1
|
Delen Y, Palali-Delen S, Xu G, Neji M, Yang J, Dweikat I. Dissecting the Genetic Architecture of Morphological Traits in Sunflower ( Helianthus annuus L.). Genes (Basel) 2024; 15:950. [PMID: 39062729 PMCID: PMC11275413 DOI: 10.3390/genes15070950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The sunflower (Helianthus annuus L.) is one of the most essential oil crops in the world. Several component traits, including flowering time, plant height, stem diameter, seed weight, and kernel weight, determine sunflower seed and oil yield. Although the genetic mechanisms governing the variation of these yield-related traits have been studied using various approaches, genome-wide association studies (GWAS) have not been widely applied to sunflowers. In this study, a set of 342 sunflower accessions was evaluated in 2019 and 2020 using an incomplete randomized block design, and GWAS was conducted utilizing two complementary approaches: the mixed linear model (MLM) and the fixed and random model circulating probability unification (farmCPU) model by fitting 226,779 high-quality SNPs. As a result, GWAS identified a number of trait-associated SNPs. Those SNPs were located close to several genes that may serve as a basis for further molecular characterization and provide promising targets for sunflower yield improvement.
Collapse
Affiliation(s)
- Yavuz Delen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
| | - Semra Palali-Delen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Gen Xu
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Mohamed Neji
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia;
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (Y.D.); (S.P.-D.); (J.Y.)
| |
Collapse
|
2
|
Liu Z, Gu W, Seiler GJ, Jan CC. A Unique Cytoplasmic-Nuclear Interaction in Sunflower ( Helianthus annuus L.) Causing Reduced-Vigor Plants and the Genetics of Vigor Restoration. FRONTIERS IN PLANT SCIENCE 2020; 11:1010. [PMID: 32754176 PMCID: PMC7367100 DOI: 10.3389/fpls.2020.01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Wild Helianthus species are an important genetic resource for sunflower improvement, but sometimes there are adverse interactions between the wild and cultivated sunflowers. This study reports the inheritance of reduced vigor and its restoration resulting from an interaction of perennial Helianthus cytoplasms with nuclear genes of cultivated sunflower lines. The large number of vigor restoration (V) genes identified in cultivated lines are all located at the same locus, designated V1 , suggesting a common origin of these genes. Additional V genes derived from the wild perennial species H. giganteus L. and H. hirsutus Raf. are located at a different locus than V1 , designated V2 . A major difference between the wild annual Helianthus cytoplasms and perennial cytoplasms is the lack of the vigor-reducing cytoplasms, but surprisingly V genes were observed in wild annual H. annuus L. and H. petiolaris Nutt. which were at the same locus as V1 . A common vigor-reducing cytoplasmic effect of the perennial Helianthus species and the existence of a common vigor restoration V gene in most perennial Helianthus species could be explained as a result of vigor selection during Helianthus speciation. V1 was mapped on linkage group (LG) 7 of the sunflower genome, using an F2 population derived from MOL-RV/HA 821. V1 co-segregated with an InDel marker ZVG31, with three single-nucleotide polymorphism (SNP) markers, SFW01024, SFW07230, and SFW00604, located above it on the map at a genetic distance of 0.8 cM, and another SNP marker, SFW08671, below it at a distance of 0.4 cM. The physical distance between the two closest flanking SNP markers corresponds to 0.56 and 1.37 Mb on the HA 412-HO and XRQ assemblies, respectively. The tightly linked markers will help select normal vigor progenies when using perennial Helianthus cytoplasms in a breeding program, which will also provide a basis for studying the mechanism of the cytonuclear interaction, and the speciation of annual and perennial Helianthus species.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Wei Gu
- Institute of Plant Protection, Postdoctoral Program, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Gerald J. Seiler
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Chao-Chien Jan
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
3
|
Radanović A, Miladinović D, Cvejić S, Jocković M, Jocić S. Sunflower Genetics from Ancestors to Modern Hybrids-A Review. Genes (Basel) 2018; 9:genes9110528. [PMID: 30380768 PMCID: PMC6265698 DOI: 10.3390/genes9110528] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 11/16/2022] Open
Abstract
Domestication and the first steps of sunflower breeding date back more than 4000 years. As an interesting crop to humans, sunflower underwent significant changes in the past to finally find its place as one of the most significant oil crops today. Substantial progress has already been made in understanding how sunflower was domesticated. Recent advances in molecular techniques with improved experimental designs contributed to further understanding of the genetic and molecular basis underlying the architectural and phenotypic changes that occurred during domestication and improvements in sunflower breeding. Understanding the domestication process and assessing the current situation concerning available genotypic variations are essential in order for breeders to face future challenges. A review of the tools that are used for exploring the genetic and genome changes associated with sunflower domestication is given in the paper, along with a discussion of their possible implications on classical sunflower breeding techniques and goals.
Collapse
Affiliation(s)
| | | | - Sandra Cvejić
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia.
| | - Milan Jocković
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia.
| | - Siniša Jocić
- Institute of Field and Vegetable Crops, 21000 Novi Sad, Serbia.
| |
Collapse
|
4
|
Dimitrijevic A, Horn R. Sunflower Hybrid Breeding: From Markers to Genomic Selection. FRONTIERS IN PLANT SCIENCE 2018; 8:2238. [PMID: 29387071 PMCID: PMC5776114 DOI: 10.3389/fpls.2017.02238] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/20/2017] [Indexed: 05/03/2023]
Abstract
In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits.
Collapse
Affiliation(s)
| | - Renate Horn
- Institut für Biowissenschaften, Abteilung Pflanzengenetik, Universität Rostock, Rostock, Germany
| |
Collapse
|
5
|
Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms. PLoS One 2016; 11:e0157522. [PMID: 27314499 PMCID: PMC4912118 DOI: 10.1371/journal.pone.0157522] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 06/01/2016] [Indexed: 12/05/2022] Open
Abstract
In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.
Collapse
|
6
|
Aschenbrenner AK, Kwon M, Conrad J, Ro DK, Spring O. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae). PHYTOCHEMISTRY 2016; 124:29-37. [PMID: 26880289 DOI: 10.1016/j.phytochem.2016.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase.
Collapse
Affiliation(s)
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jürgen Conrad
- Bioorganic Chemistry, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany.
| |
Collapse
|
7
|
Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R, Plieske J, Polley A, Luerßen H, Wieckhorst S, Mascher M, Hahn V, Ouzunova M, Schön CC, Ganal MW. Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:317-29. [PMID: 26536890 DOI: 10.1007/s00122-015-2629-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/23/2015] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE We have developed a SNP array for sunflower containing more than 25 K markers, representing single loci mostly in or near transcribed regions of the genome. The array was successfully applied to genotype a diversity panel of lines, hybrids, and mapping populations and represented well the genetic diversity of cultivated sunflower. Results of PCoA and population substructure analysis underlined the complexity of the genetic composition of current elite breeding material. The performance of this genotyping platform for genome-based prediction of phenotypes and detection of QTL with improved resolution could be demonstrated based on the re-evaluation of a population segregating for resistance to Sclerotinia midstalk rot. Given our results, the newly developed 25 K SNP array is expected to be of great utility for the most important applications in genome-based sunflower breeding and research. ABSTRACT Genotyping with a large number of molecular markers is a prerequisite to conduct genome-based genetic analyses with high precision. Here, we report the design and performance of a 25 K SNP genotyping array for sunflower (Helianthus annuus L.). SNPs were discovered based on variant calling in de novo assembled, UniGene-based contigs of sunflower derived from whole genome sequencing and amplicon sequences originating from four and 48 inbred lines, respectively. After inclusion of publically available transcriptome-derived SNPs, in silico design of the Illumina(®) Infinium iSelect HD BeadChip yielded successful assays for 22,299 predominantly haplotype-specific SNPs. The array was validated in a sunflower diversity panel including inbred lines, open-pollinated varieties, introgression lines, landraces, recombinant inbred lines, and F2 populations. Validation provided 20,502 high-quality bi-allelic SNPs with stable cluster performance whereby each SNP marker represents a single locus mostly in or near transcribed regions of the sunflower genome. Analyses of population structure and quantitative resistance to Sclerotinia midstalk rot demonstrate that this array represents a significant improvement over currently available genomic tools for genetic diversity analyses, genome-wide marker-trait association studies, and genetic mapping in sunflower.
Collapse
Affiliation(s)
- Maren Livaja
- Department of Plant Sciences, Plant Breeding, Technische Universität München, Liesel-Beckmann-Strasse 2, 85354, Freising, Germany
| | - Sandra Unterseer
- Department of Plant Sciences, Plant Breeding, Technische Universität München, Liesel-Beckmann-Strasse 2, 85354, Freising, Germany
| | - Wiltrud Erath
- Department of Plant Sciences, Plant Breeding, Technische Universität München, Liesel-Beckmann-Strasse 2, 85354, Freising, Germany
| | - Christina Lehermeier
- Department of Plant Sciences, Plant Breeding, Technische Universität München, Liesel-Beckmann-Strasse 2, 85354, Freising, Germany
| | - Ralf Wieseke
- TraitGenetics GmbH, Am Schwabeplan 1b, 06466, Gatersleben, Germany
| | - Jörg Plieske
- TraitGenetics GmbH, Am Schwabeplan 1b, 06466, Gatersleben, Germany
| | - Andreas Polley
- TraitGenetics GmbH, Am Schwabeplan 1b, 06466, Gatersleben, Germany
| | - Hartmut Luerßen
- TraitGenetics GmbH, Am Schwabeplan 1b, 06466, Gatersleben, Germany
| | | | - Martin Mascher
- Research Group Domestication Genomics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Stadt Seeland, Germany
| | - Volker Hahn
- State Plant Breeding Institute, Universität Hohenheim, Fruwirthstrasse 21, 70599, Stuttgart, Germany
| | | | - Chris-Carolin Schön
- Department of Plant Sciences, Plant Breeding, Technische Universität München, Liesel-Beckmann-Strasse 2, 85354, Freising, Germany.
| | - Martin W Ganal
- TraitGenetics GmbH, Am Schwabeplan 1b, 06466, Gatersleben, Germany
| |
Collapse
|
8
|
Toward Marker Assisted Selection for Fungal Disease Resistance in Sunflower. Utilization ofH. Bolanderias a Source of Resistance to Downy Mildew. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.2478/v10133-009-0007-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Renaut S, Owens GL, Rieseberg LH. Shared selective pressure and local genomic landscape lead to repeatable patterns of genomic divergence in sunflowers. Mol Ecol 2013; 23:311-24. [DOI: 10.1111/mec.12600] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Sebastien Renaut
- Department of Botany; Biodiversity Research Centre; University of British Columbia; Vancouver BC Canada V6T 1Z4
| | - Gregory L. Owens
- Department of Botany; Biodiversity Research Centre; University of British Columbia; Vancouver BC Canada V6T 1Z4
| | - Loren H. Rieseberg
- Department of Botany; Biodiversity Research Centre; University of British Columbia; Vancouver BC Canada V6T 1Z4
- Department of Biology; Indiana University; 1001 East Third Street Bloomington IN 47405 USA
| |
Collapse
|
10
|
Kumar APK, Boualem A, Bhattacharya A, Parikh S, Desai N, Zambelli A, Leon A, Chatterjee M, Bendahmane A. SMART--Sunflower Mutant population And Reverse genetic Tool for crop improvement. BMC PLANT BIOLOGY 2013; 13:38. [PMID: 23496999 PMCID: PMC3606330 DOI: 10.1186/1471-2229-13-38] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 02/13/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sunflower (Helianthus annuus L.) is an important oilseed crop grown widely in various areas of the world. Classical genetic studies have been extensively undertaken for the improvement of this particular oilseed crop. Pertaining to this endeavor, we developed a "chemically induced mutated genetic resource for detecting SNP by TILLING" in sunflower to create new traits. RESULTS To optimize the EMS mutagenesis, we first conducted a "kill curve" analysis with a range of EMS dose from 0.5% to 3%. Based on the observed germination rate, a 50% survival rate i.e. LD50, treatment with 0.6% EMS for 8 hours was chosen to generate 5,000 M2 populations, out of which, 4,763 M3 plants with fertile seed set. Phenotypic characterization of the 5,000 M2 mutagenised lines were undertaken to assess the mutagenesis quality and to identify traits of interest. In the M2 population, about 1.1% of the plants showed phenotypic variations. The sunflower TILLING platform was setup using Endo-1-nuclease as mismatch detection system coupled with an eight fold DNA pooling strategy. As proof-of-concept, we screened the M2 population for induced mutations in two genes related to fatty acid biosynthesis, FatA an acyl-ACP thioesterase and SAD the stearoyl-ACP desaturase and identified a total of 26 mutations. CONCLUSION Based on the TILLING of FatA and SAD genes, we calculated the overall mutation rate to one mutation every 480 kb, similar to other report for this crop so far. As sunflower is a plant model for seed oil biosynthesis, we anticipate that the developed genetic resource will be a useful tool to identify novel traits for sunflower crop improvement.
Collapse
Affiliation(s)
- Anish PK Kumar
- Bench Bio Pvt Ltd., c/o Jai Research Foundation, Vapi, Gujarat, 396195, India
| | - Adnane Boualem
- INRA, UMR1165 Unité de Recherche en Génomique Végétale URGV, Evry, F-91057, France
- UEVE, UMR Unité de Recherche en Génomique Végétale URGV, Evry, F-91057, France
- CNRS, ERL8196 UMR Unité de Recherche en Génomique Végétale URGV, Evry, F-91057, France
| | | | - Seema Parikh
- Bench Bio Pvt Ltd., c/o Jai Research Foundation, Vapi, Gujarat, 396195, India
| | - Nirali Desai
- Bench Bio Pvt Ltd., c/o Jai Research Foundation, Vapi, Gujarat, 396195, India
| | - Andres Zambelli
- Biotechnology Research Centre, Nutrisun Business Unit- Advanta Semillas SAIC, Belcarce, Argentina
| | - Alberto Leon
- Biotechnology Research Centre, Nutrisun Business Unit- Advanta Semillas SAIC, Belcarce, Argentina
| | - Manash Chatterjee
- Bench Bio Pvt Ltd., c/o Jai Research Foundation, Vapi, Gujarat, 396195, India
- National University of Ireland Galway (NUIG), Galway, Ireland
| | - Abdelhafid Bendahmane
- INRA, UMR1165 Unité de Recherche en Génomique Végétale URGV, Evry, F-91057, France
- UEVE, UMR Unité de Recherche en Génomique Végétale URGV, Evry, F-91057, France
- CNRS, ERL8196 UMR Unité de Recherche en Génomique Végétale URGV, Evry, F-91057, France
| |
Collapse
|
11
|
Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones. G3-GENES GENOMES GENETICS 2013; 3:31-40. [PMID: 23316437 PMCID: PMC3538341 DOI: 10.1534/g3.112.004846] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022]
Abstract
Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources.
Collapse
|
12
|
Development of an ultra-dense genetic map of the sunflower genome based on single-feature polymorphisms. PLoS One 2012; 7:e51360. [PMID: 23284684 PMCID: PMC3526535 DOI: 10.1371/journal.pone.0051360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
The development of ultra-dense genetic maps has the potential to facilitate detailed comparative genomic analyses and whole genome sequence assemblies. Here we describe the use of a custom Affymetrix GeneChip containing nearly 2.4 million features (25 bp sequences) targeting 86,023 unigenes from sunflower (Helianthus annuus L.) and related species to test for single-feature polymorphisms (SFPs) in a recombinant inbred line (RIL) mapping population derived from a cross between confectionery and oilseed sunflower lines (RHA280×RHA801). We then employed an existing genetic map derived from this same population to rigorously filter out low quality data and place 67,486 features corresponding to 22,481 unigenes on the sunflower genetic map. The resulting map contains a substantial fraction of all sunflower genes and will thus facilitate a number of downstream applications, including genome assembly and the identification of candidate genes underlying QTL or traits of interest.
Collapse
|
13
|
Kane NC, Burke JM, Marek L, Seiler G, Vear F, Baute G, Knapp SJ, Vincourt P, Rieseberg LH. Sunflower genetic, genomic and ecological resources. Mol Ecol Resour 2012; 13:10-20. [PMID: 23039950 DOI: 10.1111/1755-0998.12023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 11/29/2022]
Abstract
Long a major focus of genetic research and breeding, sunflowers (Helianthus) are emerging as an increasingly important experimental system for ecological and evolutionary studies. Here, we review the various attributes of wild and domesticated sunflowers that make them valuable for ecological experimentation and describe the numerous publicly available resources that have enabled rapid advances in ecological and evolutionary genetics. Resources include seed collections available from germplasm centres at the USDA and INRA, genomic and EST sequences, mapping populations, genetic markers, genetic and physical maps and other forward- and reverse-genetic tools. We also discuss some of the key evolutionary, genetic and ecological questions being addressed in sunflowers, as well as gaps in our knowledge and promising areas for future research.
Collapse
Affiliation(s)
- Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Moody ML, Rieseberg LH. Sorting through the chaff, nDNA gene trees for phylogenetic inference and hybrid identification of annual sunflowers (Helianthus sect. Helianthus). Mol Phylogenet Evol 2012; 64:145-55. [PMID: 22724134 DOI: 10.1016/j.ympev.2012.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The annual sunflowers (Helianthus sect. Helianthus) present a formidable challenge for phylogenetic inference because of ancient hybrid speciation, recent introgression, and suspected issues with deep coalescence. Here we analyze sequence data from 11 nuclear DNA (nDNA) genes for multiple genotypes of species within the section to (1) reconstruct the phylogeny of this group, (2) explore the utility of nDNA gene trees for detecting hybrid speciation and introgression; and (3) test an empirical method of hybrid identification based on the phylogenetic congruence of nDNA gene trees from tightly linked genes. We uncovered considerable topological heterogeneity among gene trees with or without three previously identified hybrid species included in the analyses, as well as a general lack of reciprocal monophyly of species. Nonetheless, partitioned Bayesian analyses provided strong support for the reciprocal monophyly of all species except H. annuus (0.89 PP), the most widespread and abundant annual sunflower. Previous hypotheses of relationships among taxa were generally strongly supported (1.0 PP), except among taxa typically associated with H. annuus, apparently due to the paraphyly of the latter in all gene trees. While the individual nDNA gene trees provided a useful means for detecting recent hybridization, identification of ancient hybridization was problematic for all ancient hybrid species, even when linkage was considered. We discuss biological factors that affect the efficacy of phylogenetic methods for hybrid identification.
Collapse
Affiliation(s)
- Michael L Moody
- School of Plant Biology, University of Western Australia, Crawley, WA 6009, Australia.
| | | |
Collapse
|
15
|
Vincourt P, As-Sadi F, Bordat A, Langlade NB, Gouzy J, Pouilly N, Lippi Y, Serre F, Godiard L, Tourvieille de Labrouhe D, Vear F. Consensus mapping of major resistance genes and independent QTL for quantitative resistance to sunflower downy mildew. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:909-20. [PMID: 22576236 DOI: 10.1007/s00122-012-1882-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/19/2012] [Indexed: 05/20/2023]
Abstract
Major gene resistance to sunflower downy mildew (Plasmopara halstedii) races 304 and 314 was found to segregate independently from the resistance to races 334, 307 and 304 determined by the gene Pl2, already positioned on Linkage Group (LG) 8 of sunflower molecular maps. Using a consensus SSR-SNP map constructed from the INEDI RIL population and a new RIL population FU × PAZ2, the positions of Pl2 and Pl5 were confirmed and the new gene, denoted Pl21, was mapped on LG13, at 8 cM from Pl5. The two RIL populations were observed for their quantitative resistance to downy mildew in the field and both indicated the existence of a QTL on LG8 at 20-40 cM from the major resistance gene cluster. In addition, for the INEDI population, a strong QTL on LG10, reported previously, was confirmed and a third QTL was mapped on LG7. A growth chamber test methodology, significantly correlated with field results, also revealed the major QTL on LG10, explaining 65 % of variability. This QTL mapped in the same area as a gene involved in stomatal opening and root growth, which may be suggested as a possible candidate to explain the control of this character. These results indicate that it should be possible to combine major genes and other resistance mechanisms, a strategy that could help to improve durability of sunflower resistance to downy mildew.
Collapse
Affiliation(s)
- Patrick Vincourt
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, 31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3-GENES GENOMES GENETICS 2012; 2:721-9. [PMID: 22870395 PMCID: PMC3385978 DOI: 10.1534/g3.112.002659] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/23/2012] [Indexed: 12/03/2022]
Abstract
Genetic linkage maps have the potential to facilitate the genetic dissection of complex traits and comparative analyses of genome structure, as well as molecular breeding efforts in species of agronomic importance. Until recently, the majority of such maps was based on relatively low-throughput marker technologies, which limited marker density across the genome. The availability of high-throughput genotyping technologies has, however, made possible the efficient development of high-density genetic maps. Here, we describe the analysis and integration of genotypic data from four sunflower (Helianthus annuus L.) mapping populations to produce a consensus linkage map of the sunflower genome. Although the individual maps (which contained 3500–5500 loci each) were highly colinear, we observed localized variation in recombination rates in several genomic regions. We also observed several gaps up to 26 cM in length that completely lacked mappable markers in individual crosses, presumably due to regions of identity by descent in the mapping parents. Because these regions differed by cross, the consensus map of 10,080 loci contained no such gaps, clearly illustrating the value of simultaneously analyzing multiple mapping populations.
Collapse
|
17
|
Liu Z, Gulya TJ, Seiler GJ, Vick BA, Jan CC. Molecular mapping of the Pl(16) downy mildew resistance gene from HA-R4 to facilitate marker-assisted selection in sunflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:121-31. [PMID: 22350177 DOI: 10.1007/s00122-012-1820-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/04/2012] [Indexed: 05/20/2023]
Abstract
The major genes controlling sunflower downy mildew resistance have been designated as Pl genes. Ten of the more than 20 Pl genes reported have been mapped. In this study, we report the molecular mapping of gene Pl(16) in a sunflower downy mildew differential line, HA-R4. It was mapped on the lower end of linkage group (LG) 1 of the sunflower reference map, with 12 markers covering a distance of 78.9 cM. One dominant simple sequence repeat (SSR) marker, ORS1008, co-segregated with Pl(16), and another co-dominant expressed sequence tag (EST)-SSR marker, HT636, was located 0.3 cM proximal to the Pl(16) gene. The HT636 marker was also closely linked to the Pl(13) gene in another sunflower differential line, HA-R5. Thus the Pl(16) and Pl(13) genes were mapped to a similar position on LG 1 that is different from the previously reported Pl(14) gene. When the co-segregating and tightly linked markers for the Pl(16) gene were applied to other germplasms or hybrids, a unique band pattern for the ORS1008 marker was detected in HA-R4 and HA-R5 and their F(1) hybrids. This is the first report to provide two tightly linked markers for both the Pl(16) and Pl(13) genes, which will facilitate marker-assisted selection in sunflower resistance breeding, and provide a basis for the cloning of these genes.
Collapse
Affiliation(s)
- Zhao Liu
- Department of plant sciences, North Dakota State University, Fargo, ND 58102, USA
| | | | | | | | | |
Collapse
|
18
|
Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Funct Integr Genomics 2012; 12:447-64. [PMID: 22476619 DOI: 10.1007/s10142-012-0276-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 03/06/2012] [Accepted: 03/19/2012] [Indexed: 02/07/2023]
Abstract
Drought is a major constraint to maintaining yield stability of wheat in rain fed and limited irrigation agro-ecosystems. Genetic improvement for drought tolerance in wheat has been difficult due to quantitative nature of the trait involving multiple genes with variable effects and lack of effective selection strategies employing molecular markers. Here, a framework molecular linkage map was constructed using 173 DNA markers randomly distributed over the 21 wheat chromosomes. Grain yield and other drought-responsive shoot and root traits were phenotyped for 2 years under drought stress and well-watered conditions on a mapping population of recombinant inbred lines (RILs) derived from a cross between drought-sensitive semidwarf variety "WL711" and drought-tolerant traditional variety "C306". Thirty-seven genomics region were identified for 10 drought-related traits at 18 different chromosomal locations but most of these showed small inconsistent effects. A consistent genomic region associated with drought susceptibility index (qDSI.4B.1) was mapped on the short arm of chromosome 4B, which also controlled grain yield per plant, harvest index, and root biomass under drought. Transcriptome profiling of the parents and two RIL bulks with extreme phenotypes revealed five genes underlying this genomic region that were differentially expressed between the parents as well as the two RIL bulks, suggesting that they are likely candidates for drought tolerance. Syntenic genomic regions of barley, rice, sorghum, and maize genomes were identified that also harbor genes for drought tolerance. Markers tightly linked to this genomic region in combination with other important regions on group 7 chromosomes may be used in marker-assisted breeding for drought tolerance in wheat.
Collapse
|
19
|
Lai Z, Kane NC, Kozik A, Hodgins KA, Dlugosch KM, Barker MS, Matvienko M, Yu Q, Turner KG, Pearl SA, Bell GDM, Zou Y, Grassa C, Guggisberg A, Adams KL, Anderson JV, Horvath DP, Kesseli RV, Burke JM, Michelmore RW, Rieseberg LH. Genomics of Compositae weeds: EST libraries, microarrays, and evidence of introgression. AMERICAN JOURNAL OF BOTANY 2012; 99:209-18. [PMID: 22058181 DOI: 10.3732/ajb.1100313] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
PREMISE OF STUDY Weeds cause considerable environmental and economic damage. However, genomic characterization of weeds has lagged behind that of model plants and crop species. Here we describe the development of genomic tools and resources for 11 weeds from the Compositae family that will serve as a basis for subsequent population and comparative genomic analyses. Because hybridization has been suggested as a stimulus for the evolution of invasiveness, we also analyze these genomic data for evidence of hybridization. METHODS We generated 22 expressed sequence tag (EST) libraries for the 11 targeted weeds using Sanger, 454, and Illumina sequencing, compared the coverage and quality of sequence assemblies, and developed NimbleGen microarrays for expression analyses in five taxa. When possible, we also compared the distributions of Ks values between orthologs of congeneric taxa to detect and quantify hybridization and introgression. RESULTS Gene discovery was enhanced by sequencing from multiple tissues, normalization of cDNA libraries, and especially greater sequencing depth. However, assemblies from short sequence reads sometimes failed to resolve close paralogs. Substantial introgression was detected in Centaurea and Helianthus, but not in Ambrosia and Lactuca. CONCLUSIONS Transcriptome sequencing using next-generation platforms has greatly reduced the cost of genomic studies of nonmodel organisms, and the ESTs and microarrays reported here will accelerate evolutionary and molecular investigations of Compositae weeds. Our study also shows how ortholog comparisons can be used to approximately estimate the genome-wide extent of introgression and to identify genes that have been exchanged between hybridizing taxa.
Collapse
Affiliation(s)
- Zhao Lai
- Department of Biology and Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC PLANT BIOLOGY 2012; 12:9. [PMID: 22251627 PMCID: PMC3287966 DOI: 10.1186/1471-2229-12-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/17/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Identification of genes underlying drought tolerance (DT) quantitative trait loci (QTLs) will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. RESULTS Seventy five single nucleotide polymorphism (SNP) and conserved intron spanning primer (CISP) markers were developed from available expressed sequence tags (ESTs) using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG) 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B) were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. CONCLUSIONS We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene-based markers represent an important resource for identification of candidate genes for other mapped abiotic stress QTLs in pearl millet. They also provide a resource for initiating association studies using candidate genes and also for comparing the structure and function of distantly related plant genomes such as other Poaceae members.
Collapse
Affiliation(s)
- Deepmala Sehgal
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| | - Vengaldas Rajaram
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Ian Peter Armstead
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Yash Pal Yadav
- Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Bawal 123 501, Haryana, India
| | - Charles Thomas Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Rattan Singh Yadav
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| |
Collapse
|
21
|
Bachlava E, Taylor CA, Tang S, Bowers JE, Mandel JR, Burke JM, Knapp SJ. SNP discovery and development of a high-density genotyping array for sunflower. PLoS One 2012; 7:e29814. [PMID: 22238659 PMCID: PMC3251610 DOI: 10.1371/journal.pone.0029814] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/06/2011] [Indexed: 11/23/2022] Open
Abstract
Recent advances in next-generation DNA sequencing technologies have made possible the development of high-throughput SNP genotyping platforms that allow for the simultaneous interrogation of thousands of single-nucleotide polymorphisms (SNPs). Such resources have the potential to facilitate the rapid development of high-density genetic maps, and to enable genome-wide association studies as well as molecular breeding approaches in a variety of taxa. Herein, we describe the development of a SNP genotyping resource for use in sunflower (Helianthus annuus L.). This work involved the development of a reference transcriptome assembly for sunflower, the discovery of thousands of high quality SNPs based on the generation and analysis of ca. 6 Gb of transcriptome re-sequencing data derived from multiple genotypes, the selection of 10,640 SNPs for inclusion in the genotyping array, and the use of the resulting array to screen a diverse panel of sunflower accessions as well as related wild species. The results of this work revealed a high frequency of polymorphic SNPs and relatively high level of cross-species transferability. Indeed, greater than 95% of successful SNP assays revealed polymorphism, and more than 90% of these assays could be successfully transferred to related wild species. Analysis of the polymorphism data revealed patterns of genetic differentiation that were largely congruent with the evolutionary history of sunflower, though the large number of markers allowed for finer resolution than has previously been possible.
Collapse
Affiliation(s)
- Eleni Bachlava
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
| | - Christopher A. Taylor
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
| | - Shunxue Tang
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
| | - John E. Bowers
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Jennifer R. Mandel
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Steven J. Knapp
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
22
|
Sabetta W, Alba V, Blanco A, Montemurro C. sunTILL: a TILLING resource for gene function analysis in sunflower. PLANT METHODS 2011; 7:20. [PMID: 21718494 PMCID: PMC3169506 DOI: 10.1186/1746-4811-7-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/30/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Cultivated sunflower (Helianthus annus L.) is a globally important oilseed crop, subjected to intensive genetic and genomic studies. Although classical mutagenesis has successfully been applied to Helianthus genus in the past, we have developed the first sunflower TILLING resource. RESULTS To balance the maximum mutation density with an acceptable plant survival rate, a 'kill curve' analysis was first conducted with different ethylmethanesulfonate (EMS) dosages and different exposure times. According to the germination rate, a treatment with 0.7% EMS for 6 h was chosen. An M2 progeny of 3,651 fertile plants was obtained. Totally, 4.79% of the whole population showed clear aberrant phenotypes. A microsatellite analysis on a representative sample of the original seed stock and mutant lines confirmed the uniformity of the genetic background of plant material. The TILLING procedure was successfully applied to sunflower genome, initially by a CelI-nuclease mismatch cleavage assay coupled with a DNA-pooling level test. To investigate the efficiency of the mutagenic treatment, a pilot screening was carried out on 1,152 M2 lines focusing on four genes, three involved in the fatty acid biosynthetic pathway and one for downy mildew resistance. A total of 9 mutant lines were identified and confirmed by sequencing; thereby, the estimated overall mutation frequency for the pilot assay resulted to be 1/475 kb. CONCLUSION A first TILLING population for a high throughput identification of EMS-induced point mutations in sunflower genome has been successfully obtained. This represents a powerful tool to a better understanding of gene function in sunflower.
Collapse
Affiliation(s)
- Wilma Sabetta
- Department of Agro-Forestry and Environmental Biology and Chemistry, Section of Genetics and Breeding, University of Bari, via Amendola 165/A, 70126, Bari, Italy
| | - Vittorio Alba
- Department of Agro-Forestry and Environmental Biology and Chemistry, Section of Genetics and Breeding, University of Bari, via Amendola 165/A, 70126, Bari, Italy
| | - Antonio Blanco
- Department of Agro-Forestry and Environmental Biology and Chemistry, Section of Genetics and Breeding, University of Bari, via Amendola 165/A, 70126, Bari, Italy
| | - Cinzia Montemurro
- Department of Agro-Forestry and Environmental Biology and Chemistry, Section of Genetics and Breeding, University of Bari, via Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
23
|
Argyris J, Truco MJ, Ochoa O, McHale L, Dahal P, Van Deynze A, Michelmore RW, Bradford KJ. A gene encoding an abscisic acid biosynthetic enzyme (LsNCED4) collocates with the high temperature germination locus Htg6.1 in lettuce (Lactuca sp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:95-108. [PMID: 20703871 PMCID: PMC3015190 DOI: 10.1007/s00122-010-1425-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 07/30/2010] [Indexed: 05/07/2023]
Abstract
Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures. Genes encoding germination- or dormancy-related proteins were mapped in a recombinant inbred line population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. This revealed several candidate genes that are located in the genomic regions containing quantitative trait loci (QTLs) associated with temperature and light requirements for germination. In particular, LsNCED4, a temperature-regulated gene in the biosynthetic pathway for abscisic acid (ABA), a germination inhibitor, mapped to the center of a previously detected QTL for high temperature germination (Htg6.1) from UC96US23. Three sets of sister BC(3)S(2) near-isogenic lines (NILs) that were homozygous for the UC96US23 allele of LsNCED4 at Htg6.1 were developed by backcrossing to cv. Salinas and marker-assisted selection followed by selfing. The maximum temperature for germination of NIL seed lots with the UC96US23 allele at LsNCED4 was increased by 2-3°C when compared with sister NIL seed lots lacking the introgression. In addition, the expression of LsNCED4 was two- to threefold lower in the former NIL lines as compared to expression in the latter. Together, these data strongly implicate LsNCED4 as the candidate gene responsible for the Htg6.1 phenotype and indicate that decreased ABA biosynthesis at high imbibition temperatures is a major factor responsible for the increased germination thermotolerance of UC96US23 seeds.
Collapse
Affiliation(s)
- Jason Argyris
- Department of Plant Sciences, One Shields Ave, University of California, Davis, CA 95616-8780 USA
- Present Address: Syngenta Seeds S.A, Centro De Investigación Y Ensayos Finca los Sauras, Ctra de IFEPA, 30700 Torre Pachec, Murcia Spain
| | - María José Truco
- Genome Center, One Shields Ave, University of California, Davis, CA 95616-8816 USA
| | - Oswaldo Ochoa
- Genome Center, One Shields Ave, University of California, Davis, CA 95616-8816 USA
| | - Leah McHale
- Genome Center, One Shields Ave, University of California, Davis, CA 95616-8816 USA
- Present Address: Department of Horticulture and Crop Science, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210 USA
| | - Peetambar Dahal
- Department of Plant Sciences, One Shields Ave, University of California, Davis, CA 95616-8780 USA
| | - Allen Van Deynze
- Seed Biotechnology Center, One Shields Ave, University of California, Davis, CA 95616-8780 USA
| | - Richard W. Michelmore
- Department of Plant Sciences, One Shields Ave, University of California, Davis, CA 95616-8780 USA
- Genome Center, One Shields Ave, University of California, Davis, CA 95616-8816 USA
| | - Kent J. Bradford
- Department of Plant Sciences, One Shields Ave, University of California, Davis, CA 95616-8780 USA
- Seed Biotechnology Center, One Shields Ave, University of California, Davis, CA 95616-8780 USA
| |
Collapse
|
24
|
Wieckhorst S, Bachlava E, Dußle CM, Tang S, Gao W, Saski C, Knapp SJ, Schön CC, Hahn V, Bauer E. Fine mapping of the sunflower resistance locus Pl(ARG) introduced from the wild species Helianthus argophyllus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1633-44. [PMID: 20700574 PMCID: PMC2963734 DOI: 10.1007/s00122-010-1416-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/08/2010] [Indexed: 05/04/2023]
Abstract
Downy mildew, caused by Plasmopara halstedii, is one of the most destructive diseases in cultivated sunflower (Helianthus annuus L.). The dominant resistance locus Pl(ARG) originates from silverleaf sunflower (H. argophyllus Torrey and Gray) and confers resistance to all known races of P. halstedii. We mapped Pl(ARG) on linkage group (LG) 1 of (cms)HA342 × ARG1575-2, a population consisting of 2,145 F(2) individuals. Further, we identified resistance gene candidates (RGCs) that cosegregated with Pl(ARG) as well as closely linked flanking markers. Markers from the target region were mapped with higher resolution in NDBLOS(sel) × KWS04, a population consisting of 2,780 F(2) individuals that does not segregate for Pl(ARG). A large-insert sunflower bacterial artificial chromosome (BAC) library was screened with overgo probes designed for markers RGC52 and RGC151, which cosegregated with Pl(ARG). Two RGC-containing BAC contigs were anchored to the Pl(ARG) region on LG 1.
Collapse
Affiliation(s)
- S. Wieckhorst
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - E. Bachlava
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - C. M. Dußle
- State Plant Breeding Institute, Universität Hohenheim, 70599 Stuttgart, Germany
| | - S. Tang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - W. Gao
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - C. Saski
- Clemson University Genomics Institute, Clemson, SC 29634 USA
| | - S. J. Knapp
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
- Present Address: Monsanto Vegetables, Inc., 37437 State Highway 16, Woodland, CA 95695 USA
| | - C.-C. Schön
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - V. Hahn
- State Plant Breeding Institute, Universität Hohenheim, 70599 Stuttgart, Germany
| | - E. Bauer
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
25
|
Abstract
Determining the identity and distribution of molecular changes leading to the evolution of modern crop species provides major insights into the timing and nature of historical forces involved in rapid phenotypic evolution. In this study, we employed an integrated candidate gene strategy to identify loci involved in the evolution of flowering time during early domestication and modern improvement of the sunflower (Helianthus annuus). Sunflower homologs of many genes with known functions in flowering time were isolated and cataloged. Then, colocalization with previously mapped quantitative trait loci (QTLs), expression, or protein sequence differences between wild and domesticated sunflower, and molecular evolutionary signatures of selective sweeps were applied as step-wise criteria for narrowing down an original pool of 30 candidates. This process led to the discovery that five paralogs in the flowering locus T/terminal flower 1 gene family experienced selective sweeps during the evolution of cultivated sunflower and may be the causal loci underlying flowering time QTLs. Our findings suggest that gene duplication fosters evolutionary innovation and that natural variation in both coding and regulatory sequences of these paralogs responded to a complex history of artificial selection on flowering time during the evolution of cultivated sunflower.
Collapse
|
26
|
McConnell M, Mamidi S, Lee R, Chikara S, Rossi M, Papa R, McClean P. Syntenic relationships among legumes revealed using a gene-based genetic linkage map of common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1103-16. [PMID: 20607211 DOI: 10.1007/s00122-010-1375-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 05/21/2010] [Indexed: 05/04/2023]
Abstract
Molecular linkage maps are an important tool for gene discovery and cloning, crop improvement, further genetic studies, studies on diversity and evolutionary history, and cross-species comparisons. Linkage maps differ in both the type of marker and type of population used. In this study, gene-based markers were used for mapping in a recombinant inbred (RI) population of Phaseolus vulgaris L. P. vulgaris, common dry bean, is an important food source, economic product, and model organism for the legumes. Gene-based markers were developed that corresponded to genes controlling mutant phenotypes in Arabidopsis thaliana, genes undergoing selection during domestication in maize, and genes that function in a biochemical pathway in A. thaliana. Sequence information, including introns and 3' UTR, was generated for over 550 genes in the two genotypes of P. vulgaris. Over 1,800 single nucleotide polymorphisms and indels were found, 300 of which were screened in the RI population. The resulting LOD 2.0 map is 1,545 cM in length and consists of 275 gene-based and previously mapped core markers. An additional 153 markers that mapped at LOD <1.0 were placed in genetic bins. By screening the parents of other mapping populations, it was determined that the markers were useful for other common Mesoamerican × Andean mapping populations. The location of the mapped genes relative to their homologs in Arabidopsis thaliana (At), Medicago truncatula (Mt), and Lotus japonicus (Lj) were determine by using a tblastx analysis with the current psedouchromosome builds for each of the species. While only short blocks of synteny were observed with At, large-scale macrosyntenic blocks were observed with Mt and Lj. By using Mt and Lj as bridging species, the syntenic relationship between the common bean and peanut was inferred.
Collapse
Affiliation(s)
- Melody McConnell
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Ruiz-Rojas JJ, Sargent DJ, Shulaev V, Dickerman AW, Pattison J, Holt SH, Ciordia A, Veilleux RE. SNP discovery and genetic mapping of T-DNA insertional mutants in Fragaria vesca L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:449-463. [PMID: 20349033 DOI: 10.1007/s00122-010-1322-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 03/05/2010] [Indexed: 05/29/2023]
Abstract
As part of a program to develop forward and reverse genetics platforms in the diploid strawberry [Fragaria vesca L.; (2n = 2x = 14)] we have generated insertional mutant lines by T-DNA mutagenesis using pCAMBIA vectors. To characterize the T-DNA insertion sites of a population of 108 unique single copy mutants, we utilized thermal asymmetric interlaced PCR (hiTAIL-PCR) to amplify the flanking region surrounding either the left or right border of the T-DNA. Bioinformatics analysis of flanking sequences revealed little preference for insertion site with regard to G/C content; left borders tended to retain more of the plasmid backbone than right borders. Primers were developed from F. vesca flanking sequences to attempt to amplify products from both parents of the reference F. vesca 815 x F. bucharica 601 mapping population. Polymorphism occurred as: presence/absence of an amplification product for 16 primer pairs and different size products for 12 primer pairs, For 46 mutants, where polymorphism was not found by PCR, the amplification products were sequenced to reveal SNP polymorphism. A cleaved amplified polymorphic sequence/derived cleaved amplified polymorphism sequence (CAPS/dCAPS) strategy was then applied to find restriction endonuclease recognition sites in one of the parental lines to map the SNP position of 74 of the T-DNA insertion lines. BLAST search of flanking regions against GenBank revealed that 46 of 108 flanking sequences were close to presumed strawberry genes related to annotated genes from other plants.
Collapse
Affiliation(s)
- J J Ruiz-Rojas
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Edelist C, Raffoux X, Falque M, Dillmann C, Sicard D, Rieseberg LH, Karrenberg S. Differential expression of candidate salt-tolerance genes in the halophyte Helianthus paradoxus and its glycophyte progenitors H. annuus and H. petiolaris (Asteraceae). AMERICAN JOURNAL OF BOTANY 2009; 96:1830-1838. [PMID: 21622304 DOI: 10.3732/ajb.0900067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Adaptation to different habitats is considered to be a major force in the generation of organismal diversity. Understanding the genetic mechanisms that produce such adaptations will provide insights into long-standing questions in evolutionary biology and, at the same time, improve predictions of plant responses to changing environmental conditions. Here we used semiquantitative RT-PCR to study the expression of eight candidate salt-tolerance genes in leaves of the highly salt-tolerant diploid hybrid species Helianthus paradoxus and its salt-sensitive progenitor species H. annuus and H. petiolaris. Samples were collected after germination and growth under four different treatments: nonsaline (control), near-natural saline, saline with increased K(+), and saline with decreased Mg(2+) and Ca(2+). Three individuals from three populations per species were used. The hybrid species H. paradoxus constitutively under- or overexpressed genes related to potassium and calcium transport (homologues of KT1, KT2, ECA1), suggesting that these genes may contribute to the adaptation of H. paradoxus to salinity. In two other genes, variation between populations within species exceeded species level variation. Furthermore, homologues of the potassium transporter HAK8 and of a transcriptional regulator were generally overexpressed in saline treatments, suggesting that these genes are involved in sustained growth under saline conditions in Helianthus.
Collapse
Affiliation(s)
- Cécile Edelist
- University Paris-Sud, UMR 0320 / UMR 8120 Génétique Végétale, F-91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Mulpuri S, Liu Z, Feng J, Gulya TJ, Jan CC. Inheritance and molecular mapping of a downy mildew resistance gene, Pl (13) in cultivated sunflower (Helianthus annuus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:795-803. [PMID: 19557383 DOI: 10.1007/s00122-009-1089-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 05/30/2009] [Indexed: 05/20/2023]
Abstract
The inheritance of resistance to sunflower downy mildew (SDM) derived from HA-R5 conferring resistance to nine races of the pathogen has been determined and the new source has been designated as Pl ( 13 ) . The F(2) individuals and F(3) families of the cross HA-R5 (resistant) x HA 821 (susceptible) were screened against the four predominant SDM races 300, 700, 730, and 770 in separate tests which indicated dominant control by a single locus or a cluster of tightly linked genes. Bulked segregant analysis (BSA) was carried out on 116 F(2) individuals with 500 SSR primer pairs that resulted in the identification of 10 SSR markers of linkage groups 1 (9 markers) and 10 (1 marker) of the genetic map (Tang et al. in Theor Appl Genet 105:1124-1136, 2002) that distinguished the bulks. Of these, the SSR marker ORS 1008 of linkage group 10 was tightly linked (0.9 cM) to the Pl (13) gene. Genotyping the F(2) population and linkage analysis with 20 polymorphic primer pairs located on linkage group 10 failed to show linkage of the markers with downy mildew resistance and the ORS 1008 marker. Nevertheless, validation of polymorphic SSR markers of linkage group 1 along with six RFLP-based STS markers of linkage group 12 of the RFLP map of Jan et al. (Theor Appl Genet 96:15-22, 1998) corresponding to linkage group 1 of the SSR map, mapped seven SSR markers (ORS 965-1, ORS 965-2, ORS 959, ORS 371, ORS 716, and ORS 605) including ORS 1008 and one STS marker (STS10D6) to linkage group 1 covering a genetic distance of 65.0 cM. The Pl (13) gene, as a different source with its location on linkage group 1, was flanked by ORS 1008 on one side at a distance of 0.9 cM and ORS 965-1 on another side at a distance of 5.8 cM. These closely linked markers to the Pl (13) gene provide a valuable basis for marker-assisted selection in sunflower breeding programs.
Collapse
Affiliation(s)
- Sujatha Mulpuri
- Directorate of Oilseeds Research, Rajendranagar, Hyderabad 500030, India
| | | | | | | | | |
Collapse
|
30
|
Strasburg JL, Scotti-Saintagne C, Scotti I, Lai Z, Rieseberg LH. Genomic patterns of adaptive divergence between chromosomally differentiated sunflower species. Mol Biol Evol 2009; 26:1341-55. [PMID: 19276154 PMCID: PMC2727376 DOI: 10.1093/molbev/msp043] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2009] [Indexed: 01/13/2023] Open
Abstract
Understanding the genetic mechanisms of speciation and basis of species differences is among the most important challenges in evolutionary biology. Two questions of particular interest are what roles divergent selection and chromosomal differentiation play in these processes. A number of recently proposed theories argue that chromosomal rearrangements can facilitate the development and maintenance of reproductive isolation and species differences by suppressing recombination within rearranged regions. Reduced recombination permits the accumulation of alleles contributing to isolation and adaptive differentiation and protects existing differences from the homogenizing effects of introgression between incipient species. Here, we examine patterns of genetic diversity and divergence in rearranged versus collinear regions in two widespread, extensively hybridizing sunflower species, Helianthus annuus and Helianthus petiolaris, using sequence data from 77 loci distributed throughout the genomes of the two species. We find weak evidence for increased genetic divergence near chromosomal break points but not within rearranged regions overall. We find no evidence for increased rates of adaptive divergence on rearranged chromosomes; in fact, collinear chromosomes show a far greater excess of fixed amino acid differences between the two species. A comparison with a third sunflower species indicates that much of the nonsynonymous divergence between H. annuus and H. petiolaris probably occurred during or soon after their formation. Our results suggest a limited role for chromosomal rearrangements in genetic divergence, but they do document substantial adaptive divergence and provide further evidence of how species integrity and genetic identity can be maintained at many loci in the face of extensive hybridization and gene flow.
Collapse
Affiliation(s)
- Jared L Strasburg
- Department of Biology, Indiana University, Bloomington, Indiana, USA.
| | | | | | | | | |
Collapse
|
31
|
Yue B, Cai X, Vick B, Hu J. Genetic characterization and molecular mapping of a chlorophyll deficiency gene in sunflower (Helianthus annuus). JOURNAL OF PLANT PHYSIOLOGY 2009; 166:644-51. [PMID: 18947900 DOI: 10.1016/j.jplph.2008.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 05/04/2023]
Abstract
A major gene controlling chlorophyll deficiency (phenotyped by yellow leaf color, yl) in sunflower was identified and mapped in an F(2) population derived from a cross between two breeding lines. Greenness degree was scored by a hand-held chlorophyll meter in the F(2) population. Leaf tissue from the parents, F(1) hybrids, and some F(2) progenies were also sampled to determine the chlorophyll content. All F(1) plants had normal green leaf color and the segregation of the plants in the F(2) population fits the monogenic ratio (chi((3:1))(2)=0.03, p>0.9), indicating that leaf color is a monogenic trait with normal green dominant over yellow leaf color in this population. The contents of chlorophyll a, chlorophyll b, and total chlorophyll in the yellow-leafed lines were reduced by 41.6%, 53.5%, and 44.3%, respectively, in comparison with those in the green-leafed lines. Genetic mapping with molecular markers positioned the gene, yl, to linkage group 10 of sunflower. An SSR marker, ORS 595, cosegregated with yl, and a TRAP marker, B26P17ga5-300, was linked to yl with a genetic distance of 4.2cM. The molecular marker tightly linked to the chlorophyll deficiency gene will provide insight into the process of chlorophyll metabolism in sunflower.
Collapse
Affiliation(s)
- Bing Yue
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | |
Collapse
|
32
|
Brown TA, Jones MK, Powell W, Allaby RG. The complex origins of domesticated crops in the Fertile Crescent. Trends Ecol Evol 2009; 24:103-9. [DOI: 10.1016/j.tree.2008.09.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 11/26/2022]
|
33
|
Heesacker A, Kishore VK, Gao W, Tang S, Kolkman JM, Gingle A, Matvienko M, Kozik A, Michelmore RM, Lai Z, Rieseberg LH, Knapp SJ. SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1021-9. [PMID: 18633591 DOI: 10.1007/s00122-008-0841-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 06/28/2008] [Indexed: 05/03/2023]
Abstract
Simple sequence repeats (SSRs) are abundant and frequently highly polymorphic in transcribed sequences and widely targeted for marker development in eukaryotes. Sunflower (Helianthus annuus) transcript assemblies were built and mined to identify SSRs and insertions-deletions (INDELs) for marker development, comparative mapping, and other genomics applications in sunflower. We describe the spectrum and frequency of SSRs identified in the sunflower EST database, a catalog of 16,643 EST-SSRs, a collection of 484 EST-SSR and 43 EST-INDEL markers developed from common sunflower ESTs, polymorphisms of the markers among the parents of several intraspecific and interspecific mapping populations, and the transferability of the markers to closely and distantly related species in the Compositae. Of 17,904 unigenes in the transcript assembly, 1,956 (10.9%) harbored one or more SSRs with repeat counts of n > or = 5. EST-SSR markers were 1.6-fold more polymorphic among exotic than elite genotypes and 0.7-fold less polymorphic than non-genic SSR markers. Of 466 EST-SSR or INDEL markers screened for cross-species amplification and polymorphisms, 413 (88.6%) amplified alleles from one or more wild species (H. argophyllus, H. tuberosus, H. anomalus, H. paradoxus, and H. deserticola), whereas 69 (14.8%) amplified alleles from safflower (Carthamus tinctorius) and 67 (14.4%) amplified alleles from lettuce (Lactuca sativa); hence, only a fraction were transferable to distantly related genera in the Compositae, whereas most were transferable to wild relatives of H. annuus. Several thousand additional SSRs were identified in the EST database and supply a wealth of templates for EST-SSR marker development in sunflower.
Collapse
Affiliation(s)
- Adam Heesacker
- Center for Applied Genetic Technologies, The University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yue B, Radi SA, Vick BA, Cai X, Tang S, Knapp SJ, Gulya TJ, Miller JF, Hu J. Identifying quantitative trait loci for resistance to Sclerotinia head rot in two USDA sunflower germplasms. PHYTOPATHOLOGY 2008; 98:926-31. [PMID: 18943211 DOI: 10.1094/phyto-98-8-0926] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sclerotinia head rot is a major disease of sunflower in the world, and quantitative trait loci (QTL) mapping could facilitate understanding of the genetic basis of head rot resistance and breeding in sunflower. One hundred twenty-three F2:3 and F2:4 families from a cross between HA 441 and RHA 439 were studied. The mapping population was evaluated for disease resistance in three field experiments in a randomized complete block design with two replicates. Disease incidence (DI) and disease severity (DS) were assessed. A genetic map with 180 target region amplification polymorphism, 32 simple sequence repeats, 11 insertion-deletion, and 2 morphological markers was constructed. Nine DI and seven DS QTL were identified with each QTL explaining 8.4 to 34.5% of phenotypic variance, suggesting the polygenic basis of the resistance to head rot. Five of these QTL were identified in more than one experiment, and each QTL explained more than 12.9% of phenotypic variance. These QTL could be useful in sunflower breeding. Although a positive correlation existed between the two disease indices, most of the respective QTL were located in different chromosomal regions, suggesting a different genetic basis for the two indices.
Collapse
Affiliation(s)
- B Yue
- Department of Plant Sciences, North Dakota State University, Fargo 58105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Strasburg JL, Rieseberg LH. Molecular demographic history of the annual sunflowers Helianthus annuus and H. petiolaris--large effective population sizes and rates of long-term gene flow. Evolution 2008; 62:1936-50. [PMID: 18462213 PMCID: PMC2601659 DOI: 10.1111/j.1558-5646.2008.00415.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hybridization between distinct species may lead to introgression of genes across species boundaries, and this pattern can potentially persist for extended periods as long as selection at some loci or genomic regions prevents thorough mixing of gene pools. However, very few reliable estimates of long-term levels of effective migration are available between hybridizing species throughout their history. Accurate estimates of divergence dates and levels of gene flow require data from multiple unlinked loci as well as an analytical framework that can distinguish between lineage sorting and gene flow and incorporate the effects of demographic changes within each species. Here we use sequence data from 18 anonymous nuclear loci in two broadly sympatric sunflower species, Helianthus annuus and H. petiolaris, analyzed within an "isolation with migration" framework to make genome-wide estimates of the ages of these two species, long-term rates of gene flow between them, and effective population sizes and historical patterns of population growth. Our results indicate that H. annuus and H. petiolaris are approximately one million years old and have exchanged genes at a surprisingly high rate (long-term N(ef)m estimates of approximately 0.5 in each direction), with somewhat higher rates of introgression from H. annuus into H. petiolaris than vice versa. In addition, each species has undergone dramatic population expansion since divergence, and both species have among the highest levels of genetic diversity reported for flowering plants. Our results provide the most comprehensive estimate to date of long-term patterns of gene flow and historical demography in a nonmodel plant system, and they indicate that species integrity can be maintained even in the face of extensive gene flow over a prolonged period.
Collapse
Affiliation(s)
- Jared L Strasburg
- Department of Biology, Indiana University, 915 E. 3rd Street #150, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
36
|
SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms, and cross-taxa utility. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008. [PMID: 18633591 DOI: 10.1007/s00122‐008‐0841‐0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Simple sequence repeats (SSRs) are abundant and frequently highly polymorphic in transcribed sequences and widely targeted for marker development in eukaryotes. Sunflower (Helianthus annuus) transcript assemblies were built and mined to identify SSRs and insertions-deletions (INDELs) for marker development, comparative mapping, and other genomics applications in sunflower. We describe the spectrum and frequency of SSRs identified in the sunflower EST database, a catalog of 16,643 EST-SSRs, a collection of 484 EST-SSR and 43 EST-INDEL markers developed from common sunflower ESTs, polymorphisms of the markers among the parents of several intraspecific and interspecific mapping populations, and the transferability of the markers to closely and distantly related species in the Compositae. Of 17,904 unigenes in the transcript assembly, 1,956 (10.9%) harbored one or more SSRs with repeat counts of n > or = 5. EST-SSR markers were 1.6-fold more polymorphic among exotic than elite genotypes and 0.7-fold less polymorphic than non-genic SSR markers. Of 466 EST-SSR or INDEL markers screened for cross-species amplification and polymorphisms, 413 (88.6%) amplified alleles from one or more wild species (H. argophyllus, H. tuberosus, H. anomalus, H. paradoxus, and H. deserticola), whereas 69 (14.8%) amplified alleles from safflower (Carthamus tinctorius) and 67 (14.4%) amplified alleles from lettuce (Lactuca sativa); hence, only a fraction were transferable to distantly related genera in the Compositae, whereas most were transferable to wild relatives of H. annuus. Several thousand additional SSRs were identified in the EST database and supply a wealth of templates for EST-SSR marker development in sunflower.
Collapse
|
37
|
Yue B, Vick BA, Yuan W, Hu J. Mapping one of the 2 genes controlling lemon ray flower color in sunflower (Helianthus annuus L.). J Hered 2008; 99:564-7. [PMID: 18477587 DOI: 10.1093/jhered/esn033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In an F2 population of 120 plants derived from a cross between 2 breeding lines with yellow ray flowers, we observed 111 plants with yellow-colored and 9 plants with lemon-colored ray flowers. The segregation pattern fits a 15:1 (chi2(15:1) = 0.32, P > 0.5) ratio, suggesting that the lemon ray flower color is conditioned by 2 independent recessive genes that had been contributed individually by each of the parents. We sampled 111 plants from the 3 F(2:3) families displaying a 3 to 1 segregating ratio for genotyping with molecular markers. One of the genes, Yf(1), was mapped onto linkage group 11 of the public sunflower map. A targeted region amplified polymorphism marker (B26P17Trap13-68) had a genetic distance of 1.5 cM to Yf(1), and one simple sequence repeat marker (ORS733) and one expressed sequence tag (EST)-based marker (HT167) previously mapped to linkage group 11 were linked to Yf(1) with distances of 9.9 and 2.3 cM, respectively.
Collapse
Affiliation(s)
- Bing Yue
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | |
Collapse
|
38
|
Salmaso M, Malacarne G, Troggio M, Faes G, Stefanini M, Grando MS, Velasco R. A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 116:1129-43. [PMID: 18347774 DOI: 10.1007/s00122-008-0741-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 03/01/2008] [Indexed: 05/20/2023]
Abstract
Grapevine molecular maps based on microsatellites, AFLP and RAPD markers are now available. SSRs are essential to allow cross-talks between maps, thus upgrading any growing grapevine maps. In this work, single nucleotide polymorphisms (SNPs) were developed from coding sequences and from unique BAC-end sequences, and nested in a SSR framework map of grapevine. Genes participating to flavonoids metabolism and defence, and signal transduction pathways related genes were also considered. Primer pairs for 351 loci were developed from ESTs present on public databases and screened for polymorphism in the "Merzling" (a complex genotype Freiburg 993-60 derived from multiple crosses also involving wild Vitis species) x Vitis vinifera (cv. Teroldego) cross population. In total 138 SNPs, 108 SSR markers and a phenotypic trait (berry colour) were mapped in 19 major linkage groups of the consensus map. In specific cases, ESTs with putatively related functions mapped near QTLs previously identified for resistance and berry ripening. Genes related to anthocyanin metabolism mapped in different linkage groups. A myb gene, which has been correlated with anthocyanin biosynthesis, cosegregated with berry colour on linkage group 2. The possibility of associating candidate genes to known position of QTL is discussed for this plant.
Collapse
Affiliation(s)
- Marzia Salmaso
- Genetics and Molecular Biology Department, Istituto Agrario San Michele all'Adige, via Mach 1, 38010 San Michele a/A (TN), Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Fernandez P, Di Rienzo J, Fernandez L, Hopp HE, Paniego N, Heinz RA. Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC PLANT BIOLOGY 2008; 8:11. [PMID: 18221554 PMCID: PMC2265713 DOI: 10.1186/1471-2229-8-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 01/26/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Considering that sunflower production is expanding to arid regions, tolerance to abiotic stresses as drought, low temperatures and salinity arises as one of the main constrains nowadays. Differential organ-specific sunflower ESTs (expressed sequence tags) were previously generated by a subtractive hybridization method that included a considerable number of putative abiotic stress associated sequences. The objective of this work is to analyze concerted gene expression profiles of organ-specific ESTs by fluorescence microarray assay, in response to high sodium chloride concentration and chilling treatments with the aim to identify and follow up candidate genes for early responses to abiotic stress in sunflower. RESULTS Abiotic-related expressed genes were the target of this characterization through a gene expression analysis using an organ-specific cDNA fluorescence microarray approach in response to high salinity and low temperatures. The experiment included three independent replicates from leaf samples. We analyzed 317 unigenes previously isolated from differential organ-specific cDNA libraries from leaf, stem and flower at R1 and R4 developmental stage. A statistical analysis based on mean comparison by ANOVA and ordination by Principal Component Analysis allowed the detection of 80 candidate genes for either salinity and/or chilling stresses. Out of them, 50 genes were up or down regulated under both stresses, supporting common regulatory mechanisms and general responses to chilling and salinity. Interestingly 15 and 12 sequences were up regulated or down regulated specifically in one stress but not in the other, respectively. These genes are potentially involved in different regulatory mechanisms including transcription/translation/protein degradation/protein folding/ROS production or ROS-scavenging. Differential gene expression patterns were confirmed by qRT-PCR for 12.5% of the microarray candidate sequences. CONCLUSION Eighty genes isolated from organ-specific cDNA libraries were identified as candidate genes for sunflower early response to low temperatures and salinity. Microarray profiling of chilling and NaCl-treated sunflower leaves revealed dynamic changes in transcript abundance, including transcription factors, defense/stress related proteins, and effectors of homeostasis, all of which highlight the complexity of both stress responses. This study not only allowed the identification of common transcriptional changes to both stress conditions but also lead to the detection of stress-specific genes not previously reported in sunflower. This is the first organ-specific cDNA fluorescence microarray study addressing a simultaneous evaluation of concerted transcriptional changes in response to chilling and salinity stress in cultivated sunflower.
Collapse
Affiliation(s)
- Paula Fernandez
- Instituto de Biotecnología, CICVyA, INTA Castelar, Las Cabañas y Los Reseros, (B1712WAA) Castelar, Provincia de Buenos Aires, Argentina
| | - Julio Di Rienzo
- Cátedra de Estadística y Biometría, Facultad de Ciencias Agrarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luis Fernandez
- Instituto de Biotecnología, CICVyA, INTA Castelar, Las Cabañas y Los Reseros, (B1712WAA) Castelar, Provincia de Buenos Aires, Argentina
| | - H Esteban Hopp
- Instituto de Biotecnología, CICVyA, INTA Castelar, Las Cabañas y Los Reseros, (B1712WAA) Castelar, Provincia de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norma Paniego
- Instituto de Biotecnología, CICVyA, INTA Castelar, Las Cabañas y Los Reseros, (B1712WAA) Castelar, Provincia de Buenos Aires, Argentina
| | - Ruth A Heinz
- Instituto de Biotecnología, CICVyA, INTA Castelar, Las Cabañas y Los Reseros, (B1712WAA) Castelar, Provincia de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
40
|
Fusari CM, Lia VV, Hopp HE, Heinz RA, Paniego NB. Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC PLANT BIOLOGY 2008; 8:7. [PMID: 18215288 PMCID: PMC2266750 DOI: 10.1186/1471-2229-8-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/23/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD) and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs) and short insertion and/or deletions (indels) to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. RESULTS A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (theta = 0.0056), as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 +/- 1.88). Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2), with a large proportion of the inbred lines being assigned to one of them (G1). Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data) than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance). CONCLUSION Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop improvement strategies. The relatively high frequency of SNPs within the elite inbred lines studied here, along with the predicted extent of LD over distances of 100 kbp (r2 approximately 0.1) suggest that high resolution association mapping in sunflower could be achieved with marker densities lower than those usually reported in the literature.
Collapse
Affiliation(s)
- Corina M Fusari
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
| | - Verónica V Lia
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H Esteban Hopp
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ruth A Heinz
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norma B Paniego
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
| |
Collapse
|
41
|
Fusari CM, Lia VV, Hopp HE, Heinz RA, Paniego NB. Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC PLANT BIOLOGY 2008; 8:7. [PMID: 18215288 DOI: 10.1186/147-2229.8-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/23/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD) and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs) and short insertion and/or deletions (indels) to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. RESULTS A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (theta = 0.0056), as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 +/- 1.88). Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2), with a large proportion of the inbred lines being assigned to one of them (G1). Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data) than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance). CONCLUSION Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop improvement strategies. The relatively high frequency of SNPs within the elite inbred lines studied here, along with the predicted extent of LD over distances of 100 kbp (r2 approximately 0.1) suggest that high resolution association mapping in sunflower could be achieved with marker densities lower than those usually reported in the literature.
Collapse
Affiliation(s)
- Corina M Fusari
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
42
|
Garcés-Claver A, Fellman SM, Gil-Ortega R, Jahn M, Arnedo-Andrés MS. Identification, validation and survey of a single nucleotide polymorphism (SNP) associated with pungency in Capsicum spp. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:907-16. [PMID: 17882396 DOI: 10.1007/s00122-007-0617-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 07/11/2007] [Indexed: 05/17/2023]
Abstract
A single nucleotide polymorphism (SNP) associated with pungency was detected within an expressed sequence tag (EST) of 307 bp. This fragment was identified after expression analysis of the EST clone SB2-66 in placenta tissue of Capsicum fruits. Sequence alignments corresponding to this new fragment allowed us to identify an SNP between pungent and non-pungent accessions. Two methods were chosen for the development of the SNP marker linked to pungency: tetra-primer amplification refractory mutation system-PCR (tetra-primer ARMS-PCR) and cleaved amplified polymorphic sequence. Results showed that both methods were successful in distinguishing genotypes. Nevertheless, tetra-primer ARMS-PCR was chosen for SNP genotyping because it was more rapid, reliable and less cost-effective. The utility of this SNP marker for pungency was demonstrated by the ability to distinguish between 29 pungent and non-pungent cultivars of Capsicum annuum. In addition, the SNP was also associated with phenotypic pungent character in the tested genotypes of C. chinense, C. baccatum, C. frutescens, C. galapagoense, C. eximium, C. tovarii and C. cardenasi. This SNP marker is a faster, cheaper and more reproducible method for identifying pungent peppers than other techniques such as panel tasting, and allows rapid screening of the trait in early growth stages.
Collapse
Affiliation(s)
- Ana Garcés-Claver
- Technology for Plant Production Department, Centro de Investigación y Tecnología Agroalimentaria (CITA), Apdo 727, 50080, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
43
|
Chapman MA, Chang J, Weisman D, Kesseli RV, Burke JM. Universal markers for comparative mapping and phylogenetic analysis in the Asteraceae (Compositae). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:747-55. [PMID: 17634914 DOI: 10.1007/s00122-007-0605-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 06/30/2007] [Indexed: 05/16/2023]
Abstract
The development of universal markers that can be assayed across taxa, but which are polymorphic within taxa, can facilitate both comparative map-based studies and phylogenetic analyses. Here we describe the development of such markers for use in the Asteraceae, which includes the crops lettuce, sunflower, and safflower as well as dozens of locally important crop and weed species. Using alignments of a conserved orthologous set (COS) of ESTs from lettuce and sunflower and genomic sequences of Arabidopsis, we designed a suite of primer pairs that are conserved across species, but which are predicted to flank introns. We then tested 192 such primer pairs in 8 species from across the family. Of these, 163 produced an amplicon in at least 1 taxon, and 125 amplified in at least half of the taxa surveyed. Thirty-nine amplified in all 8 species. Comparisons amongst sequences within the lettuce and sunflower EST databases indicate that the vast majority of these loci will be polymorphic. As a direct test of the utility of these markers outside the lettuce and sunflower subfamilies, we sequenced a subset of ten loci from a panel of cultivated safflower individuals. All 10 loci proved to be single-locus, and nine of the 10 loci were polymorphic with an average of 12.8 SNPs per kb. Taken together, these loci will provide an initial backbone for comparative genetic analyses within the Asteraceae. Moreover, our results indicate that these loci are phylogenetically informative, and hence can be used to resolve evolutionary relationships between taxa within the family as well as within species.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
44
|
He CY, Zhang JG, Duan AG, Sun HG, Fu LH, Zheng SX. Proteins responding to drought and high-temperature stress in Pinus armandii Franch. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteomic analysis provides a powerful method for studying plant responses to stress at the protein level. To study stress-responsive molecular mechanisms for Pinus armandii Franch, one of the most important forest plantation tree species in subalpine regions of Asia, we analyzed the response of 2-year-old P. armandii seedlings to drought and high temperature using two-dimensional gel electrophoresis. More than 550 reproducible needle proteins were detected in the controls and treatments, and the abundance of 27 proteins were found to change noticeably. We identified five proteins affected by drought stress and eight proteins affected by high temperature. These proteins are functionally quite diverse and are involved in photosynthesis, cell division and elongation, antioxidant metabolism, ammonia assimilation, growth and development, and protein folding. Our results provide fundamental data for future research on responses to drought and high temperature. As drought and high temperature are two major factors limiting the growth of subalpine forests during summer under recent global warming, this research may contribute to an understanding of the development of stress tolerance in trees.
Collapse
Affiliation(s)
- Cai-Yun He
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Jian-Guo Zhang
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Ai-Guo Duan
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Hong-Gang Sun
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Li-Hua Fu
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| | - Shu-Xing Zheng
- Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P. R. China
| |
Collapse
|
45
|
Abstract
Genetic analyses of the domestication syndrome have revealed that domestication-related traits typically have a very similar genetic architecture across most crops, being conditioned by a small number of quantitative trait loci (QTL), each with a relatively large effect on the phenotype. To date, the domestication of sunflower (Helianthus annuus L.) stands as the only counterexample to this pattern. In previous work involving a cross between wild sunflower (also H. annuus) and a highly improved oilseed cultivar, we found that domestication-related traits in sunflower are controlled by numerous QTL, typically of small effect. To provide insight into the minimum genetic changes required to transform the weedy common sunflower into a useful crop plant, we mapped QTL underlying domestication-related traits in a cross between a wild sunflower and a primitive Native American landrace that has not been the target of modern breeding programs. Consistent with the results of the previous study, our data indicate that the domestication of sunflower was driven by selection on a large number of loci, most of which had small to moderate phenotypic effects. Unlike the results of the previous study, however, nearly all of the QTL identified herein had phenotypic effects in the expected direction, with the domesticated allele producing a more crop-like phenotype and the wild allele producing a more wild-like phenotype. Taken together, these results are consistent with the hypothesis that selection during the post-domestication era has resulted in the introduction of apparently maladaptive alleles into the modern sunflower gene pool.
Collapse
Affiliation(s)
- David M Wills
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
46
|
Yatabe Y, Kane NC, Scotti-Saintagne C, Rieseberg LH. Rampant gene exchange across a strong reproductive barrier between the annual sunflowers, Helianthus annuus and H. petiolaris. Genetics 2007; 175:1883-93. [PMID: 17277373 PMCID: PMC1855124 DOI: 10.1534/genetics.106.064469] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant species may remain morphologically distinct despite gene exchange with congeners, yet little is known about the genomewide pattern of introgression among species. Here we analyze the effects of persistent gene flow on genomic differentiation between the sympatric sunflower species Helianthus annuus and H. petiolaris. While the species are strongly isolated in testcrosses, genetic distances at 108 microsatellite loci and 14 sequenced genes are highly variable and much lower (on average) than for more closely related but historically allopatric congeners. Our analyses failed to detect a positive association between levels of genetic differentiation and chromosomal rearrangements (as reported in a prior publication) or proximity to QTL for morphological differences or hybrid sterility. However, a significant increase in differentiation was observed for markers within 5 cM of chromosomal breakpoints. Together, these results suggest that islands of differentiation between these two species are small, except in areas of low recombination. Furthermore, only microsatellites associated with ESTs were identified as outlier loci in tests for selection, which might indicate that the ESTs themselves are the targets of selection rather than linked genes (or that coding regions are not randomly distributed). In general, these results indicate that even strong and genetically complex reproductive barriers cannot prevent widespread introgression.
Collapse
Affiliation(s)
- Yoko Yatabe
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
47
|
Church SA, Livingstone K, Lai Z, Kozik A, Knapp SJ, Michelmore RW, Rieseberg LH. Using variable rate models to identify genes under selection in sequence pairs: their validity and limitations for EST sequences. J Mol Evol 2007; 64:171-80. [PMID: 17200807 DOI: 10.1007/s00239-005-0299-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
Using likelihood-based variable selection models, we determined if positive selection was acting on 523 EST sequence pairs from two lineages of sunflower and lettuce. Variable rate models are generally not used for comparisons of sequence pairs due to the limited information and the inaccuracy of estimates of specific substitution rates. However, previous studies have shown that the likelihood ratio test (LRT) is reliable for detecting positive selection, even with low numbers of sequences. These analyses identified 56 genes that show a signature of selection, of which 75% were not identified by simpler models that average selection across codons. Subsequent mapping studies in sunflower show four of five of the positively selected genes identified by these methods mapped to domestication QTLs. We discuss the validity and limitations of using variable rate models for comparisons of sequence pairs, as well as the limitations of using ESTs for identification of positively selected genes.
Collapse
Affiliation(s)
- Sheri A Church
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
HINTEN GN, HALE MC, GRATTEN J, MOSSMAN JA, LOWDER BV, MANN MK, SLATE J. TECHNICAL ARTICLE: SNP-SCALE: SNP scoring by colour and length exclusion. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1471-8286.2006.01648.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Abstract
Genomics and bioinformatics have great potential to help address numerous topics in ecology and evolution. Expressed sequence tags (ESTs) can bridge genomics and molecular ecology because they can provide a means of accessing the gene space of almost any organism. We review how ESTs have been used in molecular ecology research in the last several years by providing sequence data for the design of molecular markers, genome-wide studies of gene expression and selection, the identification of candidate genes underlying adaptation, and the basis for studies of gene family and genome evolution. Given the tremendous recent advances in inexpensive sequencing technologies, we predict that molecular ecologists will increasingly be developing and using EST collections in the years to come. With this in mind, we close our review by discussing aspects of EST resource development of particular relevance for molecular ecologists.
Collapse
Affiliation(s)
- Amy Bouck
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
50
|
Hu J. Defining the sunflower (Helianthus annuus L.) linkage group ends with the Arabidopsis-type telomere sequence repeat-derived markers. Chromosome Res 2006; 14:535-48. [PMID: 16823616 DOI: 10.1007/s10577-006-1051-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/10/2006] [Accepted: 03/10/2006] [Indexed: 10/24/2022]
Abstract
The target region amplification polymorphism (TRAP) marker technique was employed to define sunflower (Helianthus annuus L.) linkage group ends. In combination with eight arbitrary primers, nine fixed primers containing the Arabidopsis-type telomere repeat sequences worked successfully in generating polymorphic markers in the mapping population of 92 F(7) recombinant inbred lines (RIL) derived from the cross RHA 280 x RHA 801. This population was used in the construction of the densest sunflower linkage map of 577 simple sequence repeat (SSR) markers. With 18 sets of PCR reactions, 226 polymorphic TRAP markers were amplified from the two parental lines and 92 RIL. The computer program, Mapmaker, placed 183 markers into the established 17 linkage groups of the SSR map. Although most of the added markers spread across the genome, 32 markers were mapped to the outermost positions of the linkage groups, defining 21 of the 34 linkage group ends of the sunflower linkage map. The telomeric origin of a few of these markers was confirmed by sequence analyses. These telomere-associated markers will provide an accurate assessment of the completeness of a linkage group and a better estimate of the actual genetic lengths. The potential application of the telomere mapping to sunflower improvement is discussed.
Collapse
Affiliation(s)
- Jinguo Hu
- U.S. Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58105, USA.
| |
Collapse
|