1
|
Rüter P, Debener T, Winkelmann T. Unraveling the genetic basis of Rhizobium rhizogenes-mediated transformation and hairy root formation in rose using a genome-wide association study. PLANT CELL REPORTS 2024; 43:300. [PMID: 39627595 PMCID: PMC11615123 DOI: 10.1007/s00299-024-03388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
KEY MESSAGE Multiple QTLs reveal the polygenic nature of R. rhizogenes-mediated transformation and hairy root formation in roses, with five key regions explaining 12.0-26.9% of trait variability and transformation-related candidate genes identified. Understanding genetic mechanisms of plant transformation remains crucial for biotechnology. This is particularly relevant for roses and other woody ornamentals that exhibit recalcitrant behavior in transformation procedures. Rhizobium rhizogenes-mediated transformation leading to hairy root (HR) formation provides an excellent model system to study transformation processes and host-pathogen interactions. Therefore, this study aimed to identify quantitative trait loci (QTLs) associated with HR formation and explore their relationship with adventitious root (AR) formation in rose as a model for woody ornamentals. A diversity panel of 104 in vitro grown rose genotypes was transformed with R. rhizogenes strain ATCC 15834 carrying a green fluorescent protein reporter gene. Phenotypic data on callus and root formation were collected for laminae and petioles. A genome-wide association study using 23,419 single-nucleotide polymorphism markers revealed significant QTLs on chromosomes one and two for root formation traits. Five key genomic regions explained 12.0-26.9% of trait variability, with some peaks overlapping previously reported QTLs for AR formation. This genetic overlap was supported by weak to moderate correlations between HR and AR formation traits, particularly in petioles. Candidate gene identification through literature review and transcriptomic data analysis revealed ten candidate genes involved in bacterial response, hormone signaling, and stress responses. Our findings provide new insights into the genetic control of HR formation in roses and highlight potential targets for improving transformation efficiency in ornamental crops, thereby facilitating future research and breeding applications.
Collapse
Affiliation(s)
- Philipp Rüter
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Thomas Debener
- Institute of Plant Genetics, Section Molecular Plant Breeding, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Traud Winkelmann
- Institute of Horticultural Production Systems, Section Woody Plant and Propagation Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
2
|
Druege U, Hilo A, Pérez-Pérez JM, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei MR. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. ANNALS OF BOTANY 2019; 123:929-949. [PMID: 30759178 PMCID: PMC6589513 DOI: 10.1093/aob/mcy234] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/03/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Adventitious root (AR) formation in excised plant parts is a bottleneck for survival of isolated plant fragments. AR formation plays an important ecological role and is a critical process in cuttings for the clonal propagation of horticultural and forestry crops. Therefore, understanding the regulation of excision-induced AR formation is essential for sustainable and efficient utilization of plant genetic resources. SCOPE Recent studies of plant transcriptomes, proteomes and metabolomes, and the use of mutants and transgenic lines have significantly expanded our knowledge concerning excision-induced AR formation. Here, we integrate new findings regarding AR formation in the cuttings of diverse plant species. These findings support a new system-oriented concept that the phytohormone-controlled reprogramming and differentiation of particular responsive cells in the cutting base interacts with a co-ordinated reallocation of plant resources within the whole cutting to initiate and drive excision-induced AR formation. Master control by auxin involves diverse transcription factors and mechanically sensitive microtubules, and is further linked to ethylene, jasmonates, cytokinins and strigolactones. Hormone functions seem to involve epigenetic factors and cross-talk with metabolic signals, reflecting the nutrient status of the cutting. By affecting distinct physiological units in the cutting, environmental factors such as light, nitrogen and iron modify the implementation of the genetically controlled root developmental programme. CONCLUSION Despite advanced research in the last decade, important questions remain open for future investigations on excision-induced AR formation. These concern the distinct roles and interactions of certain molecular, hormonal and metabolic factors, as well as the functional equilibrium of the whole cutting in a complex environment. Starting from model plants, cell type- and phase-specific monitoring of controlling processes and modification of gene expression are promising methodologies that, however, need to be integrated into a coherent model of the whole system, before research findings can be translated to other crops.
Collapse
Affiliation(s)
- Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| | | | - Yvonne Klopotek
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Manuel Acosta
- Universidad de Murcia, Facultad de Biología, Campus de Espinardo, Murcia, Spain
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| | - Siegfried Zerche
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Mohammad R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| |
Collapse
|
3
|
Xu X, Ji J, Xu Q, Qi X, Weng Y, Chen X. The major-effect quantitative trait locus CsARN6.1 encodes an AAA ATPase domain-containing protein that is associated with waterlogging stress tolerance by promoting adventitious root formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:917-930. [PMID: 29315927 DOI: 10.1111/tpj.13819] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 05/21/2023]
Abstract
In plants, the formation of hypocotyl-derived adventitious roots (ARs) is an important morphological acclimation to waterlogging stress; however, its genetic basis remains fragmentary. Here, through combined use of bulked segregant analysis-based whole-genome sequencing, SNP haplotyping and fine genetic mapping, we identified a candidate gene for a major-effect QTL, ARN6.1, that was responsible for waterlogging tolerance due to increased AR formation in the cucumber line Zaoer-N. Through multiple lines of evidence, we show that CsARN6.1 is the most possible candidate for ARN6.1 which encodes an AAA ATPase. The increased formation of ARs under waterlogging in Zaoer-N could be attributed to a non-synonymous SNP in the coiled-coil domain region of this gene. CsARN6.1 increases the number of ARs via its ATPase activity. Ectopic expression of CsARN6.1 in Arabidopsis resulted in better rooting ability and lateral root development in transgenic plants. Transgenic cucumber expressing the CsARN6.1Asp allele from Zaoer-N exhibited a significant increase in number of ARs compared with the wild type expressing the allele from Pepino under waterlogging conditions. Taken together, these data support that the AAA ATPase gene CsARN6.1 has an important role in increasing cucumber AR formation and waterlogging tolerance.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | - Jing Ji
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
4
|
Lv H, Wang Q, Liu X, Han F, Fang Z, Yang L, Zhuang M, Liu Y, Li Z, Zhang Y. Whole-Genome Mapping Reveals Novel QTL Clusters Associated with Main Agronomic Traits of Cabbage (Brassica oleracea var. capitata L.). FRONTIERS IN PLANT SCIENCE 2016; 7:989. [PMID: 27458471 PMCID: PMC4933720 DOI: 10.3389/fpls.2016.00989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/22/2016] [Indexed: 05/06/2023]
Abstract
We describe a comprehensive quantitative trait locus (QTL) analysis for 24 main agronomic traits of cabbage. Field experiments were performed using a 196-line double haploid population in three seasons in 2011 and 2012 to evaluate important agronomic traits related to plant type, leaf, and head traits. In total, 144 QTLs with LOD threshold >3.0 were detected for the 24 agronomic traits: 25 for four plant-type-related traits, 64 for 10 leaf-related traits, and 55 for 10 head-related traits; each QTL explained 6.0-55.7% of phenotype variation. Of the QTLs, 95 had contribution rates higher than 10%, and 51 could be detected in more than one season. Major QTLs included Ph 3.1 (max R (2) = 55.7, max LOD = 28.2) for plant height, Ll 3.2 (max R (2) = 31.7, max LOD = 13.95) for leaf length, and Htd 3.2 (max R (2) = 28.5, max LOD = 9.49) for head transverse diameter; these could all be detected in more than one season. Twelve QTL clusters were detected on eight chromosomes, and the most significant four included Indel481-scaffold18376 (3.20 Mb), with five QTLs for five traits; Indel64-scaffold35418 (2.22 Mb), six QTLs for six traits; scaffold39782-Indel84 (1.78 Mb), 11 QTLs for 11 traits; and Indel353-Indel245 (9.89 Mb), seven QTLs for six traits. Besides, most traits clustered within the same region were significantly correlated with each other. The candidate genes at these regions were also discussed. Robust QTLs and their clusters obtained in this study should prove useful for marker-assisted selection (MAS) in cabbage breeding and in furthering our understanding of the genetic control of these traits.
Collapse
Affiliation(s)
- Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Qingbiao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Xing Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Fengqing Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yumei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Yangyong Zhang
| |
Collapse
|
5
|
Bellini C, Pacurar DI, Perrone I. Adventitious roots and lateral roots: similarities and differences. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:639-66. [PMID: 24555710 DOI: 10.1146/annurev-arplant-050213-035645] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In addition to its role in water and nutrient uptake, the root system is fundamentally important because it anchors a plant to its substrate. Although a wide variety of root systems exist across different species, all plants have a primary root (derived from an embryonic radicle) and different types of lateral roots. Adventitious roots, by comparison, display the same functions as lateral roots but develop from aerial tissues. In addition, they not only develop as an adaptive response to various stresses, such as wounding or flooding, but also are a key limiting component of vegetative propagation. Lateral and adventitious roots share key elements of the genetic and hormonal regulatory networks but are subject to different regulatory mechanisms. In this review, we discuss the developmental processes that give rise to lateral and adventitious roots and highlight knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation.
Collapse
Affiliation(s)
- Catherine Bellini
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE90187 Umeå, Sweden; , ,
| | | | | |
Collapse
|
6
|
|