1
|
Adhikari J, Chandnani R, Vitrakoti D, Khanal S, Ployaram W, Paterson AH. Comparative transmission genetics of introgressed chromatin in reciprocal advanced backcross populations in Gossypium (cotton) polyploids. Heredity (Edinb) 2023; 130:209-222. [PMID: 36754975 PMCID: PMC10076365 DOI: 10.1038/s41437-023-00594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Introgression is a potential source of valuable genetic variation and interspecific introgression lines are important resources for plant breeders to access novel alleles. Experimental advanced-generation backcross populations contain individuals with genomic compositions similar to those resulting from natural interspecific hybridization and provide opportunities to study the nature and transmission pattern of donor chromatin in recipient genomes. Here, we analyze transmission of donor chromatin in reciprocal backcrosses between G. hirsutum and G. barbadense. Across the genome, recurrent backcrossing in both backgrounds yielded donor chromatin at slightly higher frequencies than the Mendelian expectation in BC5F1 plants, while the average frequency of donor alleles in BC5F2 segregating families was less than expected. In the two subgenomes of polyploid cotton, the rate of donor chromatin introgression was similar. Although donor chromatin was tolerated over much of the recipient genomes, 21 regions recalcitrant to donor alleles were identified. Only limited correspondence is observed between the recalcitrant regions in the two backgrounds, suggesting the effect of species background on introgression of donor segments. Genetic breakdown was progressive, with floral abscission and seed inviability ongoing during backcrossing cycles. Regions of either high or low introgression tended to be in terminal chromosomal regions that are generally rich in both genes and crossover events, with long stretches around the centromere having limited crossover activity resulting in relatively constant low introgression frequencies. Constraints on fixation and selection of donor alleles highlights the challenges of utilizing introgression breeding in crop improvement.
Collapse
Affiliation(s)
- Jeevan Adhikari
- Plant Genome Mapping Laboratory, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | | | - Deepak Vitrakoti
- Plant Genome Mapping Laboratory, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Sameer Khanal
- Institute of Plant Breeding Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - Wiriyanat Ployaram
- Plant Genome Mapping Laboratory, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Restrepo-Montoya D, Hulse-Kemp AM, Scheffler JA, Haigler CH, Hinze LL, Love J, Percy RG, Jones DC, Frelichowski J. Leveraging National Germplasm Collections to Determine Significantly Associated Categorical Traits in Crops: Upland and Pima Cotton as a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:837038. [PMID: 35557715 PMCID: PMC9087864 DOI: 10.3389/fpls.2022.837038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Observable qualitative traits are relatively stable across environments and are commonly used to evaluate crop genetic diversity. Recently, molecular markers have largely superseded describing phenotypes in diversity surveys. However, qualitative descriptors are useful in cataloging germplasm collections and for describing new germplasm in patents, publications, and/or the Plant Variety Protection (PVP) system. This research focused on the comparative analysis of standardized cotton traits as represented within the National Cotton Germplasm Collection (NCGC). The cotton traits are named by 'descriptors' that have non-numerical sub-categories (descriptor states) reflecting the details of how each trait manifests or is absent in the plant. We statistically assessed selected accessions from three major groups of Gossypium as defined by the NCGC curator: (1) "Stoneville accessions (SA)," containing mainly Upland cotton (Gossypium hirsutum) cultivars; (2) "Texas accessions (TEX)," containing mainly G. hirsutum landraces; and (3) Gossypium barbadense (Gb), containing cultivars or landraces of Pima cotton (Gossypium barbadense). For 33 cotton descriptors we: (a) revealed distributions of character states for each descriptor within each group; (b) analyzed bivariate associations between paired descriptors; and (c) clustered accessions based on their descriptors. The fewest significant associations between descriptors occurred in the SA dataset, likely reflecting extensive breeding for cultivar development. In contrast, the TEX and Gb datasets showed a higher number of significant associations between descriptors, likely correlating with less impact from breeding efforts. Three significant bivariate associations were identified for all three groups, bract nectaries:boll nectaries, leaf hair:stem hair, and lint color:seed fuzz color. Unsupervised clustering analysis recapitulated the species labels for about 97% of the accessions. Unexpected clustering results indicated accessions that may benefit from potential further investigation. In the future, the significant associations between standardized descriptors can be used by curators to determine whether new exotic/unusual accessions most closely resemble Upland or Pima cotton. In addition, the study shows how existing descriptors for large germplasm datasets can be useful to inform downstream goals in breeding and research, such as identifying rare individuals with specific trait combinations and targeting breakdown of remaining trait associations through breeding, thus demonstrating the utility of the analytical methods employed in categorizing germplasm diversity within the collection.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Amanda M. Hulse-Kemp
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Raleigh, NC, United States
| | - Jodi A. Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Stoneville, MS, United States
| | - Candace H. Haigler
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Lori L. Hinze
- Crop Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| | - Janna Love
- Crop Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| | - Richard G. Percy
- Crop Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| | | | - James Frelichowski
- Crop Germplasm Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), College Station, TX, United States
| |
Collapse
|
3
|
Hu W, Qin W, Jin Y, Wang P, Yan Q, Li F, Yang Z. Genetic and evolution analysis of extrafloral nectary in cotton. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2081-2095. [PMID: 32096298 PMCID: PMC7540171 DOI: 10.1111/pbi.13366] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 05/24/2023]
Abstract
Extrafloral nectaries are a defence trait that plays important roles in plant-animal interactions. Gossypium species are characterized by cellular grooves in leaf midribs that secret large amounts of nectar. Here, with a panel of 215 G. arboreum accessions, we compared extrafloral nectaries to nectariless accessions to identify a region of Chr12 that showed strong differentiation and overlapped with signals from GWAS of nectaries. Fine mapping of an F2 population identified GaNEC1, encoding a PB1 domain-containing protein, as a positive regulator of nectary formation. An InDel, encoding a five amino acid deletion, together with a nonsynonymous substitution, was predicted to cause 3D structural changes in GaNEC1 protein that could confer the nectariless phenotype. mRNA-Seq analysis showed that JA-related genes are up-regulated and cell wall-related genes are down-regulated in the nectary. Silencing of GaNEC1 led to a smaller size of foliar nectary phenotype. Metabolomics analysis identified more than 400 metabolites in nectar, including expected saccharides and amino acids. The identification of GaNEC1 helps establish the network regulating nectary formation and nectar secretion, and has implications for understanding the production of secondary metabolites in nectar. Our results will deepen our understanding of plant-mutualism co-evolution and interactions, and will enable utilization of a plant defence trait in cotton breeding efforts.
Collapse
Affiliation(s)
- Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Wenqiang Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Yuying Jin
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | | | | | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of the Chinese Academy of Agricultural SciencesAnyangChina
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of the Chinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
4
|
Magwanga RO, Lu P, Kirungu JN, Diouf L, Dong Q, Hu Y, Cai X, Xu Y, Hou Y, Zhou Z, Wang X, Wang K, Liu F. GBS Mapping and Analysis of Genes Conserved between Gossypium tomentosum and Gossypium hirsutum Cotton Cultivars that Respond to Drought Stress at the Seedling Stage of the BC₂F₂ Generation. Int J Mol Sci 2018; 19:E1614. [PMID: 29848989 PMCID: PMC6032168 DOI: 10.3390/ijms19061614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022] Open
Abstract
Cotton production is on the decline due to ever-changing environmental conditions. Drought and salinity stress contribute to over 30% of total loss in cotton production, the situation has worsened more due to the narrow genetic base of the cultivated upland cotton. The genetic diversity of upland cotton has been eroded over the years due to intense selection and inbreeding. To break the bottleneck, the wild cotton progenitors offer unique traits which can be introgressed into the cultivated cotton, thereby improving their performance. In this research, we developed a BC₂F₂ population between wild male parent, G. tomentosum as the donor, known for its high tolerance to drought and the elite female parent, G. hirsutum as the recurrent parent, which is high yielding but sensitive to drought stress. The population was genotyped through the genotyping by sequencing (GBS) method, in which 10,888 single-nucleotide polymorphism (SNP) s were generated and used to construct a genetic map. The map spanned 4191.3 cM, with average marker distance of 0.3849 cM. The map size of the two sub genomes had a narrow range, 2149 cM and 2042.3 cM for At and Dt_sub genomes respectively. A total of 66,434 genes were mined, with 32,032 (48.2%) and 34,402 (51.8%) genes being obtained within the At and Dt_sub genomes respectively. Pkinase (PF00069) was found to be the dominant domain, with 1069 genes. Analysis of the main sub family, serine threonine protein kinases through gene ontology (GO), cis element and miRNA targets analysis revealed that most of the genes were involved in various functions aimed at enhancing abiotic stress tolerance. Further analysis of the RNA sequence data and qRT-PCR validation revealed 16 putative genes, which were highly up regulated under drought stress condition, and were found to be targeted by ghr-miR169a and ghr-miR164, previously associated with NAC(NAM, ATAF1/2 and CUC2) and myeloblastosis (MYB), the top rank drought stress tolerance genes. These genes can be exploited further to aid in development of more drought tolerant cotton genotypes.
Collapse
Affiliation(s)
- Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
- School of Biological and Physical Sciences (SBPS), Main Campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Main Campus, P.O. Box 210-40601 Bondo, Kenya.
| | - Pu Lu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Joy Nyangasi Kirungu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Latyr Diouf
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Qi Dong
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yangguang Hu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
5
|
Wang B, Draye X, Zhuang Z, Zhang Z, Liu M, Lubbers EL, Jones D, May OL, Paterson AH, Chee PW. QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between Gossypium hirsutum and G. mustelinum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1297-1308. [PMID: 28349176 DOI: 10.1007/s00122-017-2889-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/02/2017] [Indexed: 05/09/2023]
Abstract
QTLs for fiber length mapped in three generations of advanced backcross populations derived from crossing Gossypium hirsutum and Gossypium mustelinum showed opportunities to improve elite cottons by introgression from wild relatives. The molecular basis of cotton fiber length in crosses between Gossypium hirsutum and Gossypium mustelinum was dissected using 21 BC3F2 and 12 corresponding BC3F2:3 and BC3F2:4 families. Sixty-five quantitative trait loci (QTLs) were detected by one-way analysis of variance. The QTL numbers detected for upper-half mean length (UHM), fiber uniformity index (UI), and short fiber content (SFC) were 19, 20, and 26 respectively. Twenty-three of the 65 QTLs could be detected at least twice near adjacent markers in the same family or near the same markers across different families/generations, and 32 QTLs were detected in both one-way variance analyses and mixed model-based composite interval mapping. G. mustelinum alleles increased UHM and UI and decreased SFC for five, one, and one QTLs, respectively. In addition to the main-effect QTLs, 17 epistatic QTLs were detected which helped to elucidate the genetic basis of cotton fiber length. Significant among-family genotypic effects were detected at 18, 16, and 16 loci for UHM, UI, and SFC, respectively. Six, two, and two loci showed genotype × family interaction for UHM, UI and SFC, respectively, illustrating complexities that might be faced in introgression of exotic germplasm into cultivated cotton. Co-location of many QTLs for UHM, UI, and SFC accounted for correlations among these traits, and selection of these QTLs may improve the three traits simultaneously. The simple sequence repeat (SSR) markers associated with G. mustelinum QTLs will assist breeders in transferring and maintaining valuable traits from this exotic source during cultivar development.
Collapse
Affiliation(s)
- Baohua Wang
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Department of Crop and Soil Sciences, University of Georgia, 2356 Rainwater Road, Tifton, GA, 31793, USA
| | - Xavier Draye
- Université catholique de Louvain, Place Croix du Sud 2/11, 1348, Louvain-la-Neuve, Belgium
| | - Zhimin Zhuang
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
- Department of Crop and Soil Sciences, University of Georgia, 2356 Rainwater Road, Tifton, GA, 31793, USA
| | - Zhengsheng Zhang
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
| | - Min Liu
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA
| | - Edward L Lubbers
- Department of Crop and Soil Sciences, University of Georgia, 2356 Rainwater Road, Tifton, GA, 31793, USA
| | - Don Jones
- Cotton Incorporated, Cary, NC, 27513, USA
| | - O Lloyd May
- Department of Crop and Soil Sciences, University of Georgia, 2356 Rainwater Road, Tifton, GA, 31793, USA
- Monsanto Cotton Breeding, Tifton, GA, 31793, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.
| | - Peng W Chee
- Department of Crop and Soil Sciences, University of Georgia, 2356 Rainwater Road, Tifton, GA, 31793, USA.
| |
Collapse
|
6
|
A Genetic Map Between Gossypium hirsutum and the Brazilian Endemic G. mustelinum and Its Application to QTL Mapping. G3-GENES GENOMES GENETICS 2016; 6:1673-85. [PMID: 27172208 PMCID: PMC4889663 DOI: 10.1534/g3.116.029116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Among the seven tetraploid cotton species, little is known about transmission genetics and genome organization in Gossypium mustelinum, the species most distant from the source of most cultivated cotton, G. hirsutum. In this research, an F2 population was developed from an interspecific cross between G. hirsutum and G. mustelinum (HM). A genetic linkage map was constructed mainly using simple sequence repeat (SSRs) and restriction fragment length polymorphism (RFLP) DNA markers. The arrangements of most genetic loci along the HM chromosomes were identical to those of other tetraploid cotton species. However, both major and minor structural rearrangements were also observed, for which we propose a parsimony-based model for structural divergence of tetraploid cottons from common ancestors. Sequences of mapped markers were used for alignment with the 26 scaffolds of the G. hirsutum draft genome, and showed high consistency. Quantitative trait locus (QTL) mapping of fiber elongation in advanced backcross populations derived from the same parents demonstrated the value of the HM map. The HM map will serve as a valuable resource for QTL mapping and introgression of G. mustelinum alleles into G. hirsutum, and help clarify evolutionary relationships between the tetraploid cotton genomes.
Collapse
|
7
|
Khan MKR, Chen H, Zhou Z, Ilyas MK, Wang X, Cai X, Wang C, Liu F, Wang K. Genome Wide SSR High Density Genetic Map Construction from an Interspecific Cross of Gossypium hirsutum × Gossypium tomentosum. FRONTIERS IN PLANT SCIENCE 2016; 7:436. [PMID: 27148280 PMCID: PMC4829609 DOI: 10.3389/fpls.2016.00436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/21/2016] [Indexed: 05/24/2023]
Abstract
A high density genetic map was constructed using F2 population derived from an interspecific cross of G. hirsutum × G. tomentosum. The map consisted of 3093 marker loci distributed across all the 26 chromosomes and covered 4365.3 cM of cotton genome with an average inter-marker distance of 1.48 cM. The maximum length of chromosome was 218.38 cM and the minimum was 122.09 cM with an average length of 167.90 cM. A sub-genome covers more genetic distance (2189.01 cM) with an average inter loci distance of 1.53 cM than D sub-genome which covers a length of 2176.29 cM with an average distance of 1.43 cM. There were 716 distorted loci in the map accounting for 23.14% and most distorted loci were distributed on D sub-genome (25.06%), which were more than on A sub-genome (21.23%). In our map 49 segregation hotspots (SDR) were distributed across the genome with more on D sub-genome as compared to A genome. Two post-polyploidization reciprocal translocations of "A2/A3 and A4/A5" were suggested by seven pairs of duplicate loci. The map constructed through these studies is one of the three densest genetic maps in cotton however; this is the first dense genome wide SSR interspecific genetic map between G. hirsutum and G. tomentosum.
Collapse
Affiliation(s)
- Muhammad K. R. Khan
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and BiologyFaisalabad, Pakistan
| | - Haodong Chen
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- Cotton Sciences Research Institute of Hunan/National Hybrid Cotton Research Promotion CenterChangde, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Muhammad K. Ilyas
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
- National Agricultural Research CentreIslamabad, Pakistan
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Chunying Wang
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyang, China
| |
Collapse
|
8
|
Waghmare VN, Rong J, Rogers CJ, Bowers JE, Chee PW, Gannaway JR, Katageri I, Paterson AH. Comparative transmission genetics of introgressed chromatin in Gossypium (cotton) polyploids. AMERICAN JOURNAL OF BOTANY 2016; 103:719-729. [PMID: 27056931 DOI: 10.3732/ajb.1500266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Introgression is widely acknowledged as a potential source of valuable genetic variation, and growing effort is being invested in analysis of interspecific crosses conferring transgressive variation. Experimental backcross populations provide an opportunity to study transmission genetics following interspecific hybridization, identifying opportunities and constraints to introgressive crop improvement. The evolutionary consequences of introgression have been addressed at the theoretical level, however, issues related to levels and patterns of introgression among (plant) species remain inadequately explored, including such factors as polyploidization, subgenome interaction inhabiting a common nucleus, and the genomic distribution and linkage relationships of introgressant alleles. METHODS We analyze introgression into the polyploid Gossypium hirsutum (upland cotton) from its sister G. tomentosum and compare the level and pattern with that of G. barbadense representing a different clade tracing to the same polyploidization. KEY RESULTS Across the genome, recurrent backcrossing to Gossypium hirsutum yielded only one-third of the expected average frequency of the G. tomentosum allele, although one unusual region showed preferential introgression. Although a similar rate of introgression is found in the two subgenomes of polyploid (AtDt) G. hirsutum, a preponderance of multilocus interactions were largely within the Dt subgenome. CONCLUSIONS Skewed G. tomentosum chromatin transmission is polymorphic among two elite G. hirsutum genotypes, which suggests that genetic background may profoundly affect introgression of particular chromosomal regions. Only limited correspondence is found between G. hirsutum chromosomal regions that are intolerant to introgression from the two species, G. barbadense and G. tomentosum, concentrated near possible inversion polymorphisms. Complex transmission of introgressed chromatin highlights the challenges to utilization of exotic germplasm in crop improvement.
Collapse
Affiliation(s)
- Vijay N Waghmare
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA Division of Crop Improvement, Central Institute for Cotton Research, Nagpur, India
| | - Junkang Rong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Carl J Rogers
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - John E Bowers
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| | - Peng W Chee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | | | - Ishwarappa Katageri
- Agricultural Research Station, University of Agricultural Sciences, Dharwad, Karnataka, India
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Construction of microsatellite-based linkage map and mapping of nectarilessness and hairiness genes in Gossypium tomentosum. J Genet 2013; 92:445-59. [DOI: 10.1007/s12041-013-0286-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 2013; 14:776. [PMID: 24215677 PMCID: PMC3830114 DOI: 10.1186/1471-2164-14-776] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The study of quantitative trait loci (QTL) in cotton (Gossypium spp.) is focused on traits of agricultural significance. Previous studies have identified a plethora of QTL attributed to fiber quality, disease and pest resistance, branch number, seed quality and yield and yield related traits, drought tolerance, and morphological traits. However, results among these studies differed due to the use of different genetic populations, markers and marker densities, and testing environments. Since two previous meta-QTL analyses were performed on fiber traits, a number of papers on QTL mapping of fiber quality, yield traits, morphological traits, and disease resistance have been published. To obtain a better insight into the genome-wide distribution of QTL and to identify consistent QTL for marker assisted breeding in cotton, an updated comparative QTL analysis is needed. RESULTS In this study, a total of 1,223 QTL from 42 different QTL studies in Gossypium were surveyed and mapped using Biomercator V3 based on the Gossypium consensus map from the Cotton Marker Database. A meta-analysis was first performed using manual inference and confirmed by Biomercator V3 to identify possible QTL clusters and hotspots. QTL clusters are composed of QTL of various traits which are concentrated in a specific region on a chromosome, whereas hotspots are composed of only one trait type. QTL were not evenly distributed along the cotton genome and were concentrated in specific regions on each chromosome. QTL hotspots for fiber quality traits were found in the same regions as the clusters, indicating that clusters may also form hotspots. CONCLUSIONS Putative QTL clusters were identified via meta-analysis and will be useful for breeding programs and future studies involving Gossypium QTL. The presence of QTL clusters and hotspots indicates consensus regions across cultivated tetraploid Gossypium species, environments, and populations which contain large numbers of QTL, and in some cases multiple QTL associated with the same trait termed a hotspot. This study combines two previous meta-analysis studies and adds all other currently available QTL studies, making it the most comprehensive meta-analysis study in cotton to date.
Collapse
|
11
|
Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM. A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS One 2012; 7:e45739. [PMID: 23029214 PMCID: PMC3454346 DOI: 10.1371/journal.pone.0045739] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/24/2012] [Indexed: 02/03/2023] Open
Abstract
A consensus genetic map of tetraploid cotton was constructed using six high-density maps and after the integration of a sequence-based marker redundancy check. Public cotton SSR libraries (17,343 markers) were curated for sequence redundancy using 90% as a similarity cutoff. As a result, 20% of the markers (3,410) could be considered as redundant with some other markers. The marker redundancy information had been a crucial part of the map integration process, in which the six most informative interspecific Gossypium hirsutum×G. barbadense genetic maps were used for assembling a high density consensus (HDC) map for tetraploid cotton. With redundant markers being removed, the HDC map could be constructed thanks to the sufficient number of collinear non-redundant markers in common between the component maps. The HDC map consists of 8,254 loci, originating from 6,669 markers, and spans 4,070 cM, with an average of 2 loci per cM. The HDC map presents a high rate of locus duplications, as 1,292 markers among the 6,669 were mapped in more than one locus. Two thirds of the duplications are bridging homoeologous A(T) and D(T) chromosomes constitutive of allopolyploid cotton genome, with an average of 64 duplications per A(T)/D(T) chromosome pair. Sequences of 4,744 mapped markers were used for a mutual blast alignment (BBMH) with the 13 major scaffolds of the recently released Gossypium raimondii genome indicating high level of homology between the diploid D genome and the tetraploid cotton genetic map, with only a few minor possible structural rearrangements. Overall, the HDC map will serve as a valuable resource for trait QTL comparative mapping, map-based cloning of important genes, and better understanding of the genome structure and evolution of tetraploid cotton.
Collapse
Affiliation(s)
- Anna Blenda
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- Department of Biology, Erskine College, Due West, South Carolina, United States of America
| | - David D. Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, Louisiana, United States of America
| | | | | | - Feng Luo
- School of Computing, Clemson University, Clemson, South Carolina, United States of America
| | | |
Collapse
|
12
|
Zhang Z, Rong J, Waghmare VN, Chee PW, May OL, Wright RJ, Gannaway JR, Paterson AH. QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:1075-88. [PMID: 21735234 DOI: 10.1007/s00122-011-1649-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/22/2011] [Indexed: 05/09/2023]
Abstract
Seventeen backcross-self families from crosses between two Gossypium hirsutum recurrent parent lines (CA3084, CA3093) and G. tomentosum were used to identify quantitative trait loci (QTLs) controlling fiber quality traits. A total of 28 QTLs for fiber quality traits were identified (P < 0.001), including four for fiber elongation, eight for fiber fineness, four for fiber length, four for fiber strength, six for fiber uniformity, one for boll weight, and one for boll number. Three statistically significant marker-trait associations for lint yield were found in a single environment, but need further validation. Two-way analysis of variance revealed one locus with significant genotype × family interaction (P < 0.001) for fiber strength and a second locus with significant genotype × environment interaction (P < 0.001) in the CA3084 background, and two loci with significant genotype × background interaction (P < 0.001) for the 28 common markers segregating in both of the two recurrent backgrounds. Co-location of many QTLs for fiber quality traits partially explained correlations among these traits. Some G. tomentosum alleles were associated with multiple favorable effects, offering the possibility of rapid genetic gain by introgression. Many G. tomentosum alleles were recalcitrant to homozygosity, suggesting that they might be most effectively deployed in hybrid cottons. DNA markers linked to G. tomentosum QTLs identified in the present study promise to assist breeders in transferring and maintaining valuable traits from this exotic source during Upland cotton cultivar development. This study also adds further evidence to prior studies indicating that the majority of genetic variation associated with fiber quality in tetraploid cotton traces to the D-subgenome from a diploid ancestor that does not produce spinnable fiber.
Collapse
Affiliation(s)
- Zhengsheng Zhang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Boopathi NM, Thiyagu K, Urbi B, Santhoshkumar M, Gopikrishnan A, Aravind S, Swapnashri G, Ravikesavan R. Marker-assisted breeding as next-generation strategy for genetic improvement of productivity and quality: can it be realized in cotton? INTERNATIONAL JOURNAL OF PLANT GENOMICS 2011; 2011:670104. [PMID: 21577317 PMCID: PMC3092514 DOI: 10.1155/2011/670104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/22/2011] [Indexed: 05/29/2023]
Abstract
The dawdling development in genetic improvement of cotton with conventional breeding program is chiefly due to lack of complete knowledge on and precise manipulation of fiber productivity and quality. Naturally available cotton continues to be a resource for the upcoming breeding program, and contemporary technologies to exploit the available natural variation are outlined in this paper for further improvement of fiber. Particularly emphasis is given to application, obstacles, and perspectives of marker-assisted breeding since it appears to be more promising in manipulating novel genes that are available in the cotton germplasm. Deployment of system quantitative genetics in marker-assisted breeding program would be essential to realize its role in cotton. At the same time, role of genetic engineering and in vitro mutagenesis cannot be ruled out in genetic improvement of cotton.
Collapse
Affiliation(s)
- N. Manikanda Boopathi
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - K. Thiyagu
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - B. Urbi
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M. Santhoshkumar
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - A. Gopikrishnan
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - S. Aravind
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Gat Swapnashri
- Department of Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - R. Ravikesavan
- Department of Cotton, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
14
|
Lin L, Pierce GJ, Bowers JE, Estill JC, Compton RO, Rainville LK, Kim C, Lemke C, Rong J, Tang H, Wang X, Braidotti M, Chen AH, Chicola K, Collura K, Epps E, Golser W, Grover C, Ingles J, Karunakaran S, Kudrna D, Olive J, Tabassum N, Um E, Wissotski M, Yu Y, Zuccolo A, ur Rahman M, Peterson DG, Wing RA, Wendel JF, Paterson AH. A draft physical map of a D-genome cotton species (Gossypium raimondii). BMC Genomics 2010; 11:395. [PMID: 20569427 PMCID: PMC2996926 DOI: 10.1186/1471-2164-11-395] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 06/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. RESULTS A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT) and Vitis vinifera (VV) whole genome sequences. CONCLUSION Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence.
Collapse
Affiliation(s)
- Lifeng Lin
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Gary J Pierce
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - John E Bowers
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - James C Estill
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Rosana O Compton
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Lisa K Rainville
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Cornelia Lemke
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Junkang Rong
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
- School of Agriculture and Food Sciences, Zhejiang Forestry University, Lin'an, Hangzhou, Zhejiang, 311300, China
| | - Haibao Tang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
- Department of Plant and Microbiology, College of Natural Resources, University of California, Berkeley, CA, USA
| | - Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Michele Braidotti
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ 85721, USA
| | - Amy H Chen
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Kristen Chicola
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Kristi Collura
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ 85721, USA
| | - Ethan Epps
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Wolfgang Golser
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ 85721, USA
| | - Corrinne Grover
- Department of Ecology, Evolution, & Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jennifer Ingles
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | | | - Dave Kudrna
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ 85721, USA
| | - Jaime Olive
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Nabila Tabassum
- National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Eareana Um
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Marina Wissotski
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ 85721, USA
| | - Yeisoo Yu
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ 85721, USA
| | - Andrea Zuccolo
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ 85721, USA
| | - Mehboob ur Rahman
- National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Daniel G Peterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
- Life Sciences & Biotechnology Institute, Mississippi State University, Mississippi State, MS 39762 USA
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences and BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ 85721, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, & Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
15
|
Yu J, Kohel RJ, Smith CW. The construction of a tetraploid cotton genome wide comprehensive reference map. Genomics 2010; 95:230-40. [PMID: 20171271 DOI: 10.1016/j.ygeno.2010.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/17/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
Integration of multiple genomic maps provides a higher density of markers and greater genome coverage, which not only facilitates the identification and positioning of QTLs and candidate genes, but it also provides a basic structure for the genome sequence assembly. However, the diversity in markers and populations used in individual mapping studies limits the ability to fully integrate the available data. By concentrating on marker orders rather than marker distances, published map data could be used to produce a comprehensive reference map (CRM) that includes a majority of known markers with optimally estimated order of those markers across the genome. In this study, a tetraploid cotton genome-wide CRM was constructed from 28 public cotton genetic maps. The initial CRM contained 7,424 markers and represented over 93% of the combined mapping information from the 28 individual maps. The current output is stored and displayed through CottonDB (http://www.cottondb.org), the public cotton genome database.
Collapse
Affiliation(s)
- Jing Yu
- The Department of Soil and Crop Sciences, Texas A&M University, TX, USA.
| | | | | |
Collapse
|
16
|
Van Deynze A, Stoffel K, Lee M, Wilkins TA, Kozik A, Cantrell RG, Yu JZ, Kohel RJ, Stelly DM. Sampling nucleotide diversity in cotton. BMC PLANT BIOLOGY 2009; 9:125. [PMID: 19840401 PMCID: PMC2771027 DOI: 10.1186/1471-2229-9-125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/20/2009] [Indexed: 05/19/2023]
Abstract
BACKGROUND Cultivated cotton is an annual fiber crop derived mainly from two perennial species, Gossypium hirsutum L. or upland cotton, and G. barbadense L., extra long-staple fiber Pima or Egyptian cotton. These two cultivated species are among five allotetraploid species presumably derived monophyletically between G. arboreum and G. raimondii. Genomic-based approaches have been hindered by the limited variation within species. Yet, population-based methods are being used for genome-wide introgression of novel alleles from G. mustelinum and G. tomentosum into G. hirsutum using combinations of backcrossing, selfing, and inter-mating. Recombinant inbred line populations between genetics standards TM-1, (G. hirsutum) x 3-79 (G. barbadense) have been developed to allow high-density genetic mapping of traits. RESULTS This paper describes a strategy to efficiently characterize genomic variation (SNPs and indels) within and among cotton species. Over 1000 SNPs from 270 loci and 279 indels from 92 loci segregating in G. hirsutum and G. barbadense were genotyped across a standard panel of 24 lines, 16 of which are elite cotton breeding lines and 8 mapping parents of populations from six cotton species. Over 200 loci were genetically mapped in a core mapping population derived from TM-1 and 3-79 and in G. hirsutum breeding germplasm. CONCLUSION In this research, SNP and indel diversity is characterized for 270 single-copy polymorphic loci in cotton. A strategy for SNP discovery is defined to pre-screen loci for copy number and polymorphism. Our data indicate that the A and D genomes in both diploid and tetraploid cotton remain distinct from each such that paralogs can be distinguished. This research provides mapped DNA markers for intra-specific crosses and introgression of exotic germplasm in cotton.
Collapse
Affiliation(s)
- Allen Van Deynze
- Seed Biotechnology Center, University of California, 1 Shields Ave, Davis, CA, USA
| | - Kevin Stoffel
- Seed Biotechnology Center, University of California, 1 Shields Ave, Davis, CA, USA
| | - Mike Lee
- Seed Biotechnology Center, University of California, 1 Shields Ave, Davis, CA, USA
| | - Thea A Wilkins
- Department of Plant and Soil Science, Texas Tech University, Experimental Sciences Building, Room 215, Mail Stop 3132, Lubbock, TX 79409-3132, USA
| | - Alexander Kozik
- Genome and Biomedical Sciences Facility, University of California, 1 Shields Ave, Davis, CA, USA
| | - Roy G Cantrell
- Monsanto, 1 800 N. Lindbergh Blvd, St Louis, MO 63167, USA
| | - John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| | - Russel J Kohel
- USDA-ARS, Southern Plains Agricultural Research Center, 2881 F&B Road, College Station, TX 77845, USA
| | - David M Stelly
- Department of Soil and Crop Sciences, Texas A & M University, College Station, TX 77843, USA
| |
Collapse
|
17
|
Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang T, Guo W, Chen X, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Van Deynze A, Zhu Y, Yu S, Abdurakhmonov I, Katageri I, Kumar PA, Mehboob-Ur-Rahman, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH. Toward sequencing cotton (Gossypium) genomes. PLANT PHYSIOLOGY 2007; 145:1303-1310. [PMID: 18056866 PMCID: PMC2151711 DOI: 10.1104/pp.107.107672] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 09/10/2007] [Indexed: 02/05/2023]
|
18
|
Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 2007; 176:2577-88. [PMID: 17565937 PMCID: PMC1950656 DOI: 10.1534/genetics.107.074518] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks.
Collapse
Affiliation(s)
- Junkang Rong
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|