1
|
Mehmetoğlu E, Kaymaz Y, Ateş D, Kahraman A, Tanyolaç MB. The complete chloroplast genome of Cicer reticulatum and comparative analysis against relative Cicer species. Sci Rep 2023; 13:17871. [PMID: 37857674 PMCID: PMC10587350 DOI: 10.1038/s41598-023-44599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
The chloroplast (cp) genome is an adequate genomic resource to investigate evolutionary relationships among plant species and it carries marker genes available for species identification. The Cicer reticulatum is one of perennial species as the progenitor of cultivated chickpeas. Although a large part of the land plants has a quadruple chloroplast genome organization, the cp genome of C. reticulatum consists of one LSC (Large Single Copy Region), one SSC (Small Single Copy Region), and one IR (Inverted Repeat) region, which indicates that it has an untypical and unique structure. This type of chloroplast genome belongs to the IR-lacking clade. Chloroplast DNA (cpDNA) was extracted from fresh leaves using a high salt-based protocol and sequencing was performed using DNA Nanoball Sequencing technology. The comparative analysis employed between the species to examine genomic differences and gene homology. The study also included codon usage frequency analysis, hotspot divergence analysis, and phylogenetic analysis using various bioinformatics tools. The cp genome of C. reticulatum was found 125,794 bp in length, with an overall GC content of 33.9%. With a total of 79 protein-coding genes, 34 tRNA genes, and 4 rRNA genes. Comparative genomic analysis revealed 99.93% similarity between C. reticulatum and C. arietinum. Phylogenetic analysis further indicated that the closest evolutionary relative to C. arietinum was C. reticulatum, whereas the previously sequenced wild Cicer species displayed slight distinctions across their entire coding regions. Several genomic regions, such as clpP and ycf1, were found to exhibit high nucleotide diversity, suggesting their potential utility as markers for investigating the evolutionary relationships within the Cicer genus. The first complete cp genome sequence of C. reticulatum will provide novel insights for future genetic research on Cicer crops.
Collapse
Affiliation(s)
- Ezgi Mehmetoğlu
- Faculty of Engineering, Department of Bioengineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Yasin Kaymaz
- Faculty of Engineering, Department of Bioengineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Duygu Ateş
- Faculty of Engineering, Department of Bioengineering, Ege University, 35100, Bornova, Izmir, Turkey
| | - Abdullah Kahraman
- Faculty of Agriculture, Department of Field Crops, Harran University, S. Urfa, 64000, Şanlıurfa, Turkey
| | | |
Collapse
|
2
|
Yadav G, Jayaswal D, Jayaswall K, Bhandawat A, Singh A, Tilgam J, Rai AK, Chaturvedi R, Kumar A, Kumar S, Jeevan Kumar SP. Identification and characterization of chickpea genotypes for early flowering and higher seed germination through molecular markers. Mol Biol Rep 2022; 49:6181-6188. [PMID: 35526245 DOI: 10.1007/s11033-022-07410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Chickpea is the fourth most important legume crop contributing 15.42% to the total legume production and a rich source of proteins, minerals, and vitamins. Determination of genetic diversity of wild and elite cultivars coupled with early flowering and higher seed germination lines are quintessential for variety improvement. METHODS AND RESULTS In the present study, we have analyzed the genetic diversity, population structure, cross-species transferability, and allelic richness in 50 chickpea collections using 23 Inter simple sequence repeats (ISSR) markers. The observed parameters such as allele number varied from 3 to 16, range of allele size varied from 150 to 1600 bp and polymorphic information content (PIC) range lies in between 0.15 and 0.49. Dendrogram was constructed with ISSR marker genotypic data and classified 50 chickpea germplasms into groups I and II, where the accession P 74 - 1 is in group I and the rest are in group II. Dendrogram, Principal component analysis (PCA), dissimilarity matrix, and Bayesian model-based genetic clustering of 50 chickpea germplasms revealed that P 74 - 1 and P 1883 are very diverse chickpea accessions. CONCLUSION Based on genetic diversity analysis, 15 chickpea germplasm having been screened for early flowering and higher seed germination and found that the P 1857-1 and P 3971 have early flowering and higher seed germination percentage in comparison to P 1883 and other germplasm. These agronomic traits are essential for crop improvement and imply the potential of ISSR markers in crop improvement.
Collapse
Affiliation(s)
- Garima Yadav
- ICAR- Indian Institute of Seed Science, 275103, Mau, Uttar Pradesh, India
| | - Deepanshu Jayaswal
- ICAR- Indian Institute of Seed Science, 275103, Mau, Uttar Pradesh, India.
| | - Kuldip Jayaswall
- ICAR- Indian Institute of Seed Science, 275103, Mau, Uttar Pradesh, India
- Department of Botany, Banaras Hindu University, 221005, Varanasi, Uttar Pradesh, India
| | - Abhishek Bhandawat
- Agri-Biotechnology Department, National Agri-Food Biotechnology Institute, 140507, Mohali, Punjab, India
| | - ArvindNath Singh
- ICAR- Indian Institute of Seed Science, 275103, Mau, Uttar Pradesh, India
| | - Jyotsana Tilgam
- ICAR- National Bureau of Agriculturally Important Microorganisms, 275103, Mau, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University, 226028, Lucknow, Uttar Pradesh, India
| | - Abhishek Kumar Rai
- ICAR- Indian Institute of Seed Science, 275103, Mau, Uttar Pradesh, India
| | - Rachna Chaturvedi
- ICAR- National Bureau of Agriculturally Important Microorganisms, 275103, Mau, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University, 226028, Lucknow, Uttar Pradesh, India
| | - Ashutosh Kumar
- ICAR- Indian Institute of Seed Science, 275103, Mau, Uttar Pradesh, India
| | - Sanjay Kumar
- ICAR- Indian Institute of Seed Science, 275103, Mau, Uttar Pradesh, India
| | - S P Jeevan Kumar
- ICAR- Directorate of Floricultural Research, 411005, Pune, Maharashtra, India.
| |
Collapse
|
3
|
Tufan H, Erdoğan C. Genetic diversity in some faba bean (Vicia faba L.) genotypes assessed by simple sequence repeats. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1253435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Hidayet Tufan
- Institute of Natural and Applied Sciences, University of Mustafa Kemal, Hatay, Turkey
| | - Cahit Erdoğan
- Department of Field Crops, Faculty of Agriculture, University of Mustafa Kemal, Hatay, Turkey
| |
Collapse
|
4
|
Yan D, Zhao X, Cheng Y, Ma X, Huang L, Zhang X. Phylogenetic and Diversity Analysis of Dactylis glomerata Subspecies Using SSR and IT-ISJ Markers. Molecules 2016; 21:molecules21111459. [PMID: 27809251 PMCID: PMC6272990 DOI: 10.3390/molecules21111459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022] Open
Abstract
The genus Dactylis, an important forage crop, has a wide geographical distribution in temperate regions. While this genus is thought to include a single species, Dactylis glomerata, this species encompasses many subspecies whose relationships have not been fully characterized. In this study, the genetic diversity and phylogenetic relationships of nine representative Dactylis subspecies were examined using SSR and IT-ISJ markers. In total, 21 pairs of SSR primers and 15 pairs of IT-ISJ primers were used to amplify 295 polymorphic bands with polymorphic rates of 100%. The average polymorphic information contents (PICs) of SSR and IT-ISJ markers were 0.909 and 0.780, respectively. The combined data of the two markers indicated a high level of genetic diversity among the nine D. glomerata subspecies, with a Nei’s gene diversity index value of 0.283 and Shannon’s diversity of 0.448. Preliminarily phylogenetic analysis results revealed that the 20 accessions could be divided into three groups (A, B, C). Furthermore, they could be divided into five clusters, which is similar to the structure analysis with K = 5. Phylogenetic placement in these three groups may be related to the distribution ranges and the climate types of the subspecies in each group. Group A contained eight accessions of four subspecies, originating from the west Mediterranean, while Group B contained seven accessions of three subspecies, originating from the east Mediterranean.
Collapse
Affiliation(s)
- Defei Yan
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinxin Zhao
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yajuan Cheng
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao Ma
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linkai Huang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- Department of Grassland Science, Animal Science and Technology College, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Bajaj D, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK. Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci Rep 2015; 5:12468. [PMID: 26208313 PMCID: PMC4513697 DOI: 10.1038/srep12468] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
We identified 82489 high-quality genome-wide SNPs from 93 wild and cultivated Cicer accessions through integrated reference genome- and de novo-based GBS assays. High intra- and inter-specific polymorphic potential (66-85%) and broader natural allelic diversity (6-64%) detected by genome-wide SNPs among accessions signify their efficacy for monitoring introgression and transferring target trait-regulating genomic (gene) regions/allelic variants from wild to cultivated Cicer gene pools for genetic improvement. The population-specific assignment of wild Cicer accessions pertaining to the primary gene pool are more influenced by geographical origin/phenotypic characteristics than species/gene-pools of origination. The functional significance of allelic variants (non-synonymous and regulatory SNPs) scanned from transcription factors and stress-responsive genes in differentiating wild accessions (with potential known sources of yield-contributing and stress tolerance traits) from cultivated desi and kabuli accessions, fine-mapping/map-based cloning of QTLs and determination of LD patterns across wild and cultivated gene-pools are suitably elucidated. The correlation between phenotypic (agromorphological traits) and molecular diversity-based admixed domestication patterns within six structured populations of wild and cultivated accessions via genome-wide SNPs was apparent. This suggests utility of whole genome SNPs as a potential resource for identifying naturally selected trait-regulating genomic targets/functional allelic variants adaptive to diverse agroclimatic regions for genetic enhancement of cultivated gene-pools.
Collapse
Affiliation(s)
- Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi-110012, India
| | - Mohar Singh
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi-110012, India
| | - Kailash C. Bansal
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi-110012, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
6
|
Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK. An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 2014; 21:695-710. [PMID: 25335477 PMCID: PMC4263302 DOI: 10.1093/dnares/dsu031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The identification and fine mapping of robust quantitative trait loci (QTLs)/genes governing important agro-morphological traits in chickpea still lacks systematic efforts at a genome-wide scale involving wild Cicer accessions. In this context, an 834 simple sequence repeat and single-nucleotide polymorphism marker-based high-density genetic linkage map between cultivated and wild parental accessions (Cicer arietinum desi cv. ICC 4958 and Cicer reticulatum wild cv. ICC 17160) was constructed. This inter-specific genetic map comprising eight linkage groups spanned a map length of 949.4 cM with an average inter-marker distance of 1.14 cM. Eleven novel major genomic regions harbouring 15 robust QTLs (15.6–39.8% R2 at 4.2–15.7 logarithm of odds) associated with four agro-morphological traits (100-seed weight, pod and branch number/plant and plant hairiness) were identified and mapped on chickpea chromosomes. Most of these QTLs showed positive additive gene effects with effective allelic contribution from ICC 4958, particularly for increasing seed weight (SW) and pod and branch number. One robust SW-influencing major QTL region (qSW4.2) has been narrowed down by combining QTL mapping with high-resolution QTL region-specific association analysis, differential expression profiling and gene haplotype-based association/LD mapping. This enabled to delineate a strong SW-regulating ABI3VP1 transcription factor (TF) gene at trait-specific QTL interval and consequently identified favourable natural allelic variants and superior high seed weight-specific haplotypes in the upstream regulatory region of this gene showing increased transcript expression during seed development. The genes (TFs) harbouring diverse trait-regulating QTLs, once validated and fine-mapped by our developed rapid integrated genomic approach and through gene/QTL map-based cloning, can be utilized as potential candidates for marker-assisted genetic enhancement of chickpea.
Collapse
Affiliation(s)
- Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | - Mohar Singh
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi 110012, India
| | - Kailash C Bansal
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi 110012, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
7
|
Saxena MS, Bajaj D, Kujur A, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK. Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS One 2014; 9:e107484. [PMID: 25222488 PMCID: PMC4164632 DOI: 10.1371/journal.pone.0107484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/11/2014] [Indexed: 01/23/2023] Open
Abstract
Characterization of natural allelic diversity and understanding the genetic structure and linkage disequilibrium (LD) pattern in wild germplasm accessions by large-scale genotyping of informative microsatellite and single nucleotide polymorphism (SNP) markers is requisite to facilitate chickpea genetic improvement. Large-scale validation and high-throughput genotyping of genome-wide physically mapped 478 genic and genomic microsatellite markers and 380 transcription factor gene-derived SNP markers using gel-based assay, fluorescent dye-labelled automated fragment analyser and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass array have been performed. Outcome revealed their high genotyping success rate (97.5%) and existence of a high level of natural allelic diversity among 94 wild and cultivated Cicer accessions. High intra- and inter-specific polymorphic potential and wider molecular diversity (11-94%) along with a broader genetic base (13-78%) specifically in the functional genic regions of wild accessions was assayed by mapped markers. It suggested their utility in monitoring introgression and transferring target trait-specific genomic (gene) regions from wild to cultivated gene pool for the genetic enhancement. Distinct species/gene pool-wise differentiation, admixed domestication pattern, and differential genome-wide recombination and LD estimates/decay observed in a six structured population of wild and cultivated accessions using mapped markers further signifies their usefulness in chickpea genetics, genomics and breeding.
Collapse
Affiliation(s)
- Maneesha S. Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, India
| | - Mohar Singh
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Kailash C. Bansal
- National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
8
|
Südüpak MA. SSR-Based Genetic Diversity Assessment of Turkish Chickpea Varieties. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2013.0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
|
10
|
Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M. Transcriptome sequencing of wild chickpea as a rich resource for marker development. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:690-702. [PMID: 22672127 DOI: 10.1111/j.1467-7652.2012.00712.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The transcriptome of cultivated chickpea (Cicer arietinum L.), an important crop legume, has recently been sequenced. Here, we report sequencing of the transcriptome of wild chickpea, C. reticulatum (PI489777), the progenitor of cultivated chickpea, by GS-FLX 454 technology. The optimized assembly of C. reticulatum transcriptome generated 37 265 transcripts in total with an average length of 946 bp. A total of 4072 simple sequence repeats (SSRs) could be identified in these transcript sequences, of which at least 561 SSRs were polymorphic between C. arietinum and C. reticulatum. In addition, a total of 36 446 single-nucleotide polymorphisms (SNPs) were identified after optimization of probability score, quality score, read depth and consensus base ratio. Several of these SSRs and SNPs could be associated with tissue-specific and transcription factor encoding transcripts. A high proportion (92-94%) of polymorphic SSRs and SNPs identified between the two chickpea species were validated successfully. Further, the estimation of synonymous substitution rates of orthologous transcript pairs suggested that the speciation event for divergence of C. arietinum and C. reticulatum may have happened approximately 0.53 million years ago. The results of our study provide a rich resource for exploiting genetic variations in chickpea for breeding programmes.
Collapse
Affiliation(s)
- Shalu Jhanwar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | |
Collapse
|
11
|
Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, BhanuPrakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, KaviKishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK. Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:922-31. [PMID: 21615673 PMCID: PMC3437486 DOI: 10.1111/j.1467-7652.2011.00625.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Chickpea (Cicer arietinum L.) is an important legume crop in the semi-arid regions of Asia and Africa. Gains in crop productivity have been low however, particularly because of biotic and abiotic stresses. To help enhance crop productivity using molecular breeding techniques, next generation sequencing technologies such as Roche/454 and Illumina/Solexa were used to determine the sequence of most gene transcripts and to identify drought-responsive genes and gene-based molecular markers. A total of 103,215 tentative unique sequences (TUSs) have been produced from 435,018 Roche/454 reads and 21,491 Sanger expressed sequence tags (ESTs). Putative functions were determined for 49,437 (47.8%) of the TUSs, and gene ontology assignments were determined for 20,634 (41.7%) of the TUSs. Comparison of the chickpea TUSs with the Medicago truncatula genome assembly (Mt 3.5.1 build) resulted in 42,141 aligned TUSs with putative gene structures (including 39,281 predicted intron/splice junctions). Alignment of ∼37 million Illumina/Solexa tags generated from drought-challenged root tissues of two chickpea genotypes against the TUSs identified 44,639 differentially expressed TUSs. The TUSs were also used to identify a diverse set of markers, including 728 simple sequence repeats (SSRs), 495 single nucleotide polymorphisms (SNPs), 387 conserved orthologous sequence (COS) markers, and 2088 intron-spanning region (ISR) markers. This resource will be useful for basic and applied research for genome analysis and crop improvement in chickpea.
Collapse
Affiliation(s)
- Pavana J Hiremath
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
- Osmania University (OU)Hyderabad, India
| | - Andrew Farmer
- National Centre for Genome Resources (NCGR)Santa Fe, NM, USA
| | - Steven B Cannon
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit (USDA-ARS-CICGRU)Ames, IA, USA
- Department of Agronomy, Iowa State UniversityAmes, IA, USA
| | - Jimmy Woodward
- National Centre for Genome Resources (NCGR)Santa Fe, NM, USA
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
| | - Reetu Tuteja
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
| | - Ashish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
| | - Amindala BhanuPrakash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
| | | | - Neha Gujaria
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
| | - Laxmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
| | | | - Trushar Shah
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
| | - Ramamurthy Srinivasan
- National Research Centre on Plant Biotechnology (NRCPB), IARI CampusNew Delhi, India
| | - Marc Lohse
- Max Planck Institute for Molecular Plant Physiology (MPIMPP)Am Muehlenberg, Potsdam-Golm, Germany
| | - Yongli Xiao
- J. Craig Venter Institute (JCVI)Rockville, MD, USA
| | | | | | - Gregory D May
- National Centre for Genome Resources (NCGR)Santa Fe, NM, USA
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Patancheru, India
- Generation Challenge Program (GCP)c/o CIMMYT, Mexico DF, Mexico
- *Correspondence (Tel +91 40 30713305; fax +91 40 30713074/3075; email )
| |
Collapse
|
12
|
Gaur R, Sethy NK, Choudhary S, Shokeen B, Gupta V, Bhatia S. Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genomics 2011; 12:117. [PMID: 21329497 PMCID: PMC3050819 DOI: 10.1186/1471-2164-12-117] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background Chickpea (Cicer arietinum L.) is an economically important cool season grain legume crop that is valued for its nutritive seeds having high protein content. However, several biotic and abiotic stresses and the low genetic variability in the chickpea genome have continuously hindered the chickpea molecular breeding programs. STMS (Sequence Tagged Microsatellite Sites) markers which are preferred for the construction of saturated linkage maps in several crop species, have also emerged as the most efficient and reliable source for detecting allelic diversity in chickpea. However, the number of STMS markers reported in chickpea is still limited and moreover exhibit low rates of both inter and intraspecific polymorphism, thereby limiting the positions of the SSR markers especially on the intraspecific linkage maps of chickpea. Hence, this study was undertaken with the aim of developing additional STMS markers and utilizing them for advancing the genetic linkage map of chickpea which would have applications in QTL identification, MAS and for de novo assembly of high throughput whole genome sequence data. Results A microsatellite enriched library of chickpea (enriched for (GT/CA)n and (GA/CT)n repeats) was constructed from which 387 putative microsatellite containing clones were identified. From these, 254 STMS primers were designed of which 181 were developed as functional markers. An intraspecific mapping population of chickpea, [ICCV-2 (single podded) × JG-62 (double podded)] and comprising of 126 RILs, was genotyped for mapping. Of the 522 chickpea STMS markers (including the double-podding trait, screened for parental polymorphism, 226 (43.3%) were polymorphic in the parents and were used to genotype the RILs. At a LOD score of 3.5, eight linkage groups defining the position of 138 markers were obtained that spanned 630.9 cM with an average marker density of 4.57 cM. Further, based on the common loci present between the current map and the previously published chickpea intraspecific map, integration of maps was performed which revealed improvement of marker density and saturation of the region in the vicinity of sfl (double-podding) gene thereby bringing about an advancement of the current map. Conclusion An arsenal of 181 new chickpea STMS markers was reported. The developed intraspecific linkage map defined map positions of 138 markers which included 101 new locations.Map integration with a previously published map was carried out which revealed an advanced map with improved density. This study is a major contribution towards providing advanced genomic resources which will facilitate chickpea geneticists and molecular breeders in developing superior genotypes with improved traits.
Collapse
Affiliation(s)
- Rashmi Gaur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No, 10531, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
13
|
Millan T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ. A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. EUPHYTICA 2010. [PMID: 0 DOI: 10.1007/s10681-010-0157-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|
14
|
Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R, Jüngling R, Singh J, Kavi Kishor PB, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK. Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1415-41. [PMID: 20098978 PMCID: PMC2854349 DOI: 10.1007/s00122-010-1265-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 12/27/2009] [Indexed: 05/18/2023]
Abstract
This study presents the development and mapping of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers in chickpea. The mapping population is based on an inter-specific cross between domesticated and non-domesticated genotypes of chickpea (Cicer arietinum ICC 4958 x C. reticulatum PI 489777). This same population has been the focus of previous studies, permitting integration of new and legacy genetic markers into a single genetic map. We report a set of 311 novel SSR markers (designated ICCM-ICRISAT chickpea microsatellite), obtained from an SSR-enriched genomic library of ICC 4958. Screening of these SSR markers on a diverse panel of 48 chickpea accessions provided 147 polymorphic markers with 2-21 alleles and polymorphic information content value 0.04-0.92. Fifty-two of these markers were polymorphic between parental genotypes of the inter-specific population. We also analyzed 233 previously published (H-series) SSR markers that provided another set of 52 polymorphic markers. An additional 71 gene-based SNP markers were developed from transcript sequences that are highly conserved between chickpea and its near relative Medicago truncatula. By using these three approaches, 175 new marker loci along with 407 previously reported marker loci were integrated to yield an improved genetic map of chickpea. The integrated map contains 521 loci organized into eight linkage groups that span 2,602 cM, with an average inter-marker distance of 4.99 cM. Gene-based markers provide anchor points for comparing the genomes of Medicago and chickpea, and reveal extended synteny between these two species. The combined set of genetic markers and their integration into an improved genetic map should facilitate chickpea genetics and breeding, as well as translational studies between chickpea and Medicago.
Collapse
Affiliation(s)
- Spurthi N. Nayak
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Department of Genetics, Osmania University, Hyderabad, 500007 Andhra Pradesh India
| | - Hongyan Zhu
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546 USA
| | - Nicy Varghese
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Subhojit Datta
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
- Indian Institute of Pulses Research, Kanpur, 208024 Uttar Pradesh India
| | - Hong-Kyu Choi
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
- Department of Genetic Engineering, Dong-A University, Busan, 604-714 South Korea
| | - Ralf Horres
- University of Frankfurt, Max von Laue Str. 9, 60439 Frankfurt am Main, Germany
| | - Ruth Jüngling
- University of Frankfurt, Max von Laue Str. 9, 60439 Frankfurt am Main, Germany
| | - Jagbir Singh
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Department of Agricultural Biotechnology, Acharya N.G. Ranga Agricultural University (ANGRAU), Hyderabad, 500030 Andhra Pradesh India
| | - P. B. Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad, 500007 Andhra Pradesh India
| | - S. Sivaramakrishnan
- Department of Agricultural Biotechnology, Acharya N.G. Ranga Agricultural University (ANGRAU), Hyderabad, 500030 Andhra Pradesh India
| | - Dave A. Hoisington
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
| | - Günter Kahl
- University of Frankfurt, Max von Laue Str. 9, 60439 Frankfurt am Main, Germany
- GenXPro GmbH, Frankfurter Innovationszentrum Biotechnologie (FIZ), Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Peter Winter
- GenXPro GmbH, Frankfurter Innovationszentrum Biotechnologie (FIZ), Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics (CEG), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324 Andhra Pradesh India
- Genomics Towards Gene Discovery Subprogramme, Generation Challenge Programme (GCP), CIMMYT, Int APDO Postal 6-641, 06600 Mexico DF, Mexico
| |
Collapse
|
15
|
Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KHM, Town CD, Hoisington DA. A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 2009; 10:523. [PMID: 19912666 PMCID: PMC2784481 DOI: 10.1186/1471-2164-10-523] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chickpea (Cicer arietinum L.), an important grain legume crop of the world is seriously challenged by terminal drought and salinity stresses. However, very limited number of molecular markers and candidate genes are available for undertaking molecular breeding in chickpea to tackle these stresses. This study reports generation and analysis of comprehensive resource of drought- and salinity-responsive expressed sequence tags (ESTs) and gene-based markers. RESULTS A total of 20,162 (18,435 high quality) drought- and salinity- responsive ESTs were generated from ten different root tissue cDNA libraries of chickpea. Sequence editing, clustering and assembly analysis resulted in 6,404 unigenes (1,590 contigs and 4,814 singletons). Functional annotation of unigenes based on BLASTX analysis showed that 46.3% (2,965) had significant similarity (< or =1E-05) to sequences in the non-redundant UniProt database. BLASTN analysis of unique sequences with ESTs of four legume species (Medicago, Lotus, soybean and groundnut) and three model plant species (rice, Arabidopsis and poplar) provided insights on conserved genes across legumes as well as novel transcripts for chickpea. Of 2,965 (46.3%) significant unigenes, only 2,071 (32.3%) unigenes could be functionally categorised according to Gene Ontology (GO) descriptions. A total of 2,029 sequences containing 3,728 simple sequence repeats (SSRs) were identified and 177 new EST-SSR markers were developed. Experimental validation of a set of 77 SSR markers on 24 genotypes revealed 230 alleles with an average of 4.6 alleles per marker and average polymorphism information content (PIC) value of 0.43. Besides SSR markers, 21,405 high confidence single nucleotide polymorphisms (SNPs) in 742 contigs (with > or = 5 ESTs) were also identified. Recognition sites for restriction enzymes were identified for 7,884 SNPs in 240 contigs. Hierarchical clustering of 105 selected contigs provided clues about stress- responsive candidate genes and their expression profile showed predominance in specific stress-challenged libraries. CONCLUSION Generated set of chickpea ESTs serves as a resource of high quality transcripts for gene discovery and development of functional markers associated with abiotic stress tolerance that will be helpful to facilitate chickpea breeding. Mapping of gene-based markers in chickpea will also add more anchoring points to align genomes of chickpea and other legume species.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad 502 324, AP, India
- Genomics Towards Gene Discovery Sub Programme, Generation Challenge Programme (GCP), c/o CIMMYT, Int. Apartado Postal 6-641, 06600, Mexico, D. F., Mexico
| | - Pavana J Hiremath
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad 502 324, AP, India
| | - Pazhamala Lekha
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad 502 324, AP, India
| | - Junichi Kashiwagi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad 502 324, AP, India
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Jayashree Balaji
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad 502 324, AP, India
| | - Amit A Deokar
- National Research Centre on Plant Biotechnology (NRCPB), IARI Campus, New Delhi-110012, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad 502 324, AP, India
| | - Yongli Xiao
- J. Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Ramamurthy Srinivasan
- National Research Centre on Plant Biotechnology (NRCPB), IARI Campus, New Delhi-110012, India
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad 502 324, AP, India
| | - Kadambot HM Siddique
- Institute of Agriculture, The University of Western Australia (UWA) (M082), 35 Stirling Highway, Crawley WA 6009, Australia
| | - Christopher D Town
- J. Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - David A Hoisington
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Greater Hyderabad 502 324, AP, India
| |
Collapse
|
16
|
Liang X, Chen X, Hong Y, Liu H, Zhou G, Li S, Guo B. Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species. BMC PLANT BIOLOGY 2009; 9:35. [PMID: 19309524 PMCID: PMC2678122 DOI: 10.1186/1471-2229-9-35] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 03/24/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lack of sufficient molecular markers hinders current genetic research in peanuts (Arachis hypogaea L.). It is necessary to develop more molecular markers for potential use in peanut genetic research. With the development of peanut EST projects, a vast amount of available EST sequence data has been generated. These data offered an opportunity to identify SSR in ESTs by data mining. RESULTS In this study, we investigated 24,238 ESTs for the identification and development of SSR markers. In total, 881 SSRs were identified from 780 SSR-containing unique ESTs. On an average, one SSR was found per 7.3 kb of EST sequence with tri-nucleotide motifs (63.9%) being the most abundant followed by di- (32.7%), tetra- (1.7%), hexa- (1.0%) and penta-nucleotide (0.7%) repeat types. The top six motifs included AG/TC (27.7%), AAG/TTC (17.4%), AAT/TTA (11.9%), ACC/TGG (7.72%), ACT/TGA (7.26%) and AT/TA (6.3%). Based on the 780 SSR-containing ESTs, a total of 290 primer pairs were successfully designed and used for validation of the amplification and assessment of the polymorphism among 22 genotypes of cultivated peanuts and 16 accessions of wild species. The results showed that 251 primer pairs yielded amplification products, of which 26 and 221 primer pairs exhibited polymorphism among the cultivated and wild species examined, respectively. Two to four alleles were found in cultivated peanuts, while 3-8 alleles presented in wild species. The apparent broad polymorphism was further confirmed by cloning and sequencing of amplified alleles. Sequence analysis of selected amplified alleles revealed that allelic diversity could be attributed mainly to differences in repeat type and length in the microsatellite regions. In addition, a few single base mutations were observed in the microsatellite flanking regions. CONCLUSION This study gives an insight into the frequency, type and distribution of peanut EST-SSRs and demonstrates successful development of EST-SSR markers in cultivated peanut. These EST-SSR markers could enrich the current resource of molecular markers for the peanut community and would be useful for qualitative and quantitative trait mapping, marker-assisted selection, and genetic diversity studies in cultivated peanut as well as related Arachis species. All of the 251 working primer pairs with names, motifs, repeat types, primer sequences, and alleles tested in cultivated and wild species are listed in Additional File 1.
Collapse
Affiliation(s)
- Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Wushan 510640, Guangzhou, PR China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Wushan 510640, Guangzhou, PR China
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Wushan 510640, Guangzhou, PR China
| | - Haiyan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Wushan 510640, Guangzhou, PR China
| | - Guiyuan Zhou
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Wushan 510640, Guangzhou, PR China
| | - Shaoxiong Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Wushan 510640, Guangzhou, PR China
| | - Baozhu Guo
- USDA-ARS, Crop Protection and Management Research Unit, Tifton, Georgia, USA
| |
Collapse
|
17
|
Choudhary S, Sethy NK, Shokeen B, Bhatia S. Development of chickpea EST-SSR markers and analysis of allelic variation across related species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:591-608. [PMID: 19020854 DOI: 10.1007/s00122-008-0923-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 10/24/2008] [Indexed: 05/23/2023]
Abstract
Despite chickpea being the third important grain legume, there is a limited availability of genomic resources, especially of the expressed sequence tag (EST)-based markers. In this study, we generated 822 chickpea ESTs from immature seeds as well as exploited 1,309 ESTs from the chickpea database, thus utilizing a total of 2,131 EST sequences for development of functional EST-SSR markers. Two hundred and forty-six simple sequence repeat (SSR) motifs were identified from which 183 primer pairs were designed and 60 validated as functional markers. Genetic diversity analysis across 30 chickpea accessions revealed ten markers to be polymorphic producing a total of 29 alleles and an observed heterozygosity average of 0.16 thereby exhibiting low levels of intra-specific polymorphism. However, the markers exhibited high cross-species transferability ranging from 68.3 to 96.6% across the six annual Cicer species and from 29.4 to 61.7% across the seven legume genera. Sequence analysis of size variant amplicons from various species revealed that size polymorphism was due to multiple events such as copy number variation, point mutations and insertions/deletions in the microsatellite repeat as well as in the flanking regions. Interestingly, a wide prevalence of crossability-group-specific sequence variations were observed among Cicer species that were phylogenetically informative. The neighbor joining dendrogram clearly separated the chickpea cultivars from the wild Cicer and validated the proximity of C. judaicum with C. pinnatifidum. Hence, this study for the first time provides an insight into the distribution of SSRs in the chickpea transcribed regions and also demonstrates the development and utilization of genic-SSRs. In addition to proving their suitability for genetic diversity analysis, their high rates of transferability also proved their potential for comparative genomic studies and for following gene introgressions and evolution in wild species, which constitute the valuable secondary genepool in chickpea.
Collapse
Affiliation(s)
- Shalu Choudhary
- National Institute of Plant Genome Research, Post Box Number 10531, Aruna Asaf Ali Marg, Jawaharlal Nehru University Campus, New Delhi, 110067, India
| | | | | | | |
Collapse
|
18
|
Bhatia S, Shokeen B. Isolation of microsatellites from Catharanthus roseus (L.) G. Don using enriched libraries. Methods Mol Biol 2009; 547:289-302. [PMID: 19521853 DOI: 10.1007/978-1-60327-287-2_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Catharanthus roseus is an indispensable source of the anticancerous alkaloids-vincristine and vinblastine, even though they are produced in trace amounts in vivo. In order to increase the yield of alkaloids, in vitro tissue culture studies are carried out which result in a large number of lines/cultures. For identification and characterization of the in vitro cultures, microsatellites in the form of STMS (Sequenced Tagged Microsatellite Sites) markers are used for identification of genetic polymorphism. STMS markers are also used for assessment of genetic diversity within natural populations as well as for construction of genetic linkage maps. Isolation of microsatellites and development of STMS markers typically involves library construction and screening, DNA sequencing, polymerase chain reaction (PCR) primer design, and PCR optimization. This chapter details two approaches for the isolation of microsatellite loci. The first approach is based on PCR using microsatellite containing primers which also have degenerate bases at the 5 cent-end that act as anchors preventing the primers from slippage to the 3 cent-end and the subsequent loss of polymorphism. The multi-locus PCR amplified product is cloned and sequenced. Though this method generates a large number of microsatellites, the major drawback is the high redundancy observed in this method. The second approach described in this chapter is based on the construction of a microsatellite enriched library which involves preferential cloning of the microsatellite enriched fraction of genomic DNA. This method therefore necessitates the isolation of microsatellites through hybridization with biotin labeled oligoprobe followed by their capture with streptavidin-coated magnetic beads. In comparison to the first approach, this approach yields less redundant clones with high microsatellite enrichment. Moreover enriched libraries are 40-60 times more efficient than the conventional small insert genomic libraries.
Collapse
Affiliation(s)
- Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | |
Collapse
|
19
|
Singh R, Sharma P, Varshney RK, Sharma SK, Singh NK. Chickpea Improvement: Role of Wild Species and Genetic Markers. Biotechnol Genet Eng Rev 2008; 25:267-313. [DOI: 10.5661/bger-25-267] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Imtiaz M, Materne M, Hobson K, van Ginkel M, Malhotra RS. Molecular genetic diversity and linked resistance to ascochyta blight in Australian chickpea breeding materials and their wild relatives. ACTA ACUST UNITED AC 2008. [DOI: 10.1071/ar07386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Simple sequence-repeat (SSR) and sequence characterised amplified regions (SCARs) have been used to characterise the genetic diversity of chickpea germplasm. A set of 48 genotypes comprising cultigen, landraces, and wild relatives important for breeding purposes was used to determine the genetic similarity between genotypes and to assess the association between ascochyta blight (AB) and SCAR phenotypes. The 21 SSR markers amplified a total of 370 alleles, with an average of ~17 alleles per SSR locus among the 48 genotypes. Polymorphic information content (PIC) values ranged from 0.37 for the XGA13 locus to 0.93 for the XGA106. Principal coordinate analysis (PCO) of genetic similarity (GS) estimates revealed a clear differentiation of the chickpea genotypes into 5 groups, which were generally consistent with available pedigree information. Comparison of SCAR and AB phenotypes enabled us to tag the common source(s) of AB resistance in the breeding collection. Based on the SCAR phenotypes, it was evident that the studied chickpea genotypes, including worldwide-known AB-resistant lines (ICC12004, ILC72, ILC3279), carry at least one common source of resistance to AB. Since SSR markers are polymerase chain reaction (PCR)-based markers, highly polymorphic, and amenable to high-throughput technologies, they are therefore well suited for studies of genetic diversity and cultivar identification in chickpea. The broad level of genetic diversity detected in the chickpea germplasm should be useful for selective breeding for specific traits such as AB, backcrossing, and in enhancing the genetic base of breeding programs.
Collapse
|
21
|
Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS. Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:209-16. [PMID: 17503013 DOI: 10.1007/s00122-007-0556-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 04/14/2007] [Indexed: 05/15/2023]
Abstract
A composite intraspecific linkage map of chickpea was developed by integrating individual maps developed from two F(8:9) RIL populations with one common parent. Different molecular markers viz. RAPD, ISSR, RGA, SSR and ASAP were analyzed along with three yield related traits: double podding, seeds per pod and seed weight. A total of 273 markers and 186 RILs were used to generate the map with eight linkage groups at a LOD score of >/=3.0 and maximum recombination fraction of 0.4. The map spanned 739.6 cM with 230 markers at an average distance of 3.2 cM between markers. The predominantly used SSR markers facilitated identification of homologous linkage groups from the previously published interspecific linkage map of chickpea and confirmed conservation of the SSR markers across the two maps as well as the variation in terms of marker distance and order. The double podding gene was tagged by the markers NCPGR33 and UBC249z at 2.0 and 1.1 cM, respectively. Whereas, seeds per pod, was tagged by the markers TA2x and UBC465 at 0.1 and 1.8 cM, respectively. Eight QTLs were identified that influence seed weight. The joint map approach allowed mapping a large number of markers with a moderate coverage of the chickpea genome and few linkage gaps.
Collapse
Affiliation(s)
- P Radhika
- Biochemical Sciences Division, National Chemical Laboratory, Pune, India
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L. Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 114:359-72. [PMID: 17115127 DOI: 10.1007/s00122-006-0440-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/19/2006] [Indexed: 05/08/2023]
Abstract
Genic microsatellites or EST-SSRs derived from expressed sequence tags (ESTs) are desired because these are inexpensive to develop, represent transcribed genes, and often a putative function can be assigned to them. In this study we investigated 2,553 coffee ESTs (461 from the public domain and 2,092 in-house generated ESTs) for identification and development of genic microsatellite markers. Of these, 2,458 ESTs (all >100 bp in size) were searched for SSRs using MISA--search module followed by stackPACK clustering that revealed a total of 425 microsatellites in 331 (13.5%) non-redundant ESTs/consensus sequences suggesting an approximate frequency of 1 SSR/2.16 kb of the analysed coffee transcriptome. Identified microsatellites mainly comprised of di-/tri-nucleotide repeats, of which repeat motifs AG and AAG were the most abundant. A total of 224 primer pairs could be designed from the non-redundant SSR-positive ESTs (excluding those with only mononucleotide repeats) for possible use as potential genic markers. Of this set, a total of 24 (10%) primer pairs were tested and 18 could be validated as usable markers. Sixteen of these markers revealed moderate to high polymorphism information content (PIC) across 23 genotypes of C. arabica and C. canephora, while 2 markers were found to be monomorphic. All the markers also showed robust cross-species amplifications across 14 Coffea and 4 Psilanthus species. The apparent broad cross-species/genera transferability was further confirmed by cloning and sequencing of the amplified alleles. Thus, the study provides an insight about the frequency and distribution of SSRs in coffee transcriptome, and also demonstrates the successful development of genic-SSRs. It is expected that the potential markers described here would add to the repertoire of DNA markers needed for genetic studies in cultivated coffee and also related taxa that constitute the important secondary genepool for coffee improvement.
Collapse
Affiliation(s)
- Ramesh K Aggarwal
- Centre for Cellular and Molecular Biology, Uppal Road, Tarnaka, Hyderabad, 500007, India.
| | | | | | | | | | | |
Collapse
|
23
|
Poncet V, Rondeau M, Tranchant C, Cayrel A, Hamon S, de Kochko A, Hamon P. SSR mining in coffee tree EST databases: potential use of EST–SSRs as markers for the Coffea genus. Mol Genet Genomics 2006; 276:436-49. [PMID: 16924545 DOI: 10.1007/s00438-006-0153-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 07/15/2006] [Indexed: 10/24/2022]
Abstract
Expressed sequence tags (ESTs) from Coffea canephora leaves and fruits were used to search for types and frequencies of simple sequence repeats (EST-SSRs) with a motif length of 1-6 bp. From a non-redundant (NR) EST set of 5,534 potential unigenes, 6.8% SSR-containing sequences were identified, with an average density of one SSR every 7.73 kb of EST sequences. Trinucleotide repeats were found to be the most abundant (34.34%), followed by di- (25.75%) and hexa-nucleotide (22.04%) motifs. The development of unique genic SSR markers was optimized by a computational approach which allowed us to eliminate redundancy in the original EST set and also to test the specificity of each pair of designed primers. Twenty-five EST-SSRs were developed and used to evaluate cross-species transferability in the Coffea genus. The orthology was supported by the amplicon sequence similarity and the amplification patterns. The >94% identity of flanking sequences revealed high sequence conservation across the Coffea genus. A high level of polymorphic loci was obtained regardless of the species considered (from 75% for C. liberica to 86% for C. canephora). Moreover, the polymorphism revealed by EST-SSR was similar to that exposed by genomic SSR. It is concluded that Coffea ESTs are a valuable resource for microsatellite mining. EST-SSR markers developed from C. canephora sequences can be easily transferred to other Coffea species for which very little molecular information is available. They constitute a set of conserved orthologous markers, which would be ideal for assessing genetic diversity in coffee trees as well as for cross-referencing transcribed sequences in comparative genomics studies.
Collapse
Affiliation(s)
- Valérie Poncet
- UMR 1097 Diversité et Génomes des Plantes Cultivées (DGPC), IRD, Institut de Recherche pour le Développement, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|