1
|
Characterization and Use in Wheat Breeding of Leaf Rust Resistance Genes from Durable Varieties. BIOLOGY 2021; 10:biology10111168. [PMID: 34827161 PMCID: PMC8615195 DOI: 10.3390/biology10111168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary Wheat leaf rust is one of the most significant diseases worldwide, incited by a parasitic fungus which infects leaves, affecting grain yield. This pathogen is spread by the wind over large areas through microscopic spores. This huge number of spores favors the selection of virulent forms; therefore, there is a continuous need for new resistance genes to control this disease without fungicides. These resistant genes are naturally found in resistant wheat varieties and can be introduced by standard crosses. In this work, seven resistant genes were introduced into several commercial susceptible varieties. The selection of resistance genes was assisted by DNA markers that are close to these genes on the chromosome. Additionally, the selection of desirable traits from the commercial variety was also assisted by DNA markers to accelerate the process. In field testing, the varieties developed here were resistant to leaf rust, and suitable for commercial use. Abstract Leaf rust is one of the most significant diseases of wheat worldwide. In Argentina, it is one of the main reasons for variety replacement that becomes susceptible after large-scale use. Some varieties showed durable resistance to this disease, including Buck Manantial and Sinvalocho MA. RILs (Recombinant Inbred Lines) were developed for each of these varieties and used in genetics studies to identify components of resistance, both in greenhouse inoculations using leaf rust races, and in field evaluations under natural population infections. In Buck Manantial, the APR gene LrBMP1 was associated with resistance in field tests. In crosses involving Sinvalocho MA, four genes were previously identified and associated with resistance in field testing: APR (Adult Plant Resistance) gene LrSV1, the APR genetic system LrSV2 + LrcSV2 and the ASR (All Stage Resistance) gene LrG6. Using backcrosses, LrBMP1 was introgressed in four commercial susceptible varieties and LrSV1, LrSV2 + LrcSV2 and LrG6 were simultaneously introgressed in three susceptible commercial varieties. The use of molecular markers for recurrent parent background selection allowed us to select resistant lines with more than 80% similarity to commercial varieties. Additionally, progress towards positional cloning of the genetic system LrSV2 + LrcSV2 for leaf rust APR is reported.
Collapse
|
2
|
Bokore FE, Knox RE, Cuthbert RD, Pozniak CJ, McCallum BD, N’Diaye A, DePauw RM, Campbell HL, Munro C, Singh A, Hiebert CW, McCartney CA, Sharpe AG, Singh AK, Spaner D, Fowler DB, Ruan Y, Berraies S, Meyer B. Mapping quantitative trait loci associated with leaf rust resistance in five spring wheat populations using single nucleotide polymorphism markers. PLoS One 2020; 15:e0230855. [PMID: 32267842 PMCID: PMC7141615 DOI: 10.1371/journal.pone.0230855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/10/2020] [Indexed: 01/27/2023] Open
Abstract
Growing resistant wheat (Triticum aestivum L) varieties is an important strategy for the control of leaf rust, caused by Puccinia triticina Eriks. This study sought to identify the chromosomal location and effects of leaf rust resistance loci in five Canadian spring wheat cultivars. The parents and doubled haploid lines of crosses Carberry/AC Cadillac, Carberry/Vesper, Vesper/Lillian, Vesper/Stettler and Stettler/Red Fife were assessed for leaf rust severity and infection response in field nurseries in Canada near Swift Current, SK from 2013 to 2015, Morden, MB from 2015 to 2017 and Brandon, MB in 2016, and in New Zealand near Lincoln in 2014. The populations were genotyped with the 90K Infinium iSelect assay and quantitative trait loci (QTL) analysis was performed. A high density consensus map generated based on 14 doubled haploid populations and integrating SNP and SSR markers was used to compare QTL identified in different populations. AC Cadillac contributed QTL on chromosomes 2A, 3B and 7B (2 loci), Carberry on 1A, 2B (2 loci), 2D, 4B (2 loci), 5A, 6A, 7A and 7D, Lillian on 4A and 7D, Stettler on 2D and 6B, Vesper on 1B, 1D, 2A, 6B and 7B (2 loci), and Red Fife on 7A and 7B. Lillian contributed to a novel locus QLr.spa-4A, and similarly Carberry at QLr.spa-5A. The discovery of novel leaf rust resistance QTL QLr.spa-4A and QLr.spa-5A, and several others in contemporary Canada Western Red Spring wheat varieties is a tremendous addition to our present knowledge of resistance gene deployment in breeding. Carberry demonstrated substantial stacking of genes which could be supplemented with the genes identified in other cultivars with the expectation of increasing efficacy of resistance to leaf rust and longevity with little risk of linkage drag.
Collapse
Affiliation(s)
- Firdissa E Bokore
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Ron E. Knox
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
- * E-mail: (REK); (RDC); (CJP)
| | - Richard D. Cuthbert
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
- * E-mail: (REK); (RDC); (CJP)
| | - Curtis J. Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
- * E-mail: (REK); (RDC); (CJP)
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Amidou N’Diaye
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - Heather L. Campbell
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Catherine Munro
- Plant and Food Research, Canterbury Agriculture and Science Centre, Lincoln, New Zealand
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Colin W. Hiebert
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Curt A. McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Canada
| | - Andrew G. Sharpe
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Dean Spaner
- Department of Agricultural, Food and Nutritional Science, 4–10N Agriculture-Forestry Centre, University of Alberta, Edmonton, Canada
| | - D. B. Fowler
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Yuefeng Ruan
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Samia Berraies
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| | - Brad Meyer
- Swift Current Research and Development Center, Agriculture and Agri-Food Canada, Swift Current, Canada
| |
Collapse
|
3
|
Lan C, Basnet BR, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Ren Y, Randhawa MS. Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:609-619. [PMID: 28004134 DOI: 10.1007/s00122-016-2839-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/01/2016] [Indexed: 05/02/2023]
Abstract
New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds. CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5-60.8%, 9.0-14.3%, 2.8-13.9%, and 11.6-29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.
Collapse
Affiliation(s)
- Caixia Lan
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico.
| | - Bhoja R Basnet
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de México INIFAP, Apdo. Postal 10, 56230, Chapingo, Texcoco, Edo. de México, Mexico
| | - Sybil A Herrera-Foessel
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, 8 Songjiang Road, Mianyang, 621023, Sichuan, People's Republic of China
| | - Mandeep S Randhawa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Texcoco, México D.F., Mexico
| |
Collapse
|
4
|
Diéguez MJ, Pergolesi MF, Velasquez SM, Ingala L, López M, Darino M, Paux E, Feuillet C, Sacco F. Fine mapping of LrSV2, a race-specific adult plant leaf rust resistance gene on wheat chromosome 3BS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1133-1141. [PMID: 24553966 DOI: 10.1007/s00122-014-2285-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/04/2014] [Indexed: 06/03/2023]
Abstract
Fine mapping permits the precise positioning of genes within chromosomes, prerequisite for positional cloning that will allow its rational use and the study of the underlying molecular action mechanism. Three leaf rust resistance genes were identified in the durable leaf rust resistant Argentinean wheat variety Sinvalocho MA: the seedling resistance gene Lr3 on distal 6BL and two adult plant resistance genes, LrSV1 and LrSV2, on chromosomes 2DS and 3BS, respectively. To develop a high-resolution genetic map for LrSV2, 10 markers were genotyped on 343 F2 individuals from a cross between Sinvalocho MA and Gama6. The closest co-dominant markers on both sides of the gene (3 microsatellites and 2 STMs) were analyzed on 965 additional F2s from the same cross. Microsatellite marker cfb5010 cosegregated with LrSV2 whereas flanking markers were found at 1 cM distal and at 0.3 cM proximal to the gene. SSR markers designed from the sequences of cv Chinese Spring BAC clones spanning the LrSV2 genetic interval were tested on the recombinants, allowing the identification of microsatellite swm13 at 0.15 cM distal to LrSV2. This delimited an interval of 0.45 cM around the gene flanked by the SSR markers swm13 and gwm533 at the subtelomeric end of chromosome 3BS.
Collapse
Affiliation(s)
- M J Diéguez
- Instituto de Genética "Ewald A. Favret" CICVyA-INTA CC25 (1712) Castelar, Buenos Aires, Argentina,
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Da-Silva PR, Brammer SP, Guerra D, Milach SCK, Barcellos AL, Baggio MI. Monosomic and molecular mapping of adult plant leaf rust resistance genes in the Brazilian wheat cultivar Toropi. GENETICS AND MOLECULAR RESEARCH 2012; 11:2823-34. [PMID: 23007977 DOI: 10.4238/2012.august.24.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Leaf rust is one of the most destructive diseases affecting wheat worldwide. The most effective way to control it is to use resistant cultivars. Resistance based on slow-rusting adult plant resistance (APR) genes has proven to be the best method for developing cultivars with durable resistance. A source of slow-rusting APR for leaf rust is the Brazilian wheat cultivar Toropi. The Toropi/IAC 13 F₂ and F₇ recombinant inbred lines (RILs) were developed in previous studies. Phenotypic analysis of the F₂ and F₇ RILs showed that 2 recessive genes that were temporarily named trp-1 and trp-2 conferred APR in Toropi. In the present study, we used monosomic families and amplified fragment length polymorphism (AFLP), sequence-tagged site, and simple sequence repeat (SSR) markers to map trp-1 and trp-2 on wheat chromosomes. Analysis of the F₂ monosomic RIL showed that trp- 1 and trp-2 were located on chromosomes 1A and 4D, respectively. AFLP analysis of the F₇ RIL identified 2 independent AFLP markers, XPacgMcac3 and XPacgMcac6, which were associated with Toropi APR. These markers explained 71.5% of the variation in the phenotypic data in a multiple linear regression model. The AFLP markers XPacg/ Mcac3 and XPacg/Mcac6 were anchored by SSR markers previously mapped on the short arms of chromosomes 1A (1AS) and 4D (4DS), respectively. The trp-2 gene is the first leaf rust resistance gene mapped on wheat chromosome 4DS. The mapping of trp-1 and trp-2 provides novel and valuable information that could be used in future studies involving the fine mapping of these genes, as well as in the identification of molecular markers that are closely related to these genes for marker-assisted selection of this important trait in wheat.
Collapse
Affiliation(s)
- P R Da-Silva
- Laboratório de Genética e Biologia Molecular Vegetal, Departamento de Ciências Biológicas, Universidade Estadual do Centro-Oeste, Guarapuava, PR, Brasil.
| | | | | | | | | | | |
Collapse
|
6
|
Ingala L, López M, Darino M, Pergolesi MF, Diéguez MJ, Sacco F. Genetic analysis of leaf rust resistance genes and associated markers in the durable resistant wheat cultivar Sinvalocho MA. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 124:1305-1314. [PMID: 22278178 DOI: 10.1007/s00122-012-1788-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/10/2012] [Indexed: 05/31/2023]
Abstract
In the cross of the durable leaf rust resistant wheat Sinvalocho MA and the susceptible line Gama6, four specific genes were identified: the seedling resistance gene Lr3, the adult plant resistance (APR) genes LrSV1 and LrSV2 coming from Sinvalocho MA, and the seedling resistance gene LrG6 coming from Gama6. Lr3 was previously mapped on 6BL in the same cross. LrSV1 was mapped on chromosome 2DS where resistance genes Lr22a and Lr22b have been reported. Results from rust reaction have shown that LrSV1 from Sinvalocho is not the same allele as Lr22b and an allelism test with Lr22a showed that they could be alleles or closely linked genes. LrSV1 was mapped in an 8.5-cM interval delimited by markers gwm296 distal and gwm261 proximal. Adult gene LrSV2 was mapped on chromosome 3BS, cosegregating with gwm533 in a 7.2-cM interval encompassed by markers gwm389 and gwm493, where other disease resistance genes are located, such as seedling gene Lr27 for leaf rust, Sr2 for stem rust, QTL Qfhs.ndsu-3BS for resistance to Fusarium gramineum and wheat powdery mildew resistance. The gene LrG6 was mapped on chromosome 2BL, with the closest marker gwm382 at 0.6 cM. Lines carrying LrSV1, LrSV2 and LrG6 tested under field natural infection conditions, showed low disease infection type and severity, suggesting that this kind of resistance can be explained by additive effects of APR and seedling resistance genes. The identification of new sources of resistance from South American land races and old varieties, supported by modern DNA technology, contributes to sustainability of agriculture through plant breeding.
Collapse
Affiliation(s)
- L Ingala
- Instituto de Genética Ewald A Favret CICVyA-INTA CC25, 1712 Castelar, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
7
|
Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4. Genetica 2010; 138:1277-96. [PMID: 21113791 DOI: 10.1007/s10709-010-9528-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35 Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.
Collapse
|
8
|
Kim H, Jo S, Song HJ, Park ZY, Park CS. Myelin basic protein as a binding partner and calmodulin adaptor for the BKCa channel. Proteomics 2007; 7:2591-602. [PMID: 17610306 DOI: 10.1002/pmic.200700185] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The activity and localization of large-conductance Ca2+ -activated K+ (BKCa) channels are known to be modulated by several different proteins. Although many binding partners have been identified via yeast two-hybrid screening, this method may not detect certain classes of interacting proteins such as low affinity binding proteins or multi-component protein complexes. In this study, we employed mass spectrometry to identify proteins that interact with BKCa channels. We expressed and purified the 'tail domain' of the rat BKCa channel alpha-subunit, a 54-kDa region that is crucial for expression and functional activity of the channel. Using rat brain lysate and purified 'tail domain', we identified several novel proteins that interact with the BKCa channel. These included the myelin basic protein (MBP), upon which we performed subsequent biochemical and electrophysiological studies. Interaction between the BKCa channel and MBP was confirmed in vivo and in vitro. MBP co-expression affected the Ca2+ -dependent activation of the BKCa channel by increasing its Ca2+ sensitivity. Moreover, we showed that calmodulin (CaM) interacts with the BKCa channel via MBP. Since CaM is a key regulator of many Ca2+ -dependent processes, it may be recruited by MBP to the vicinity of the BKCa channel, modulating its functional activity.
Collapse
Affiliation(s)
- Hyunyoung Kim
- Department Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | | | | | | | | |
Collapse
|