The aim of this study was to investigate the genetic architecture of flowering time in European winter bread wheat cultivars. To this end a population of 410 winter wheat varieties was evaluated in multi-location field trials and genotyped by a genotyping-by-sequencing approach and candidate gene markers. Our analyses revealed that the photoperiod regulator Ppd-D1 is the major factor affecting flowering time in this germplasm set, explaining 58% of the genotypic variance. Copy number variation at the Ppd-B1 locus was present but explains only 3.2% and thus a comparably small proportion of genotypic variance. By contrast, the plant height loci Rht-B1 and Rht-D1 had no effect on flowering time. The genome-wide scan identified six QTL which each explain only a small proportion of genotypic variance and in addition we identified a number of epistatic QTL, also with small effects. Taken together, our results show that flowering time in European winter bread wheat cultivars is mainly controlled by Ppd-D1 while the fine tuning to local climatic conditions is achieved through Ppd-B1 copy number variation and a larger number of QTL with small effects.
Collapse
Affiliation(s)
| | | | - Tobias Würschum
- *Correspondence: Tobias Würschum, State Plant Breeding Institute, University of Hohenheim, Fruwirthstrasse 21, Stuttgart 70593, Germany e-mail:
| |
Collapse
|
30
|
Nguyen AT, Iehisa JCM, Mizuno N, Nitta M, Nasuda S, Takumi S. Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat. BREEDING SCIENCE 2013; 63:374-383. [PMID: 24399909 PMCID: PMC3859348 DOI: 10.1270/jsbbs.63.374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/29/2013] [Indexed: 06/01/2023]
Abstract
Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5' upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.
Collapse
Affiliation(s)
- Anh T. Nguyen
- Graduate School of Agricultural Science, Kobe University,
1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501,
Japan
| | - Julio C. M. Iehisa
- Graduate School of Agricultural Science, Kobe University,
1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501,
Japan
| | - Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University,
Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502,
Japan
| | - Miyuki Nitta
- Graduate School of Agriculture, Kyoto University,
Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502,
Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University,
Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502,
Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University,
1-1 Rokkodai, Nada, Kobe, Hyogo 657-8501,
Japan
| |
Collapse
|
31
|
Kamran A, Iqbal M, Navabi A, Randhawa H, Pozniak C, Spaner D. Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the Cutler × AC Barrie spring wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1965-76. [PMID: 23649650 DOI: 10.1007/s00122-013-2110-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/20/2013] [Indexed: 05/20/2023]
Abstract
Earliness per se regulates flowering time independent of environmental signals and helps to fine tune the time of flowering and maturity. In this study, we aimed to map earliness per se quantitative trait loci (QTLs) affecting days to flowering and maturity in a population developed by crossing two spring wheat cultivars, Cutler and AC Barrie. The population of 177 recombinant inbred lines (RILs) was genotyped for a total of 488 SSR and DArT polymorphic markers on all 21 chromosomes. Three QTLs of earliness per se affecting days to flowering and maturity were mapped on chromosomes 1B (QEps.dms-1B1 and QEps.dms-1B2) and 5B (QEps.dms-5B1), in individual environments and when all the environments were combined. A QTL affecting flowering time (QFlt.dms-4A1) was identified on chromosome 4A. Two grain yield QTLs were mapped on chromosome 5B, while one QTL was mapped on chromosome 1D. The population segregated for the photoperiod insensitive gene, Ppd-D1a, and it induced earlier flowering by 0.69 days and maturity by 1.28 days. The photoperiod insensitive allele Ppd-D1a interacted in an additive fashion with QTLs for flowering and maturity times. The earliness per se QTL QFlt.dms-5B.1 inducing earlier flowering could help to elongate grain filling duration for higher grain yield. Hence, chromosome 5B possesses promising genomic regions that may be introgressed for higher grain yield with earlier maturity through marker-assisted selection in bread wheat.
Collapse
Affiliation(s)
- A Kamran
- Agricultural Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, AB, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Bentley AR, Horsnell R, Werner CP, Turner AS, Rose GA, Bedard C, Howell P, Wilhelm EP, Mackay IJ, Howells RM, Greenland A, Laurie DA, Gosman N. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1783-93. [PMID: 23420880 DOI: 10.1093/jxb/ert038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI.
Collapse
Affiliation(s)
- A R Bentley
- The John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge CB3 0LE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kulwal P, Ishikawa G, Benscher D, Feng Z, Yu LX, Jadhav A, Mehetre S, Sorrells ME. Association mapping for pre-harvest sprouting resistance in white winter wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:793-805. [PMID: 22547141 DOI: 10.1007/s00122-012-1872-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 04/04/2012] [Indexed: 05/06/2023]
Abstract
Association mapping identified quantitative trait loci (QTLs) and the markers linked to pre-harvest sprouting (PHS) resistance in an elite association mapping panel of white winter wheat comprising 198 genotypes. A total of 1,166 marker loci including DArT and SSR markers representing all 21 chromosomes of wheat were used in the analysis. General and mixed linear models were used to analyze PHS data collected over 4 years. Association analysis identified eight QTLs linked with 13 markers mapped on seven chromosomes. A QTL was detected on each arm of chromosome 2B and one each on chromosome arms 1BS, 2DS, 4AL, 6DL, 7BS and 7DS. All except the QTL on 7BS are located in a location similar to previous reports and, if verified, the QTL on 7BS is likely to be novel. Principal components and the kinship matrix were used to account for the presence of population structure but had only a minor effect on the results. Although, none of the QTLs was highly significant across all environments, a QTL on the long arm of chromosome 4A was detected in three different environments and also using the best linear unbiased predictions over years. Although previous reports have identified this as a major QTL, its effects were minor in our biparental mapping populations. The results of this study highlight the benefits of association mapping and the value of using elite material in association mapping for plant breeding programs.
Collapse
Affiliation(s)
- Pawan Kulwal
- State Level Biotechnology Centre, Mahatma Phule Agricultural University, Rahuri, 413 722 MS, India
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dodig D, Zoric M, Kobiljski B, Savic J, Kandic V, Quarrie S, Barnes J. Genetic and association mapping study of wheat agronomic traits under contrasting water regimes. Int J Mol Sci 2012; 13:6167-6188. [PMID: 22754357 PMCID: PMC3382799 DOI: 10.3390/ijms13056167] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/02/2012] [Accepted: 05/15/2012] [Indexed: 11/16/2022] Open
Abstract
Genetic analyses and association mapping were performed on a winter wheat core collection of 96 accessions sampled from a variety of geographic origins. Twenty-four agronomic traits were evaluated over 3 years under fully irrigated, rainfed and drought treatments. Grain yield was the most sensitive trait to water deficit and was highly correlated with above-ground biomass per plant and number of kernels per m(2). The germplasm was structured into four subpopulations. The association of 46 SSR loci distributed throughout the wheat genome with yield and agronomic traits was analyzed using a general linear model, where subpopulation information was used to control false-positive or spurious marker-trait associations (MTAs). A total of 26, 21 and 29 significant (P < 0.001) MTAs were identified in irrigated, rainfed and drought treatments, respectively. The marker effects ranged from 14.0 to 50.8%. Combined across all treatments, 34 significant (P < 0.001) MTAs were identified with nine markers, and R(2) ranged from 14.5 to 50.2%. Marker psp3200 (6DS) and particularly gwm484 (2DS) were associated with many significant MTAs in each treatment and explained the greatest proportion of phenotypic variation. Although we were not able to recognize any marker related to grain yield under drought stress, a number of MTAs associated with developmental and agronomic traits highly correlated with grain yield under drought were identified.
Collapse
Affiliation(s)
- Dejan Dodig
- Maize Research Institute, Slobodana Bajica 1, Belgrade-Zemun Polje 11185, Serbia; E-Mail:
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; E-Mails: (S.Q.); (J.B.)
| | - Miroslav Zoric
- Institute of Field and Vegetative Crops, Maksima Gorkog 30, Novi Sad 21000, Serbia; E-Mails: (M.Z.); (B.K.)
| | - Borislav Kobiljski
- Institute of Field and Vegetative Crops, Maksima Gorkog 30, Novi Sad 21000, Serbia; E-Mails: (M.Z.); (B.K.)
| | - Jasna Savic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia; E-Mail:
| | - Vesna Kandic
- Maize Research Institute, Slobodana Bajica 1, Belgrade-Zemun Polje 11185, Serbia; E-Mail:
| | - Steve Quarrie
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; E-Mails: (S.Q.); (J.B.)
| | - Jeremy Barnes
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; E-Mails: (S.Q.); (J.B.)
| |
Collapse
|
35
|
Carter AH, Garland-Campbell K, Morris CF, Kidwell KK. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1079-1096. [PMID: 22186959 DOI: 10.1007/s00122-011-1770-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/08/2011] [Indexed: 05/31/2023]
Abstract
Wheat is marketed based on end-use quality characteristics and better knowledge of the underlying genetics of specific quality parameters is essential to enhance the breeding process. A set of 188 recombinant inbred lines from a 'Louise' by 'Penawawa' mapping population was grown in two crop years at two locations in the Pacific Northwest region of the United States and data were collected on 17 end-use quality traits using established quality analysis protocols. Using an established genetic linkage map, composite interval mapping was used to identify QTL associated with 16 of the 17 quality traits. QTL were found on 13 of the 21 wheat chromosomes. A large number of QTL were located on chromosomes 3B and 4D and coincided with traits for milling quality and starch functionality. Chromosome 3B contained 10 QTL, which were localized to a 26.2 cM region. Chromosome 4D contained 7 QTL, all of which were located on an 18.8 cM region of this chromosome. The majority of the alleles for superior end-use quality were associated with the cultivar Louise. The identified QTL detected remained highly significant independent of grain yield and protein quantity. The identification of these QTL for end-use quality gives key insight into the relationship and complexity of end-use quality traits. It also improves our understanding of these relationships, thereby allowing plant breeders to make valuable gains from selection for these important traits.
Collapse
Affiliation(s)
- A H Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| | | | | | | |
Collapse
|
36
|
Díaz A, Zikhali M, Turner AS, Isaac P, Laurie DA. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 2012; 7:e33234. [PMID: 22457747 PMCID: PMC3310869 DOI: 10.1371/journal.pone.0033234] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/06/2012] [Indexed: 11/18/2022] Open
Abstract
The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation.
Collapse
Affiliation(s)
- Aurora Díaz
- John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Meluleki Zikhali
- John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Adrian S. Turner
- John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Peter Isaac
- iDNA Genetics Ltd., The Norwich BioIncubator, Norwich Research Park, Norwich, United Kingdom
| | - David A. Laurie
- John Innes Centre, Norwich Research Park, Norwich, Norfolk, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P. Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:697-711. [PMID: 22045047 DOI: 10.1007/s00122-011-1740-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 10/18/2011] [Indexed: 05/27/2023]
Abstract
In southern Australia, where the climate is predominantly Mediterranean, achieving the correct flowering time in bread wheat minimizes the impact of in-season cyclical and terminal drought. Flag leaf glaucousness has been hypothesized as an important component of drought tolerance but its value and genetic basis in locally adapted germplasm is unknown. From a cross between Kukri and RAC875, a doubled-haploid (DH) population was developed. A genetic linkage map consisting of 456 DArT and SSR markers was used to detect QTL affecting time to ear emergence and Zadoks growth score in seven field experiments. While ear emergence time was similar between the parents, there was significant transgressive segregation in the population. This was the result of segregation for the previously characterized Ppd-D1a and Ppd-B1 photoperiod responsive alleles. QTL of smaller effect were also detected on chromosomes 1A, 4A, 4B, 5A, 5B, 7A and 7B. A novel QTL for flag leaf glaucousness of large, repeatable effect was detected in six field experiments, on chromosome 3A (QW.aww-3A) and accounted for up to 52 percent of genetic variance for this trait. QW.aww-3A was validated under glasshouse conditions in a recombinant inbred line population from the same cross. The genetic basis of time to ear emergence in this population will aid breeders' understanding of phenological adaptation to the local environment. Novel loci identified for flag leaf glaucousness and the wide phenotypic variation within the DH population offers considerable scope to investigate the impact and value of this trait for bread wheat production in southern Australia.
Collapse
Affiliation(s)
- Dion Bennett
- Australian Centre for Plant Functional Genomics, Waite Campus, University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoué C, Balfourier F, Allard V, Rousset M. Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:597-611. [PMID: 22065067 DOI: 10.1007/s00122-011-1732-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 10/14/2011] [Indexed: 05/18/2023]
Abstract
The modification of flowering date is considered an important way to escape the current or future climatic constraints that affect wheat crops. A better understanding of its genetic bases would enable a more efficient and rapid modification through breeding. The objective of this study was to identify chromosomal regions associated with earliness in wheat. A 227-wheat core collection chosen to be highly contrasted for earliness was characterized for heading date. Experiments were conducted in controlled conditions and in the field for 3 years to break down earliness in the component traits: photoperiod sensitivity, vernalization requirement and narrow-sense earliness. Whole-genome association mapping was carried out using 760 molecular markers and taking into account the five ancestral group structure. We identified 62 markers individually associated to earliness components corresponding to 33 chromosomal regions. In addition, we identified 15 other significant markers and seven more regions by testing marker pair interactions. Co-localizations were observed with the Ppd-1, Vrn-1 and Rht-1 candidate genes. Using an independent set of lines to validate the model built for heading date, we were able to explain 34% of the variation using the structure and the significant markers. Results were compared with already published data using bi-parental populations giving an insight into the genetic architecture of flowering time in wheat.
Collapse
Affiliation(s)
- J Le Gouis
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 234 Avenue du Brézet, 63 100, Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Borràs-Gelonch G, Rebetzke GJ, Richards RA, Romagosa I. Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:69-89. [PMID: 21920907 PMCID: PMC3245455 DOI: 10.1093/jxb/err230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The duration of pre-anthesis developmental phases is of interest in breeding for improved adaptation and yield potential in temperate cereals. Yet despite numerous studies on the genetic control of anthesis (flowering) time and floral initiation, little is known about the genetic control of other pre-anthesis phases. Furthermore, little is known about the effect that changes in the duration of pre-anthesis phases could have on traits related to leaf appearance and tillering, or dry matter accumulation before terminal spikelet initiation (TS). The genetic control of the leaf and spikelet initiation phase (LS; from sowing to TS), the stem elongation phase (SE; from TS to anthesis), and, within the latter, from TS to flag leaf appearance and from then to anthesis, was studied in two doubled-haploid, mapping bread wheat populations, Cranbrook × Halberd and CD87 × Katepwa, in two field experiments (ACT and NSW, Australia). The lengths of phases were estimated from measurements of both TS and the onset of stem elongation. Dry weight per plant before TS, rate of leaf appearance, tillering rate, maximum number of tillers and number of leaves, and dry weight per plant at TS were also estimated in the Cranbrook × Halberd population. More genomic regions were identified for the length of the different pre-anthesis phases than for total time to anthesis. Although overall genetic correlations between LS and SE were significant and positive, independent genetic variability between LS and SE, and several quantitative trait loci (QTLs) with different effects on both phases were found in the two populations. Several of these QTLs (which did not seem to coincide with reported major genes) could be of interest for breeding purposes since they were only significant for either LS or SE. There was no relationship between LS and the rate of leaf appearance. LS was strongly and positively correlated with dry weight at TS but only slightly negatively correlated with early vigour (dry weight before TS). Despite significant genetic correlations between LS and some tillering traits, shortening LS so as to lengthen SE without modifying total time to anthesis would not necessarily reduce tillering capacity, as QTLs for tillering traits did not coincide with those QTLs significant only for LS or SE. Therefore, the study of different pre-anthesis phases is relevant for a better understanding of genetic factors regulating developmental time and may offer new tools for fine-tuning it in breeding for both adaptability and yield potential.
Collapse
Affiliation(s)
- Gisela Borràs-Gelonch
- Department of Crop and Forest Sciences, University of Lleida, and Centre UdL-IRTA, Alcalde Rovira Roure, 191, 25198 Lleida, Catalonia, Spain.
| | | | | | | |
Collapse
|
40
|
A Novel Retrotransposon Inserted in the Dominant Vrn-B1 Allele Confers Spring Growth Habit in Tetraploid Wheat (Triticum turgidum L.). G3-GENES GENOMES GENETICS 2011; 1:637-45. [PMID: 22384375 PMCID: PMC3276170 DOI: 10.1534/g3.111.001131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/27/2011] [Indexed: 12/27/2022]
Abstract
Vernalization genes determine winter/spring growth habit in temperate cereals and play important roles in plant development and environmental adaptation. In wheat (Triticum L. sp.), it was previously shown that allelic variation in the vernalization gene VRN1 was due to deletions or insertions either in the promoter or in the first intron. Here, we report a novel Vrn-B1 allele that has a retrotransposon in its promoter conferring spring growth habit. The VRN-B1 gene was mapped in a doubled haploid population that segregated for winter-spring growth habit but was derived from two spring tetraploid wheat genotypes, the durum wheat (T. turgidum subsp. durum) variety ‘Lebsock’ and T. turgidum subsp. carthlicum accession PI 94749. Genetic analysis revealed that Lebsock carried the dominant Vrn-A1 and recessive vrn-B1 alleles, whereas PI 94749 had the recessive vrn-A1 and dominant Vrn-B1 alleles. The Vrn-A1 allele in Lebsock was the same as the Vrn-A1c allele previously reported in hexaploid wheat. No differences existed between the vrn-B1 and Vrn-B1 alleles, except that a 5463-bp insertion was detected in the 5′-UTR region of the Vrn-B1 allele. This insertion was a novel retrotransposon (designated as retrotrans_VRN), which was flanked by a 5-bp target site duplication and contained primer binding site and polypurine tract motifs, a 325-bp long terminal repeat, and an open reading frame encoding 1231 amino acids. The insertion of retrotrans_VRN resulted in expression of Vrn-B1 without vernalization. Retrotrans_VRN is prevalent among T. turgidum subsp. carthlicum accessions, less prevalent among T. turgidum subsp. dicoccum accessions, and rarely found in other tetraploid wheat subspecies.
Collapse
|
41
|
Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P. Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011. [PMID: 22045047 DOI: 10.1007/s00122‐011‐1740‐3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In southern Australia, where the climate is predominantly Mediterranean, achieving the correct flowering time in bread wheat minimizes the impact of in-season cyclical and terminal drought. Flag leaf glaucousness has been hypothesized as an important component of drought tolerance but its value and genetic basis in locally adapted germplasm is unknown. From a cross between Kukri and RAC875, a doubled-haploid (DH) population was developed. A genetic linkage map consisting of 456 DArT and SSR markers was used to detect QTL affecting time to ear emergence and Zadoks growth score in seven field experiments. While ear emergence time was similar between the parents, there was significant transgressive segregation in the population. This was the result of segregation for the previously characterized Ppd-D1a and Ppd-B1 photoperiod responsive alleles. QTL of smaller effect were also detected on chromosomes 1A, 4A, 4B, 5A, 5B, 7A and 7B. A novel QTL for flag leaf glaucousness of large, repeatable effect was detected in six field experiments, on chromosome 3A (QW.aww-3A) and accounted for up to 52 percent of genetic variance for this trait. QW.aww-3A was validated under glasshouse conditions in a recombinant inbred line population from the same cross. The genetic basis of time to ear emergence in this population will aid breeders' understanding of phenological adaptation to the local environment. Novel loci identified for flag leaf glaucousness and the wide phenotypic variation within the DH population offers considerable scope to investigate the impact and value of this trait for bread wheat production in southern Australia.
Collapse
Affiliation(s)
- Dion Bennett
- Australian Centre for Plant Functional Genomics, Waite Campus, University of Adelaide, PMB1, Glen Osmond, SA, 5064, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fayt VI, Balashova IA, Sivolap YM. Mapping of QTL associated with heading time in winter wheat. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711050045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Rousset M, Bonnin I, Remoué C, Falque M, Rhoné B, Veyrieras JB, Madur D, Murigneux A, Balfourier F, Le Gouis J, Santoni S, Goldringer I. Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:907-26. [PMID: 21761163 DOI: 10.1007/s00122-011-1636-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 06/13/2011] [Indexed: 05/18/2023]
Abstract
Earliness is very important for the adaptation of wheat to environmental conditions and the achievement of high grain yield. A detailed knowledge of key genetic components of the life cycle would enable an easier control by the breeders. The objective of the study was to investigate the effect of candidate genes on flowering time. Using a collection of hexaploid wheat composed of 235 lines from diverse geographical origins, we conducted an association study for six candidate genes for flowering time and its components (vernalization sensitivity and earliness per se). The effect on the variation of earliness components of polymorphisms within the copies of each gene was tested in ANOVA models accounting for the underlying genetic structure. The collection was structured in five groups that minimized the residual covariance. Vernalization requirement and lateness tend to increase according to the mean latitude of each group. Heading date for an autumnal sowing was mainly determined by the earliness per se. Except for the Constans (CO) gene orthologous of the barley HvCO3, all gene polymorphisms had a significant impact on earliness components. The three traits used to quantify vernalization requirement were primarily associated with polymorphisms at Vrn-1 and then at Vrn-3 and Luminidependens (LD) genes. We found a good correspondence between spring/winter types and genotypes at the three homeologous copies of Vrn-1. Earliness per se was mainly explained by polymorphisms at Vrn-3 and to a lesser extent at Vrn-1, Hd-1 and Gigantea (GI) genes. Vernalization requirement and earliness as a function of geographical origin, as well as the possible role of the breeding practices in the geographical distribution of the alleles and the hypothetical adaptive value of the candidate genes, are discussed.
Collapse
Affiliation(s)
- Michel Rousset
- UMR de Génétique Végétale, INRA/CNRS/AgroParisTech/Univ. Paris XI, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:283-292. [PMID: 21476040 DOI: 10.1007/s00122-011-1583-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/23/2011] [Indexed: 05/30/2023]
Abstract
There is increasing awareness that epistasis plays a role for the determination of complex traits. This study employed an association mapping approach in a large panel of 455 diverse European elite soft winter wheat lines. The genotypes were evaluated in multi-environment trials and fingerprinted with SSR markers to dissect the underlying genetic architecture of grain yield and heading time. A linear mixed model was applied to assess marker-trait associations incorporating information of covariance among relatives. Our findings indicate that main effects dominate the control of grain yield in wheat. In contrast, the genetic architecture underlying heading time is controlled by main and epistatic effects. Consequently, for heading time it is important to consider epistatic effects towards an increased selection gain in marker-assisted breeding.
Collapse
|
45
|
Munkvold JD, Tanaka J, Benscher D, Sorrells ME. Mapping quantitative trait loci for preharvest sprouting resistance in white wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1223-35. [PMID: 19669633 DOI: 10.1007/s00122-009-1123-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 07/21/2009] [Indexed: 05/19/2023]
Abstract
The premature germination of seeds before harvest, known as preharvest sprouting (PHS), is a serious problem in all wheat growing regions of the world. In order to determine genetic control of PHS resistance in white wheat from the relatively uncharacterized North American germplasm, a doubled haploid population consisting of 209 lines from a cross between the PHS resistant variety Cayuga and the PHS susceptible variety Caledonia was used for QTL mapping. A total of 16 environments were used to detect 15 different PHS QTL including a major QTL, QPhs.cnl-2B.1, that was significant in all environments tested and explained from 5 to 31% of the trait variation in a given environment. Three other QTL QPhs.cnl-2D.1, QPhs.cnl-3D.1, and QPhs.cnl-6D.1 were detected in six, four, and ten environments, respectively. The potentially related traits of heading date (HD), plant height (HT), seed dormancy (DOR), and rate of germination (ROG) were also recorded in a limited number of environments. HD was found to be significantly negatively correlated with PHS score in most environments, likely due to a major HD QTL, QHd.cnl-2B.1, found to be tightly linked to the PHS QTL QPhs.cnl-2B.1. Using greenhouse grown material no overlap was found between seed dormancy and the four most consistent PHS QTL, suggesting that greenhouse environments are not representative of field environments. This study provides valuable information for marker-assisted breeding for PHS resistance, future haplotyping studies, and research into seed dormancy.
Collapse
Affiliation(s)
- Jesse D Munkvold
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
46
|
Cuevas HE, Staub JE, Simon PW, Zalapa JE. A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:741-56. [PMID: 19551368 DOI: 10.1007/s00122-009-1085-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 05/27/2009] [Indexed: 05/06/2023]
Abstract
The nutritional value and yield potential of US Western Shipping melon (USWS; Cucumis melo L.) could be improved through the introgression of genes for early fruit maturity (FM) and the enhancement of the quantity of beta-carotene (QbetaC) in fruit mesocarp (i.e., flesh color). Therefore, a set of 116 F(3) families derived from the monoecious, early FM Chinese line 'Q 3-2-2' (no beta-carotene, white mesocarp) and the andromonoecious, late FM USWS line 'Top Mark' (possessing beta-carotene, orange mesocarp) were examined during 2 years in Wisconsin, USA to identify quantitative trait loci (QTL) associated with FM and QbetaC. A 171-point F(2-3) based map was constructed and used for QTL analysis. Three QTL associated with QbetaC were detected, which explained a significant portion of the observed phenotypic variation (flesh color; R (2) = 4.0-50.0%). The map position of one QTL (beta-carM.E.9.1) was uniformly aligned with one carotenoid-related gene (Orange gene), suggesting its likely role in QbetaC in this melon population and putative relationship with the melon white flesh (wf) gene. Two major (FM.6.1 and FM.11.1; R (2) >or= 20%) and one minor QTL (FM.2.1; R (2) = 8%) were found to be associated with FM. This map was then merged with a previous recombinant inbred line (RIL)-based map used to identify seven QTL associated with QbetaC in melon fruit. This consensus map [300 molecular markers (187 co-dominant melon and 14 interspecific; 10 LG)] provides a framework for the further dissection and cloning of published QTL, which will consequently lead to more effective trait introgression in melon.
Collapse
Affiliation(s)
- H E Cuevas
- Department of Plant Breeding and Plant Genetics, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | |
Collapse
|
47
|
Båga M, Fowler DB, Chibbar RN. Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.). JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3575-3585. [PMID: 19553371 PMCID: PMC2724704 DOI: 10.1093/jxb/erp199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 05/28/2023]
Abstract
Autumn-seeded winter cereals acquire tolerance to freezing temperatures and become vernalized by exposure to low temperature (LT). The level of accumulated LT tolerance depends on the cold acclimation rate and factors controlling timing of floral transition at the shoot apical meristem. In this study, genomic loci controlling the floral transition time were mapped in a winter wheat (T. aestivum L.) doubled haploid (DH) mapping population segregating for LT tolerance and rate of phenological development. The final leaf number (FLN), days to FLN, and days to anthesis were determined for 142 DH lines grown with and without vernalization in controlled environments. Analysis of trait data by composite interval mapping (CIM) identified 11 genomic regions that carried quantitative trait loci (QTLs) for the developmental traits studied. CIM analysis showed that the time for floral transition in both vernalized and non-vernalized plants was controlled by common QTL regions on chromosomes 1B, 2A, 2B, 6A and 7A. A QTL identified on chromosome 4A influenced floral transition time only in vernalized plants. Alleles of the LT-tolerant parent, Norstar, delayed floral transition at all QTLs except at the 2A locus. Some of the QTL alleles delaying floral transition also increased the length of vegetative growth and delayed flowering time. The genes underlying the QTLs identified in this study encode factors involved in regional adaptation of cold hardy winter wheat.
Collapse
|
48
|
Wang S, Carver B, Yan L. Genetic loci in the photoperiod pathway interactively modulate reproductive development of winter wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1339-1349. [PMID: 19234853 DOI: 10.1007/s00122-009-0984-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Accepted: 01/30/2009] [Indexed: 05/27/2023]
Abstract
Responses to photoperiod and low temperature are the two primary adaptive mechanisms which enable wheat plants to synchronize developmental processes with changes in seasonal climate. In this study, the developmental process was characterized at two stages: stem length during the onset of stem elongation and heading date. These two developmental events were monitored and mapped in recombinant inbred lines (RILs) of a population generated from a cross between two complementary and locally adapted hard winter wheat cultivars. 'Intrada' undergoes stem elongation earlier but reaches heading later, whereas 'Cimarron' undergoes stem elongation later but reaches heading earlier. Variation in the developmental process in this population was associated with three major QTLs centered on Xbarc200 on chromosome 2B, PPD-D1 on chromosome 2D, and Xcfd14 on chromosome 7D. The Intrada Xbarc200 and Xcfd14 alleles and the Cimarron PPD-D1 allele accelerated both stem elongation and heading stages, or the Cimarron Xbarc200 and Xcfd14 alleles and the Intrada PPD-D1 allele delayed both stem elongation and heading stages. Integrative effects of the three QTLs accounted for 43% (initial stem length) and 68% (heading date) of the overall phenotypic variation in this population. PPD-D1 is a reasonable candidate gene for the QTL on chromosome 2D, PPD-B1 could be associated with the QTL on chromosome 2B, but VRN-D3 (=FT-D1) was not linked with the QTL on chromosome 7D, suggesting that this is a novel locus involved in winter wheat development. Because the PPD-D1 QTL was observed to interact with other two QTLs, all of these QTLs could play a role in the same pathway as involved in photoperiod response of winter wheat.
Collapse
Affiliation(s)
- Shuwen Wang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, 74078, USA
| | | | | |
Collapse
|
49
|
Yao J, Wang L, Liu L, Zhao C, Zheng Y. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 2009; 137:67-75. [PMID: 19160058 DOI: 10.1007/s10709-009-9351-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 12/27/2008] [Indexed: 10/21/2022]
Abstract
Association mapping is a method to test the association between molecular markers and quantitative trait loci (QTL) based on linkage disequilibrium (LD). In this study, the collection of 108 wheat germplasm accessions form China were evaluated for their plant heights, spike length, spikelets per spike, grains per spike, thousand kernel weight and spikelets density in 3 years at three locations. And they were genotyped with 85 SSR markers and 40 EST-SSR markers. The population structure was inferred on the basis of unlinked 48 SSR markers and 40 EST-SSR markers. The extent of LD on chromosome 2A was 2.3 cM. Association of 37 SSR loci on chromosomes 2A with six agronomic traits was analysed with a mixed linear model. A total of 14 SSR loci were significantly associated with agronomic traits. Some of the associated markers were located in the QTL region detected in previous linkage mapping analysis. Our results demonstrated that association mapping can enhance QTL information and achieves higher resolution with short LD extent.
Collapse
Affiliation(s)
- Ji Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.
| | | | | | | | | |
Collapse
|
50
|
Bordes J, Branlard G, Oury F, Charmet G, Balfourier F. Agronomic characteristics, grain quality and flour rheology of 372 bread wheats in a worldwide core collection. J Cereal Sci 2008. [DOI: 10.1016/j.jcs.2008.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|