1
|
Lai S, Huang Y, Liu Y, Han F, Zhuang M, Cui X, Li Z. Clubroot resistant in cruciferous crops: recent advances in genes and QTLs identification and utilization. HORTICULTURE RESEARCH 2025; 12:uhaf105. [PMID: 40406504 PMCID: PMC12096309 DOI: 10.1093/hr/uhaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/06/2025] [Indexed: 05/26/2025]
Abstract
Clubroot, caused by Plasmodiophora brassicae, poses a serious threat to cruciferous crop production worldwide. Breeding resistant varieties remains the most cost-effective strategy to mitigate yield losses, yet achieving durable, stable, and broad-spectrum resistance continues to be a formidable challenge. Recent advances in genetic and genomic technologies have improved the understanding of complex host-pathogen interactions, leading to the identification of key resistance loci, including dominant resistance genes such as CRa and Crr1, as well as quantitative trait loci. This review discusses the genetic mechanisms governing clubroot resistance and highlights applications in breeding, such as marker-assisted selection and CRISPR/Cas9-based genome editing, which are accelerating the development of resistant germplasm. Furthermore, integrated management strategies, encompassing resistant cultivars, crop rotation, biocontrol agents, and soil amendments, are emphasized as critical components for sustainable disease management. This review summarizes the major resistance genes against clubroot and discusses potential strategies to address the persistent threat posed by the disease.
Collapse
Affiliation(s)
- Shangxiang Lai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| |
Collapse
|
2
|
Farooq Z, Ali A, Wang H, Mola Bakhsh MZ, Li S, Liu Y, Wu S, Almakas A, Yang S, Bin Y. An overview of cytoplasmic male sterility in Brassica napus. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24337. [PMID: 40310995 DOI: 10.1071/fp24337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
Rapeseed (Brassica napus ) is one of the world's most important oilseed crops, supplying humans with oil products, nutritious feed for livestock, and natural resources for industrial applications. Due to immense population pressure, more seed production is needed for human consumption due to its high quality of food products. As a vital genetic resource, male sterility provides ease in hybrid seed production and heterosis breeding. Better utilization of male sterility requires understanding its mechanisms, mode of action, and genes involved to be characterized in detail. Cytoplasmic male sterility (CMS) has been reported in many plant species and is a maternally inherited trait that restricts viable pollen development and production. The mitochondrial genome is involved in the induction of male sterility, while the nuclear genome plays its role in the restoration. Presently, rapeseed has more than 10 CMS systems. Pol-CMS and Shaan2A are autoplasmic resources that arose via natural mutation, while Nap-CMS and Nsa-CMS are alloplasmic and were created by intergeneric hybridisation. In this review, we discuss the types of male sterility systems in rapeseed and provide comprehensive information on CMS in rapeseed with a particular focus and emphasis the types of CMS in rapeseed.
Collapse
Affiliation(s)
- Zunaira Farooq
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; and Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongjie Wang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Zeeshan Mola Bakhsh
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shipeng Li
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Liu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Shuo Wu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Aisha Almakas
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yi Bin
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Wang X, Liang X, Wang R, Gao Y, Li Y, Shi H, Gong W, Saleem S, Zou Q, Tao L, Kang Z, Yang J, Yu Q, Wu Q, Liu H, Fu S. A breeding method for Ogura CMS restorer line independent of restorer source in Brassica napus. Front Genet 2025; 15:1521277. [PMID: 39834543 PMCID: PMC11743515 DOI: 10.3389/fgene.2024.1521277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The Ogura cytoplasmic male sterility (CMS) line of Brassica napus has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of Brassica napus is derived from the distant hybridization of Raphanus sativus L. and B. napus, but it carried a large number of radish fragments into Brassica napus, because there is no homologous allele of the restorer gene in B. napus, transferring it becomes challenging. In this study, the double haploid induction line in B. napus was used as the male parent for hybridization with the Ogura CMS of B. napus. Surprisingly, fertile plants appeared in the offspring. Further analysis revealed that the cytoplasmic type, ploidy, and chromosome number of the fertile offspring were consistent with the sterile female parent. Moreover, the mitochondrial genome similarity between the fertile offspring and the sterile female parent was 97.7% indicates that the cytoplasm of the two is the same, while the nuclear gene difference between fertile offspring and sterile female parent was only 10.33%, indicates that new genes appeared in the offspring. To further investigate and locate the restorer gene, the BSA method was employed to construct extreme mixed pools. As a result, the restorer gene was mapped to three positions: A09 chromosome 10.99-17.20 Mb, C03 chromosome 5.07-5.34 Mb, and C09 chromosome 18.78-36.60 Mb. The experimental results have proved that induction does produce restorer genes. The induction of the Ogura CMS restorer gene through DH induction line provides a promising new approach for harnessing heterosis in B. napus.
Collapse
Affiliation(s)
- Xuesong Wang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xingyu Liang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Rui Wang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yuan Gao
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yun Li
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Haoran Shi
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Wanzhuo Gong
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Saira Saleem
- Oilseeds Research Station, Khanpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Qiong Zou
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Lanrong Tao
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Zeming Kang
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Jin Yang
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Qin Yu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Qiaobo Wu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Hailan Liu
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Shaohong Fu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| |
Collapse
|
4
|
Romero-Muñoz M, Pérez-Jiménez M. Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. PLANTS (BASEL, SWITZERLAND) 2024; 13:3247. [PMID: 39599456 PMCID: PMC11598112 DOI: 10.3390/plants13223247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production. Protoplasts entail a versatile tool in plant biotechnology, supporting breeding strategies that involve genome editing and hybridization. This review discusses the use of somatic hybridization in B. oleracea L. as a biotechnological method for developing fusion products with desirable agronomic traits, particularly cytoplasmic male sterile (CMS) condition. These CMS lines are critical for implementing a cost-effective, efficient, and reliable system for producing F1 hybrids. We present recent studies on CMS systems in B. oleracea L. crops, providing an overview of established models that explain the mechanisms of CMS and fertility restoration. Additionally, we emphasize key insights gained from protoplast fusion applied to B. oleracea L. breeding. Key steps including pre-treatments of donor plants, the main tissues used as sources of parental protoplasts, methods for obtaining somatic hybrids and cybrids, and the importance of establishing a reliable plant regeneration method are discussed. Finally, the review explores the incorporation of genome editing technologies, such as CRISPR-Cas9, to introduce multiple agronomic traits in Brassica species. This combination of advanced biotechnological tools holds significant promise for enhancing B. oleracea breeding programs in the actual climate change context.
Collapse
Affiliation(s)
- Miriam Romero-Muñoz
- Department of Biotechnology, Genomic and Plant Breeding, Institute for Agroenvironmental Research and Development of Murcia (IMIDA), c/Mayor s/n, E-30150 Murcia, Spain;
| | | |
Collapse
|
5
|
Huang L, Ren Y, Lin B, Hao P, Yi K, Li X, Hua S. Cytological and Molecular Characterization of a New Ogura Cytoplasmic Male Sterility Restorer of Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2024; 13:1703. [PMID: 38931135 PMCID: PMC11207357 DOI: 10.3390/plants13121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Ogura cytoplasmic male sterility (CMS) is considered the rapeseed (Brassica napus L.) with the most potential to be utilized as a heterosis system worldwide, but it lacks sufficient restorers. In this study, root tip cell (RTC) mitotic and pollen mother cell (PMC) meiosis observations were compared to ensure the number of chromosomes and the formation of a chromosomal bridge using restorer lines R2000, CLR650, and Zhehuhong (a new restorer) as the experimental material. Further, molecular markers of exogenous chromosomal fragments were detected and the sequence and expression differences of restorer genes in the three lines were determined to identify the distinctive characteristics of Zhehuhong. The results showed that the number of chromosomes in Zhehuhong was stable (2n = 38), indicating that the exogenous radish chromosome segment had been integrated into the chromosome of Zhehuhong. Molecular marker detection revealed that Zhehuhong was detected at most loci, with only the RMA05 locus being missed. The exogenous radish chromosome segment of Zhehuhong differed from R2000 and CLR650. The pollen mother cells of Zhehuhong showed chromosome lagging in the meiotic metaphase I, meiotic anaphase I, and meiotic anaphase II, which was consistent with R2000 and CLR650. The restorer gene PPRB in Zhehuhong had 85 SNPs compared with R2000 and 119 SNPs compared with CLR650, indicating the distinctive characteristic of PPRB in Zhehuhong. In terms of the spatial expression of PPRB, the highest level was detected in the anthers in the three restorer lines. In addition, in terms of temporal expression, the PPRB gene expression of Zhehuhong was highest at a bud length of 4 mm. Our results clearly indicated that Zhehuhong is a new restorer line for the Ogura CMS system, which can be used further in rapeseed heterosis utilization.
Collapse
Affiliation(s)
- Lan Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Yun Ren
- Institute of Crop, Huzhou Academy of Agricultural Sciences, Huzhou 313000, China;
| | - Baogang Lin
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| | - Pengfei Hao
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| | - Kaige Yi
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| | - Xi Li
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.H.); (B.L.); (P.H.); (K.Y.); (X.L.)
| |
Collapse
|
6
|
Improvement of Resistance to Clubroot Disease in the Ogura CMS Restorer Line R2163 of Brassica napus. PLANTS 2022; 11:plants11182413. [PMID: 36145814 PMCID: PMC9504965 DOI: 10.3390/plants11182413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
Oilseed rape (Brassica napus) has significant heterosis and Ogura CMS is a major way to use it. Ogura CMS has the advantages of complete and stable male sterility and easy-to-breed maintainers. Therefore, to breed better restorers has become an important goal for this system. Incidentally, clubroot is a soil-borne disease that is difficult to control by fungicidal chemicals, and it has been the main disease of oilseed rape in recent years in China, severely restricting the development of the oilseed rape industry. At present, the most effective method for controlling clubroot disease is to cultivate resistant varieties. One Ogura CMS restorer line (R2163) has shown much better combining ability, but lacks the clubroot disease resistance. This study was carried out to improve R2163 through marker-assisted backcross breeding (MABB). The resistant locus PbBa8.1 was introduced into the restorer R2163, and we then selected R2163R with clubroot disease resistance. Using the new restorer R2163R as the male parent and the sterile lines 116A and Z11A as the female parent, the improved, new resistant hybrids Kenyouza 741R and Huayouza 706R performed well, providing strong resistance and good agronomic traits. This work advances the utilization of heterosis and breeding for clubroot disease resistance in B. napus.
Collapse
|
7
|
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int J Mol Sci 2022; 23:ijms23169099. [PMID: 36012365 PMCID: PMC9409259 DOI: 10.3390/ijms23169099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2022] Open
Abstract
Hybrid production using lines with cytoplasmic male sterility (CMS) has become an important way to utilize heterosis in vegetables. Ogura CMS, with the advantages of complete pollen abortion, ease of transfer and a progeny sterility rate reaching 100%, is widely used in cruciferous crop breeding. The mapping, cloning, mechanism and application of Ogura CMS and fertility restorer genes in Brassica napus, Brassica rapa, Brassica oleracea and other cruciferous crops are reviewed herein, and the existing problems and future research directions in the application of Ogura CMS are discussed.
Collapse
Affiliation(s)
- Wenjing Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinchao Si
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Li Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Beijing 100081, China
- Correspondence: (H.Y.); (Y.Z.)
| |
Collapse
|
8
|
Zhan Z, Shah N, Jia R, Li X, Zhang C, Piao Z. Transferring of clubroot-resistant locus CRd from Chinese cabbage ( Brassica rapa) to canola ( Brassica napus) through interspecific hybridization. BREEDING SCIENCE 2022; 72:189-197. [PMID: 36408323 PMCID: PMC9653189 DOI: 10.1270/jsbbs.21052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/24/2022] [Indexed: 06/16/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae is one of the most severe threats to brassica species in China and worldwide. Breeding for clubroot resistant varieties is one of the best ways to overcome this disease. In this study, we introduced clubroot resistance (CR) gene CRd from Chinese cabbage (85-74) into elite Brassica napus inbred line Zhongshuang 11 through interspecific hybridization and subsequent backcrossing with whole-genome molecular marker-assisted selection (MAS). The resistant test of CRd to P. brassicae isolates was evaluated in the greenhouse as well as in field conditions. Close linkage markers and the whole-chromosome background marker selection approach improved the recovery rate from 78.3% in BC1 to 100% in BC3F1. The improved clubroot-resistant variety, Zhongshuang11R, was successfully selected in the BC3F2 generation. The greenhouse and field resistant tests revealed that Zhongshuang11R was resistant to P. brassicae pathotypes. The agronomic characteristics of Zhongshuang11R were similar to those of its recurrent parental line, including oil content, composition of fatty acid, plant height, primary effective branches, grain yield per plant and thousand-seed weight. In addition, the oil quality could satisfy the quality requirements for commercial rapeseed oil. Our results will enrich the resistant resources of canola and will certainly accelerate clubroot resistance breeding programs in B. napus.
Collapse
Affiliation(s)
- Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Nadil Shah
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ru Jia
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| |
Collapse
|
9
|
Agrawal N, Gupta M, Atri C, Akhatar J, Kumar S, Heslop-Harrison PJS, Banga SS. Anchoring alien chromosome segment substitutions bearing gene(s) for resistance to mustard aphid in Brassica juncea-B. fruticulosa introgression lines and their possible disruption through gamma irradiation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3209-3224. [PMID: 34160642 DOI: 10.1007/s00122-021-03886-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/08/2021] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE Heavy doses of gamma irradiation can reduce linkage drag by disrupting large sized alien translocations and promoting exchanges between crop and wild genomes. Resistance to mustard aphid (Lipaphis erysimi) infestation was significantly improved in Brassica juncea through B. juncea-B. fruticulosa introgression. However, linkage drag caused by introgressed chromatin fragments has so far prevented the deployment of this resistance source in commercial cultivars. We investigated the patterns of donor chromatin segment substitutions in the introgression lines (ILs) through genomic in situ hybridization (GISH) coupled with B. juncea chromosome-specific oligonucleotide probes. These allowed identification of large chromosome translocations from B. fruticulosa in the terminal regions of chromosomes A05, B02, B03 and B04 in three founder ILs (AD-64, 101 and 104). Only AD-101 carried an additional translocation at the sub-terminal to intercalary position in both homologues of chromosome A01. We validated these translocations with a reciprocal blast hit analysis using shotgun sequencing of three ILs and species-specific contigs/scaffolds (kb sized) from a de novo assembly of B. fruticulosa. Alien segment substitution on chromosome A05 could not be validated. Current studies also endeavoured to break linkage drag by exposing seeds to a heavy dose (200kR) of gamma radiation. Reduction in the size of introgressed chromatin fragments was observed in many M3 plants. There was a complete loss of the alien chromosome fragment in one instance. A few M3 plants with novel patterns of chromosome segment substitutions displayed improved agronomic performance coupled with resistance to mustard aphid. SNPs in such genomic spaces should aid the development of markers to track introgressed DNA and allow application in plant breeding.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Mehak Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Sarwan Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| |
Collapse
|
10
|
Quezada-Martinez D, Addo Nyarko CP, Schiessl SV, Mason AS. Using wild relatives and related species to build climate resilience in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1711-1728. [PMID: 33730183 PMCID: PMC8205867 DOI: 10.1007/s00122-021-03793-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 05/18/2023]
Abstract
Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.
Collapse
Affiliation(s)
- Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Charles P Addo Nyarko
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Sarah V Schiessl
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
11
|
Quezada-Martinez D, Addo Nyarko CP, Schiessl SV, Mason AS. Using wild relatives and related species to build climate resilience in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1711-1728. [PMID: 33730183 DOI: 10.1007/s00122-021-03793-3.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/12/2021] [Indexed: 05/24/2023]
Abstract
Climate change will have major impacts on crop production: not just increasing drought and heat stress, but also increasing insect and disease loads and the chance of extreme weather events and further adverse conditions. Often, wild relatives show increased tolerances to biotic and abiotic stresses, due to reduced stringency of selection for yield and yield-related traits under optimum conditions. One possible strategy to improve resilience in our modern-day crop cultivars is to utilize wild relative germplasm in breeding, and attempt to introgress genetic factors contributing to greater environmental tolerances from these wild relatives into elite crop types. However, this approach can be difficult, as it relies on factors such as ease of hybridization and genetic distance between the source and target, crossover frequencies and distributions in the hybrid, and ability to select for desirable introgressions while minimizing linkage drag. In this review, we outline the possible effects that climate change may have on crop production, introduce the Brassica crop species and their wild relatives, and provide an index of useful traits that are known to be present in each of these species that may be exploitable through interspecific hybridization-based approaches. Subsequently, we outline how introgression breeding works, what factors affect the success of this approach, and how this approach can be optimized so as to increase the chance of recovering the desired introgression lines. Our review provides a working guide to the use of wild relatives and related crop germplasm to improve biotic and abiotic resistances in Brassica crop species.
Collapse
Affiliation(s)
- Daniela Quezada-Martinez
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Charles P Addo Nyarko
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Sarah V Schiessl
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, 35392, Giessen, Germany.
- Plant Breeding Department, The University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| |
Collapse
|
12
|
Li Q, Xu B, Du Y, Peng A, Ren X, Si J, Song H. Development of Ogura CMS restorers in Brassica oleracea subspecies via direct Rfo B gene transformation. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1123-1132. [PMID: 33404672 DOI: 10.1007/s00122-020-03757-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The Ogura CMS RfoB restorer developing via RfoB gene transformation was utilized to produce specific morphological Ogura CMS restorers and clubroot resistance lines in Brassica oleracea subspecies. Brassica oleracea vegetables including cabbage, cauliflower, kohlrabi, Brussels sprouts and Chinese kale are morphologically very different despite being members of the same species. The Ogura cytoplasmic male sterility (CMS) system is the most stable strategy for the hybrid breeding of these species. However, this limits the utilization of some excellent genes due to the lack of fertile restorer genes in the system. Herein, to efficaciously use Ogura CMS, the Ogura CMS RfoB restorer was produced by transforming the modified RfoB restorer gene into the Ogura CMS line 'CMS2016' of B. oleracea var. capitata. This gene was shown to recover fertility of natural Ogura CMS lines in B. oleracea subspecies and create transient Ogura CMS RfoB restorers such as the clubroot resistance Ogura CMS RfoB restorer. Interestingly, clubroot resistant individuals without transgenic elements were screened in the progenies of hybrids between B. oleracea inbred lines and the clubroot resistance Ogura CMS RfoB restorer. In addition, 18 different morphological Ogura CMS restorers were developed to specifically recover fertile of Ogura CMS cultivars in B. oleracea subspecies.
Collapse
Affiliation(s)
- Qinfei Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bingbing Xu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yangmei Du
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ao Peng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xuesong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jun Si
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing, China.
- Chongqing Key Laboratory of Olericulture, Chongqing, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
13
|
Gudi S, Atri C, Goyal A, Kaur N, Akhtar J, Mittal M, Kaur K, Kaur G, Banga SS. Physical mapping of introgressed chromosome fragment carrying the fertility restoring (Rfo) gene for Ogura CMS in Brassica juncea L. Czern & Coss. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2949-2959. [PMID: 32661588 DOI: 10.1007/s00122-020-03648-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/01/2020] [Indexed: 05/18/2023]
Abstract
Rfo is located on a radish chromosome fragment (~ 108 Kb), which is seated in the middle of a pretty large C genome translocation at the distal region of chromosome A09 of B. juncea. Ogura cytoplasmic male sterility (CMS) is used to produce hybrids in Indian mustard (Brassica juncea L.). Fertility restorers for this CMS were developed by cross-hybridizing B. juncea (AABB; 2n = 36) with B. napus (AACC; 2n = 38) carrying radish Rfo gene. This hybrid production system is normally stable, but many commercial mustard hybrids show male sterile contaminants. We aimed to identify linkage drag associated with Rfo by comparing hybridity levels of 295 handmade CMS x Rfo crosses. Although Rfo was stably inherited, hybridity was < 85 percent in several combinations. Genome re-sequencing of five fertility restorers, mapping sequencing reads to B. juncea reference and synteny analysis with Raphanus sativus D81Rfo genomic region (AJ550021.2) helped to detect ~ 108 Kb of radish chromosome (R) fragment substitution in all fertility restorers. This radish segment substitution was itself located amidst a large C genome translocation on the terminal region of chromosome A09 of B. juncea. The size of alien segment substitution varied from 11.3 (NTCN-R9) to 22.0 Mb (NAJR-102B-R). We also developed an in silico SSR map for chromosome A09 and identified many homoeologous A to the C genome exchanges in the introgressed region. A to the R genome exchanges were rare. Annotation of the substituted fragment showed the gain of many novel genes from R and C genomes and the loss of B. juncea genes from the corresponding region. We have developed a KASPar marker for marker-aided transfer of Rfo and testing hybridity levels in seed production lots.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Anna Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Navneet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Javed Akhtar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kawalpreet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gurpreet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
14
|
Summanwar A, Basu U, Rahman H, Kav NNV. Non-coding RNAs as emerging targets for crop improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110521. [PMID: 32563460 DOI: 10.1016/j.plantsci.2020.110521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/23/2023]
Abstract
Food security is affected by climate change, population growth, as well as abiotic and biotic stresses. Conventional and molecular marker assisted breeding and genetic engineering techniques have been employed extensively for improving resistance to biotic stress in crop plants. Advances in next-generation sequencing technologies have permitted the exploration and identification of parts of the genome that extend beyond the regions with protein coding potential. These non-coding regions of the genome are transcribed to generate many types of non-coding RNAs (ncRNAs). These ncRNAs are involved in the regulation of growth, development, and response to stresses at transcriptional and translational levels. ncRNAs, including long ncRNAs (lncRNAs), small RNAs and circular RNAs have been recognized as important regulators of gene expression in plants and have been suggested to play important roles in plant immunity and adaptation to abiotic and biotic stresses. In this article, we have reviewed the current state of knowledge with respect to lncRNAs and their mechanism(s) of action as well as their regulatory functions, specifically within the context of biotic stresses. Additionally, we have provided insights into how our increased knowledge about lncRNAs may be used to improve crop tolerance to these devastating biotic stresses.
Collapse
Affiliation(s)
- Aarohi Summanwar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
15
|
Genetic characterization of a new radish introgression line carrying the restorer gene for Ogura CMS in Brassica napus. PLoS One 2020; 15:e0236273. [PMID: 32722687 PMCID: PMC7386589 DOI: 10.1371/journal.pone.0236273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022] Open
Abstract
Creating a homologous restorer line for Ogura cytoplasmic male sterility (Ogu-CMS) in Brassica napus is meaningful for the wider application of Ogu-CMS system in rapeseed production. Previously, an independent development of a new Ogu-CMS restorer line (CLR650) was reported locally from crossing between Raphanobrassica (AACCRR, 2n = 56) and B. napus and a new version of Ogu CMS lines CLR6430 derived from CLR650 was characterized in this study. The results showed that the fertility restoration gene in CLR6430 presented a distorted segregation in different segregating populations. However, the majority of somatic cells from roots had a regular chromosome number (2n = 38) and no radish signal covered a whole chromosome was detected using GISH. Thirty-two specific markers derived from the introgressed radish fragments were developed based on the re-sequencing results. Unique radish insertions and differences between CLR6430 and R2000 were also identified through both radish-derived markers and PCR product sequences. Further investigations on the genetic behaviors, interactions between the fertility restoration and other traits and specific molecular markers to the introgression in CLR6430 were also conducted in this study. These results should provide the evidence of nucleotide differences between CLR6430 and R2000, and the specific markers will be helpful for breeding new Ogura restore lines in future.
Collapse
|
16
|
Zhan Z, Jiang Y, Shah N, Hou Z, Zhou Y, Dun B, Li S, Zhu L, Li Z, Piao Z, Zhang C. Association of Clubroot Resistance Locus PbBa8.1 With a Linkage Drag of High Erucic Acid Content in the Seed of the European Turnip. FRONTIERS IN PLANT SCIENCE 2020; 11:810. [PMID: 32595684 PMCID: PMC7301908 DOI: 10.3389/fpls.2020.00810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2020] [Indexed: 05/12/2023]
Abstract
Clubroot caused by Plasmodiophora brassicae is a severe threat to the production of Brassica napus, worldwide. The cultivation of resistant varieties is the most efficient and environmentally friendly way to limit disease spread. We developed a highly resistant B. napus line, ZHE226, containing the resistance locus PbBa8.1. However, ZHE226 seeds contain high erucic acid content, which limits its cultivation owing to its low edible oil quality. A segregation population of BC3F2 was developed by crossing ECD04, a resistant European turnip donor, with Huangshuang5, an elite variety with no erucic acid in its seeds, as a recurrent plant. Fine mapping using the bulk segregation analysis sequencing (BSA-Seq) approach detected PbBa8.1 within a 2.9 MB region on chromosome A08. Interestingly, the previously reported resistance gene Crr1a was found in the same region. Genetic analysis revealed that the CAP-134 marker for Crr1a was closely linked with clubroot resistance (CR). Thus, PbBa8.1 and Crr1a might be allelic for CR. Moreover, comparative and genetic analysis showed that high erucic acid in the seeds of ZHE226 was due to linkage drag of fatty acid elongase 1 (FAE1) in the ECD04 line, which was located in the interval of PbBa8.1 with a physical and genetic distance of 729 Kb and 1.86 cm, respectively. Finally, a clubroot-resistant line with a low erucic acid content was successfully developed through gene-specific molecular marker assistant selection from BC4F4. These results will accelerate CR breeding programs in B. napus.
Collapse
Affiliation(s)
- Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yingfen Jiang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Institute of Crop Science, Anhui Academy of Agricultural Science, Hefei, China
| | - Nadil Shah
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoke Hou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanwei Zhou
- Yichang Academy of Agricultural Science, Yichang, China
| | - Bicheng Dun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shisheng Li
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agriculture Resource, Huanggang Normal University, Huanggang, China
| | - Li Zhu
- Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agriculture Resource, Huanggang Normal University, Huanggang, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Li P, Kang L, Wang A, Cui C, Jiang L, Guo S, Ge X, Li Z. Development of a Fertility Restorer for inap CMS ( Isatis indigotica) Brassica napus Through Genetic Introgression of One Alien Addition. FRONTIERS IN PLANT SCIENCE 2019; 10:257. [PMID: 30891056 PMCID: PMC6412144 DOI: 10.3389/fpls.2019.00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 05/22/2023]
Abstract
Novel Brassica napus cytoplasmic male sterility (CMS) with carpelloid stamens (inap CMS) was produced by intertribal somatic hybridization with Isatis indigotica (Chinese woad), but its RF (restorer of fertility) gene(s) existed in one particular woad chromosome that was carried by one fertile monosomic alien addition line (MAAL) of rapeseed. Herein, the selfed progenies of this MAAL were extensively selected and analyzed to screen the rapeseed-type plants (2n = 38) with good male fertility and to produce their doubled haploid (DH) lines by microspore culture. From the investigation of fertility restoration in the F1 hybrids with inap CMS, one DH line (RF 39) was identified to adequately restore male fertility and likely carried one dominant RF gene. Specifically, this restorer produced brown pollen grains, similar to the woad and the MAAL, suggesting that this trait is closely linked with the RF gene(s) and serves as one phenotypic marker for the restorer. This restorer contained 38 chromosomes of rapeseed and no intact chromosomes of woad, but some DNA fragments of woad origin were detected at low frequency. This restorer was much improved for pollen and seed fertility and for low glucosinolate content. The successful breeding of the restorer for inap CMS rendered this new pollination control system feasible for rapeseed hybrid production.
Collapse
Affiliation(s)
- Pengfei Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lei Kang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Lei Kang, Zaiyun Li,
| | - Aifan Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Liangcai Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shizhen Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Lei Kang, Zaiyun Li,
| |
Collapse
|
18
|
Friedt W, Tu J, Fu T. Academic and Economic Importance of Brassica napus Rapeseed. COMPENDIUM OF PLANT GENOMES 2018. [DOI: 10.1007/978-3-319-43694-4_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Kang L, Li P, Wang A, Ge X, Li Z. A Novel Cytoplasmic Male Sterility in Brassica napus (inap CMS) with Carpelloid Stamens via Protoplast Fusion with Chinese Woad. FRONTIERS IN PLANT SCIENCE 2017; 8:529. [PMID: 28428799 PMCID: PMC5382163 DOI: 10.3389/fpls.2017.00529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/24/2017] [Indexed: 05/29/2023]
Abstract
A novel cytoplasmic male sterility (CMS) in Brassica napus (inap CMS) was selected from the somatic hybrid with Isatis indigotica (Chinese woad) by recurrent backcrossing. The male sterility was caused by the conversion of tetradynamous stamens into carpelloid structures with stigmatoid tissues at their tips and ovule-like tissues in the margins, and the two shorter stamens into filaments without anthers. The feminized development of the stamens resulted in the complete lack of pollen grains, which was stable in different years and environments. The pistils of inap CMS displayed normal morphology and good seed-set after pollinated by B. napus. Histological sections showed that the developmental alteration of the stamens initiated at the stage of stamen primordium differentiation. AFLP analysis of the nuclear genomic composition with 23 pairs of selective primers detected no woad DNA bands in inap CMS. Twenty out of 25 mitochondrial genes originated from I. indigotica, except for cox2-2 which was the recombinant between cox2 from woad and cox2-2 from rapeseed. The novel cox2-2 was transcribed in flower buds of inap CMS weakly and comparatively with the fertile B. napus addition line Me harboring one particular woad chromosome. The restorers of other autoplasmic and alloplasmic CMS systems in rapeseed failed to restore the fertility of inap CMS and the screening of B. napus wide resources found no fertility restoration variety, showing its distinct origin and the related mechanism of sterility. The reasons for the mitochondrial rearrangements and the breeding of the restorer for the novel CMS system were discussed.
Collapse
|
20
|
Wang GX, Lv J, Zhang J, Han S, Zong M, Guo N, Zeng XY, Zhang YY, Wang YP, Liu F. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1258. [PMID: 27625659 PMCID: PMC5003894 DOI: 10.3389/fpls.2016.01258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/08/2016] [Indexed: 05/30/2023]
Abstract
Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.
Collapse
Affiliation(s)
- Gui-xiang Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Jing Lv
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
- Yangzhou UniversityYangzhou, China
- Zhalute No.1 High SchoolTongliao, China
| | - Jie Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Shuo Han
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Mei Zong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Ning Guo
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Xing-ying Zeng
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | - Yue-yun Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| | | | - Fan Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of AgricultureBeijing, China
| |
Collapse
|
21
|
Yu HL, Fang ZY, Liu YM, Yang LM, Zhuang M, Lv HH, Li ZS, Han FQ, Liu XP, Zhang YY. Development of a novel allele-specific Rfo marker and creation of Ogura CMS fertility-restored interspecific hybrids in Brassica oleracea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1625-1637. [PMID: 27206841 DOI: 10.1007/s00122-016-2728-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/07/2016] [Indexed: 06/05/2023]
Abstract
A novel allele-specific Rfo marker was developed and proved to be effective for MAS of Rfo gene in B. oleracea background and six Ogu-CMS fertility-restored interspecific hybrids were created for the first time. Ogura cytoplasmic male sterility (Ogu-CMS) has been extensively used for Brassica oleracea hybrid production. However, because of maternal inheritance, all the hybrids produced by CMS lines are male sterile and cannot be self-pollinated, which prohibits germplasm maintenance and innovation. This problem can be overcome by using the Ogu-CMS restorer line, but restorer material is absent in B. oleracea crops. Here, Rfo, a fertility-restored gene of Ogu-CMS, was transferred from rapeseed restorer lines into a Chinese kale Ogu-CMS line using interspecific hybridization combined with embryo rescue. Nine interspecific, triploid plant progenies were identified at morphological and ploidy level, with phenotypes intermediate between those of rapeseed and Chinese kale. Because the Rfo marker (Hu et al., Mol Breeding 22:663-674, 2008) cannot distinguish the Rfo and its homologies under a B. oleracea background, a novel allele-specific Rfo marker was developed based on the BLAST analysis of highly homologous Rfo sequences in B. oleracea. Screening using the novel Rfo marker found that six interspecific hybrids carrying Rfo were also fertile, although fertility varied during different flowering periods. Furthermore, BC1 offsprings with the Rfo gene were selected with the allele-specific Rfo marker and showed restored fertility. These results indicated that the novel allele-specific marker could be used for the MAS of Rfo gene in B. oleracea, and this study lays the foundation for the development of Ogu-CMS restorer material in cabbage and its related other subspecies.
Collapse
Affiliation(s)
- Hai-Long Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China
| | - Zhi-Yuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China
| | - Yu-Mei Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China
| | - Li-Mei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China
| | - Hong-Hao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China
| | - Zhan-Sheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China
| | - Feng-Qing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China
| | - Xiao-Ping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China
| | - Yang-Yong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No. 12 ZhongGuanCun South St., Beijing, 100081, People's Republic of China.
| |
Collapse
|
22
|
Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. PLANT CELL REPORTS 2016; 35:967-93. [PMID: 26905724 DOI: 10.1007/s00299-016-1949-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/02/2016] [Indexed: 05/20/2023]
Abstract
A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, India.
| | - Uday C Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, India
| | | | - Deepak Bisht
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, India
| | | |
Collapse
|
23
|
Down regulation of the IND gene causes male sterility in canola ( Brassica napus L.). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Non-destructive in vitro selection of microspore-derived embryos with the fertility restorer gene for CMS Ogu-INRA in winter oilseed rape (Brassica napus L.). ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2014.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Yamagishi H, Bhat SR. Cytoplasmic male sterility in Brassicaceae crops. BREEDING SCIENCE 2014; 64:38-47. [PMID: 24987289 PMCID: PMC4031109 DOI: 10.1270/jsbbs.64.38] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/05/2013] [Indexed: 05/20/2023]
Abstract
Brassicaceae crops display strong hybrid vigor, and have long been subject to F1 hybrid breeding. Because the most reliable system of F1 seed production is based on cytoplasmic male sterility (CMS), various types of CMS have been developed and adopted in practice to breed Brassicaceae oil seed and vegetable crops. CMS is a maternally inherited trait encoded in the mitochondrial genome, and the male sterile phenotype arises as a result of interaction of a mitochondrial CMS gene and a nuclear fertility restoring (Rf) gene. Therefore, CMS has been intensively investigated for gaining basic insights into molecular aspects of nuclear-mitochondrial genome interactions and for practical applications in plant breeding. Several CMS genes have been identified by molecular genetic studies, including Ogura CMS from Japanese radish, which is the most extensively studied and most widely used. In this review, we discuss Ogura CMS, and other CMS systems, and the causal mitochondrial genes for CMS. Studies on nuclear Rf genes and the cytoplasmic effects of alien cytoplasm on general crop performance are also reviewed. Finally, some of the unresolved questions about CMS are highlighted.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University,
Kamigamo, Kita, Kyoto 603-8555,
Japan
- Corresponding author (e-mail: )
| | - Shripad R. Bhat
- National Research Centre of Plant Biotechnology,
New Delhi 10012,
India
| |
Collapse
|
26
|
Niemelä T, Seppänen M, Badakshi F, Rokka VM, Heslop-Harrison JSP. Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape. Chromosome Res 2012; 20:353-61. [PMID: 22476396 DOI: 10.1007/s10577-012-9280-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/29/2012] [Accepted: 03/08/2012] [Indexed: 11/25/2022]
Abstract
In spring turnip rape (Brassica rapa L. spp. oleifera), the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homolog of the Ogura restorer gene Rfo, was successfully transferred from oilseed rape into turnip rape and that restored the fertility in female lines carrying Ogura cms. The trait was, however, unstable in subsequent generations. The physical localization of the radish chromosomal region carrying the Rfk1 gene was investigated using genomic in situ hybridization (GISH) and bacterial artificial chromosome-fluorescence in situ hybridization (BAC-FISH) methods. The metaphase chromosomes were hybridized using radish DNA as the genomic probe and BAC64 probe, which is linked with Rfo gene. Both probes showed a signal in the chromosome spreads of the restorer line 4021-2 Rfk of turnip rape but not in the negative control line 4021B. The GISH analyses clearly showed that the turnip rape restorer plants were either monosomic (2n=2x=20+1R) or disomic (2n=2x=20+2R) addition lines with one or two copies of a single alien chromosome region originating from radish. In the BAC-FISH analysis, double dot signals were detected in subterminal parts of the radish chromosome arms showing that the fertility restorer gene Rfk1 was located in this additional radish chromosome. Detected disomic addition lines were found to be unstable for turnip rape hybrid production. Using the BAC-FISH analysis, weak signals were sometimes visible in two chromosomes of turnip rape and a homologous region of Rfk1 in chromosome 9 of the B. rapa A genome was verified with BLAST analysis. In the future, this homologous area in A genome could be substituted with radish chromosome area carrying the Rfk1 gene.
Collapse
Affiliation(s)
- Tarja Niemelä
- Department of Agriculture, University of Helsinki, PO Box 27, FI-00014, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
27
|
Abbadi A, Leckband G. Rapeseed breeding for oil content, quality, and sustainability. EUR J LIPID SCI TECH 2011. [DOI: 10.1002/ejlt.201100063] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Lee YP, Kim S, Lim H, Ahn Y, Sung SK. Identification of mitochondrial genome rearrangements unique to novel cytoplasmic male sterility in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:719-28. [PMID: 19034407 DOI: 10.1007/s00122-008-0932-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/05/2008] [Indexed: 05/23/2023]
Abstract
A novel cytoplasmic male-sterility (CMS) radish (Raphanus sativus L.) and its associated mitotype (DCGMS) were previously identified; however, no mtDNA fragments flanking the atp6 gene were found in the DCGMS mitotype. Unlike three other mitotypes in this study, a unique mtDNA organization, atp6-nad3-rps12, was found to be the major mtDNA structure associated with this mitotype. This organization may have arisen from short repeat sequence-mediated recombination events. The short repeat clusters involved in the mtDNA rearrangement around the atp6 gene also exist as repetitive sequences in the complete mitochondrial genomes of other members of the Brassicaceae family, including rapeseed and Arabidopsis. These sequences do not exist as repetitive elements in the mtDNA of tobacco, sugar beet, or rice. While studying the regions flanking atp6, we identified a truncated atp6 mtDNA fragment which consists of the 5' part of the atp6 gene linked to an unidentified sequence. This mtDNA structure was present in all mitotypes; however, a single nucleotide insertion mutation leading to a frame-shift was identified only in the DCGMS mitotype. Although this truncated atp6 organization was transcribed, there was no significantly different expression between male-sterile and fertile segregating individuals from the BC(1)F(1) population originating from a cross between male-sterile and restorer parents. Comprehensive survey of the single base-pair insertion showed that it was maternally inherited and unique to the DCGMS mitotype. Therefore, this single nucleotide polymorphism (SNP) in the coding sequence of the mtDNA will be a useful molecular marker for the detection of the DCGMS mitotype.
Collapse
Affiliation(s)
- Young-Pyo Lee
- Biotech Research Center, Dongbu Advanced Research Institute, Dongbu HiTek Co., Ltd, Daejeon 305-708, South Korea
| | | | | | | | | |
Collapse
|
29
|
Budahn H, Peterka H, Mousa MAA, Ding Y, Zhang S, Li J. Molecular mapping in oil radish (Raphanus sativus L.) and QTL analysis of resistance against beet cyst nematode (Heterodera schachtii). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:775-82. [PMID: 19050847 DOI: 10.1007/s00122-008-0937-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 11/13/2008] [Indexed: 05/21/2023]
Abstract
The beet cyst nematode (Heterodera schachtii Schmidt) can be controlled biologically in highly infected soils of sugar beet rotations using resistant varieties of oil radish (Raphanus sativus L. ssp. oleiferus DC.) as a green crop. Resistant plants stimulate infective juveniles to invade roots, but prevent them after their penetration to complete the life cycle. The resistance trait has been transferred successfully to susceptible rapeseed by the addition of a complete radish chromosome. The aim of the study was to construct a genetic map for radish and to develop resistance-associated markers. The map with 545 RAPD, dpRAPD, AFLP and SSR markers had a length of 1,517 cM, a mean distance of 2.8 cM and consisted of nine linkage groups having sizes between 120 and 232 cM. Chromosome-specific markers for the resistance-bearing chromosome d and the other eight radish chromosomes, developed previously from a series of rapeseed-radish addition lines, were enclosed as anchor markers. Each of the extra chromosomes in the addition lines could be unambiguously assigned to one of the radish linkage groups. The QTL analysis of nematode resistance was realized in the intraspecific F(2) mapping population derived from a cross between varieties 'Pegletta' (nematode resistant) x 'Siletta Nova' (susceptible). A dominant major QTL Hs1( Rph ) explaining 46.4% of the phenotypic variability was detected in a proximal position of chromosome d. Radish chromosome-specific anchor markers with known map positions were made available for future recombination experiments to incorporate segments carrying desired genes as Hs1( Rph ) from radish into rapeseed by means of chromosome addition lines.
Collapse
Affiliation(s)
- Holger Budahn
- Julius Kühn Institute, Institute for Breeding Research on Horticultural and Fruit Crops, Erwin-Baur-Strasse 27, 06484 Quedlinburg, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Lee YP, Park S, Lim C, Kim H, Lim H, Ahn Y, Sung SK, Yoon MK, Kim S. Discovery of a novel cytoplasmic male-sterility and its restorer lines in radish (Raphanus sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:905-13. [PMID: 18597066 DOI: 10.1007/s00122-008-0830-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 06/11/2008] [Indexed: 05/18/2023]
Abstract
A male-sterile (MS) radish (Raphanus sativus L.) was found in an accession collected from Uzbekistan. Unlike Ogura MS radishes in which no pollen grain is typically visible during anthesis, a small number of pollen grains stuck together in the dehiscing anthers was observed in the newly identified MS radish. Fluorescein diacetate tests and scanning electron micrographs showed that pollen grains in the new MS radish were severely deformed and non-viable. Cytological examination of pollen development stages showed a clear difference in the defective stage from that seen in Ogura male-sterility. Reciprocal cross-pollination with diverse male-fertile lines indicated that pollen grains of the new MS radish were completely sterile, and the female organs were fully fertile. When the new MS radish and Ogura MS lines were cross-pollinated with a set of eight breeding lines, all F1 progeny originating from crosses with the new MS radish were male-sterile. In contrast, most of the F1 progeny resulting from crosses with Ogura MS lines were male-fertile. These results demonstrated that factors associated with induction of the newly identified male-sterility are different from those of Ogura male-sterility. The lack of restorer lines for the newly identified male-sterility led us to predict that it might be a complete cytoplasmic male-sterility without restorer-of-fertility genes in nuclear genomes. However, cross-pollination with more diverse radish germplasm identified one accession introduced from Russia that could completely restore fertility, proving the existence of restorer-of-fertility gene(s) for the new male-sterility. Meanwhile, the PCR amplification profile of molecular markers for the classification of radish mitochondrial genome types revealed that the new MS radish contained a novel mitotype.
Collapse
Affiliation(s)
- Young-Pyo Lee
- Biotech Research Center, Dongbu Advanced Research Institute, Dongbu HiTek Co. Ltd, Daejeon 305-708, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|