1
|
Jaimes H, Londoño A, Saavedra‐Diaz C, Trujillo‐Montenegro JH, López‐Gerena J, Riascos JJ, Aguilar FS. Sequencing vs. amplification for the estimation of allele dosages in sugarcane ( Saccharum spp.). APPLICATIONS IN PLANT SCIENCES 2024; 12:e11574. [PMID: 39360190 PMCID: PMC11443436 DOI: 10.1002/aps3.11574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 10/04/2024]
Abstract
Premise Detecting single-nucleotide polymorphisms (SNPs) in a cost-effective way is fundamental in any plant breeding pipeline. Here, we compare three genotyping techniques for their ability to reproduce the allele dosage of SNPs of interest in sugarcane (Saccharum spp.). Methods To identify a reproducible technique to estimate allele dosage for the validation of SNP markers, the correlation between Flex-Seq, kompetitive allele-specific PCR (KASP), and genotyping-by-sequencing and restriction site-associated DNA sequencing (GBS+RADseq) was determined for a set of 76 SNPs. To find alternative methodologies for allele dosage estimation, the KASP and Flex-Seq techniques were compared for the same set of SNPs. For the three techniques, a population of 53 genotypes from the diverse sugarcane panel of the Centro de Investigación de la Caña de Azúcar (Cenicaña), Colombia, was selected. Results The average Pearson correlation coefficients between GBS+RADseq and Flex-Seq, GBS+RADseq and KASP, and Flex-Seq and KASP were 0.62 ± 0.27, 0.38 ± 0.27, and 0.38 ± 0.30, respectively. Discussion Flex-Seq reproduced the allele dosages determined using GBS+RADseq with good levels of precision because of its depth of sequencing and ability to target specific positions in the genome. Additionally, Flex-Seq outperformed KASP by allowing the conversion of a higher number of SNPs and a more accurate estimation of the allele dosage. Flex-Seq has therefore become the genotyping methodology of choice for marker validation at Cenicaña.
Collapse
Affiliation(s)
- Hugo Jaimes
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| | - Alejandra Londoño
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| | - Carolina Saavedra‐Diaz
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
- Pontificia Universidad JaverianaCalle 18 118–250CaliColombia
| | | | - Jershon López‐Gerena
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| | - John J. Riascos
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| | - Fernando S. Aguilar
- Colombian Sugarcane Research CenterCenicañaCalle 38N 3CN‐75CaliValle del CaucaColombia
| |
Collapse
|
2
|
Khassanova G, Khalbayeva S, Serikbay D, Mazkirat S, Bulatova K, Utebayev M, Shavrukov Y. SNP Genotyping with Amplifluor-Like Method. Methods Mol Biol 2023; 2638:201-219. [PMID: 36781644 DOI: 10.1007/978-1-0716-3024-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
For SNP genotyping, amplification of fluorescence (Amplifluor) is a popular and actively developing method in the plant sciences. The "Amplifluor-like" is a "home-made" modification of the original commercial Amplifluor method. Amplifluor-like genotyping requires two essential components: (1) two allele-specific forward primers targeting the SNP site with one common reverse primer; and (2) a universal part with two non-allele-specific molecular probes containing one of the two used fluorophores and a quencher. Allele discrimination is based on the fluorescence score, where the dominance of one dye over the other confirms the presence of each specific SNP allele. The Amplifluor-like method is similar to commercial KASP and original Amplifluor methods but is much cheaper because all components can be ordered as regular and modified oligos. The easily adaptable Amplifluor-like method can be modified by any researcher to make it suitable for available instruments, reagents and conditions in low-budget laboratories for SNP genotyping of any plant species with identified genetic polymorphism.
Collapse
Affiliation(s)
- Gulmira Khassanova
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Sholpan Khalbayeva
- Kazakh Research Institute of Agriculture and Plant Production, Almalybak, Almaty, Kazakhstan
| | - Dauren Serikbay
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shynar Mazkirat
- Kazakh Research Institute of Agriculture and Plant Production, Almalybak, Almaty, Kazakhstan
| | - Kulpash Bulatova
- Kazakh Research Institute of Agriculture and Plant Production, Almalybak, Almaty, Kazakhstan
| | - Maral Utebayev
- A.I. Barayev Research and Production Centre of Grain Farming, Shortandy, Kazakhstan
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Modified Allele-Specific qPCR (ASQ) Genotyping. Methods Mol Biol 2023; 2638:231-247. [PMID: 36781646 DOI: 10.1007/978-1-0716-3024-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The allele-specific qPCR (ASQ) method for SNP (single nucleotide polymorphism) detection is based on the FRET (fluorescence resonance energy transfer) system, a system using position-dependent fluorescent dyes and quenches. The modified ASQ method requires two separate components: (1) the allele-specific part, two AS primers targeting the SNP with identity in the penultimate positions at the 3'-end and specific tags in the 5'-end, and (2) the universal part, two universal probes (UPs) with corresponding tags and different fluorescent dyes in the 5'-end and a single common universal probe with a quencher in the 3'-ends (Uni-Q), complementary to all UP tags. There are two major variations of the ASQ method, with either short 4-bp tags (variant A) or longer 6-bp tags (variant B), both of which have been successfully used for SNP genotyping in plants. The modified ASQ method is much cheaper compared to other similar FRET-based methods because the most expensive parts, the universal probes, have a short and linear structure, where fluorophores and quenchers are located in the ends but not incorporated inside of the sequences.
Collapse
|
4
|
Offornedo Q, Menkir A, Babalola D, Gedil M. Developing and deploying an efficient genotyping workflow for accelerating maize improvement in developing countries. Gates Open Res 2022. [DOI: 10.12688/gatesopenres.13338.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Molecular breeding is an essential tool for accelerating genetic gain in crop improvement towards meeting the need to feed an ever-growing world population. Establishing low-cost, flexible genotyping platforms in small, public and regional laboratories can stimulate the application of molecular breeding in developing countries. These laboratories can serve plant breeding projects requiring low- to medium-density markers for marker-assisted selection (MAS) and quality control (QC) activities. Methods: We performed two QC and MAS experiments consisting of 637 maize lines, using an optimised genotyping workflow involving an in-house competitive allele-specific PCR (KASP) genotyping system with an optimised sample collection, preparation, and DNA extraction and quantitation process. A smaller volume of leaf-disc size plant samples was collected directly in 96-well plates for DNA extraction, using a slightly modified CTAB-based DArT DNA extraction protocol. DNA quality and quantity analyses were performed using a microplate reader, and the KASP genotyping and data analysis was performed in our laboratory. Results: Applying the optimized genotyping workflow expedited the QC and MAS experiments from over five weeks (when outsourcing) to two weeks and eliminated the shipping cost. Using a set of 28 KASP single nucleotide polymorphisms (SNPs) validated for maize, the QC experiment revealed the genetic identity of four maize varieties taken from five seed sources. Another set of 10 KASP SNPs was sufficient in verifying the parentage of 390 F1 lines. The KASP-based MAS was successfully applied to a maize pro-vitamin A (PVA) breeding program and for introgressing the aflatoxin resistance gene into elite tropical maize lines. Conclusion: This improved workflow has helped accelerate maize improvement activities of IITA's Maize Improvement Program and facilitated DNA fingerprinting for tracking improved crop varieties. National Agricultural Research Systems (NARS) in developing countries can adopt this workflow to fast-track molecular marker-based genotyping for crop improvement.
Collapse
|
5
|
Offornedo Q, Menkir A, Babalola D, Gedil M. Developing and deploying an efficient genotyping workflow for accelerating maize improvement in developing countries. Gates Open Res 2022. [DOI: 10.12688/gatesopenres.13338.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Molecular breeding is an essential tool for accelerating genetic gain in crop improvement, towards meeting the need to feed an ever-growing world population. Establishing low-cost, flexible genotyping platforms in small, public and regional laboratories can stimulate the application of molecular breeding in developing countries. These laboratories can serve plant breeding projects requiring low- to medium-density markers for marker-assisted selection (MAS) and quality control (QC) activities. Methods: We performed two QC and MAS experiments consisting of 637 maize lines, using an optimised genotyping workflow involving an in-house competitive allele-specific PCR (KASP) genotyping system with an optimised sample collection, preparation, and DNA extraction and quantitation process. A smaller volume of leaf-disc size plant samples was collected directly in 96-well plates for DNA extraction, using a slightly modified CTAB-based DArT DNA extraction protocol. DNA quality and quantity analyses were performed using a microplate reader, and the KASP genotyping and data analysis was performed in our laboratory. Results: Applying the optimized genotyping workflow expedited the QC and MAS experiments from over five weeks (when outsourcing) to two weeks and eliminated the shipping cost. Using a set of 28 KASP single nucleotide polymorphisms (SNPs) validated for maize, the QC experiment revealed the genetic identity of four maize varieties taken from five seed sources. Another set of 10 KASP SNPs was sufficient in verifying the parentage of 390 F1 lines. The KASP-based MAS was successfully applied to a maize pro-vitamin A (PVA) breeding program and for introgressing the aflatoxin resistance gene into elite tropical maize lines. Conclusion: This improved workflow has helped accelerate maize improvement activities of IITA's Maize Improvement Program and facilitated DNA fingerprinting for tracking improved crop varieties. National Agricultural Research Systems (NARS) in developing countries can adopt this workflow to fast-track molecular marker-based genotyping for crop improvement.
Collapse
|
6
|
Offornedo Q, Menkir A, Babalola D, Gedil M. Developing and deploying an efficient genotyping workflow for accelerating maize improvement in developing countries. Gates Open Res 2022. [DOI: 10.12688/gatesopenres.13338.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Molecular breeding is an essential tool for accelerating genetic gain in crop improvement, towards meeting the need to feed an ever-growing world population. Establishing low-cost, flexible genotyping platforms in small, public and regional laboratories can stimulate the application of molecular breeding in developing countries. These laboratories can serve plant breeding projects requiring low- to medium-density markers for marker-assisted selection (MAS) and quality control (QC) activities. Methods: We performed two QC and MAS experiments consisting of 637 maize lines, using an optimised genotyping workflow involving an in-house competitive allele-specific PCR (KASP) genotyping system with an optimised sample collection, preparation, and DNA extraction and quantitation process. A smaller volume of leaf-disc size plant samples was collected directly in 96-well plates for DNA extraction, using a slightly modified CTAB-based DArT DNA extraction protocol. DNA quality and quantity analyses were performed using a microplate reader, and the KASP genotyping and data analysis was performed in our laboratory. Results: Applying the optimized genotyping workflow expedited the QC and MAS experiments from over five weeks (when outsourcing) to two weeks and eliminated the shipping cost. Using a set of 28 KASP single nucleotide polymorphisms (SNPs) validated for maize, the QC experiment revealed the genetic identity of four maize varieties taken from five seed sources. Another set of 10 KASP SNPs was sufficient in verifying the parentage of 390 F1 lines. The KASP-based MAS was successfully applied to a maize pro-vitamin A (PVA) breeding program and for introgressing the aflatoxin resistance gene into elite tropical maize lines. Conclusion: This improved workflow has helped accelerate maize improvement activities of IITA's Maize Improvement Program and facilitated DNA fingerprinting for tracking improved crop varieties. National Agricultural Research Systems (NARS) in developing countries can adopt this workflow to fast-track molecular marker-based genotyping for crop improvement.
Collapse
|
7
|
Kalendar R, Baidyussen A, Serikbay D, Zotova L, Khassanova G, Kuzbakova M, Jatayev S, Hu YG, Schramm C, Anderson PA, Jenkins CLD, Soole KL, Shavrukov Y. Modified "Allele-Specific qPCR" Method for SNP Genotyping Based on FRET. FRONTIERS IN PLANT SCIENCE 2021; 12:747886. [PMID: 35082803 PMCID: PMC8784781 DOI: 10.3389/fpls.2021.747886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/22/2021] [Indexed: 05/02/2023]
Abstract
The proposed method is a modified and improved version of the existing "Allele-specific q-PCR" (ASQ) method for genotyping of single nucleotide polymorphism (SNP) based on fluorescence resonance energy transfer (FRET). This method is similar to frequently used techniques like Amplifluor and Kompetitive allele specific PCR (KASP), as well as others employing common universal probes (UPs) for SNP analyses. In the proposed ASQ method, the fluorophores and quencher are located in separate complementary oligonucleotides. The ASQ method is based on the simultaneous presence in PCR of the following two components: an allele-specific mixture (allele-specific and common primers) and a template-independent detector mixture that contains two or more (up to four) universal probes (UP-1 to 4) and a single universal quencher oligonucleotide (Uni-Q). The SNP site is positioned preferably at a penultimate base in each allele-specific primer, which increases the reaction specificity and allele discrimination. The proposed ASQ method is advanced in providing a very clear and effective measurement of the fluorescence emitted, with very low signal background-noise, and simple procedures convenient for customized modifications and adjustments. Importantly, this ASQ method is estimated as two- to ten-fold cheaper than Amplifluor and KASP, and much cheaper than all those methods that rely on dual-labeled probes without universal components, like TaqMan and Molecular Beacons. Results for SNP genotyping in the barley genes HvSAP16 and HvSAP8, in which stress-associated proteins are controlled, are presented as proven and validated examples. This method is suitable for bi-allelic uniplex reactions but it can potentially be used for 3- or 4-allelic variants or different SNPs in a multiplex format in a range of applications including medical, forensic, or others involving SNP genotyping.
Collapse
Affiliation(s)
- Ruslan Kalendar
- National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
- Institute of Biotechnology HiLIFE, University of Helsinki, Helsinki, Finland
- *Correspondence: Ruslan Kalendar
| | - Akmaral Baidyussen
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Dauren Serikbay
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Lyudmila Zotova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Gulmira Khassanova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Marzhan Kuzbakova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Carly Schramm
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Peter A. Anderson
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Colin L. D. Jenkins
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Kathleen L. Soole
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA, Australia
- Yuri Shavrukov
| |
Collapse
|
8
|
Yang S, Yu W, Wei X, Wang Z, Zhao Y, Zhao X, Tian B, Yuan Y, Zhang X. An extended KASP-SNP resource for molecular breeding in Chinese cabbage(Brassica rapa L. ssp. pekinensis). PLoS One 2020; 15:e0240042. [PMID: 33007009 PMCID: PMC7531813 DOI: 10.1371/journal.pone.0240042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Kompetitive allele-specific PCR (KASP) is a cost-effective single-step SNP genotyping technology, With an objective to enhance the marker repertoire and develop high efficient KASP-SNP markers in Chinese cabbage, we re-sequenced four Chinese cabbage doubled haploid (DH) lines, Y177-47, Y635-10, Y510-1 and Y510-9, and generated a total of more than 38.5 billion clean base pairs. A total of 827,720 SNP loci were identified with an estimated density of 3,217 SNPs/Mb. Further, a total of 387,354 SNPs with at least 30 bp to the next most adjacent SNPs on either side were selected as resource for KASP markers. From this resource, 258 (96.27%) of 268 SNP loci were successfully transformed into KASP-SNP markers using a Roche LightCycler 480-II instrument. Among these markers, 221 (85.66%) were co-dominant markers, 220 (85.27%) were non-synonymous SNPs, and 257 (99.6%) were newly developed markers. In addition, 53 markers were applied for genotyping of 34 Brassica rapa accessions. Cluster analysis separated these 34 accessions into three clusters based on heading types. The millions of SNP loci, a large set of resource for KASP markers, as well as the newly developed KASP markers in this study may facilitate further genetic and molecular breeding studies in Brassica rapa.
Collapse
Affiliation(s)
- Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wentao Yu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Life Science, Zhengzhou University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaobin Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoming Tian
- College of Life Science, Zhengzhou University, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| |
Collapse
|
9
|
Chaudhary J, Khatri P, Singla P, Kumawat S, Kumari A, R V, Vikram A, Jindal SK, Kardile H, Kumar R, Sonah H, Deshmukh R. Advances in Omics Approaches for Abiotic Stress Tolerance in Tomato. BIOLOGY 2019; 8:biology8040090. [PMID: 31775241 PMCID: PMC6956103 DOI: 10.3390/biology8040090] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Tomato, one of the most important crops worldwide, has a high demand in the fresh fruit market and processed food industries. Despite having considerably high productivity, continuous supply as per the market demand is hard to achieve, mostly because of periodic losses occurring due to biotic as well as abiotic stresses. Although tomato is a temperate crop, it is grown in almost all the climatic zones because of widespread demand, which makes it challenge to adapt in diverse conditions. Development of tomato cultivars with enhanced abiotic stress tolerance is one of the most sustainable approaches for its successful production. In this regard, efforts are being made to understand the stress tolerance mechanism, gene discovery, and interaction of genetic and environmental factors. Several omics approaches, tools, and resources have already been developed for tomato growing. Modern sequencing technologies have greatly accelerated genomics and transcriptomics studies in tomato. These advancements facilitate Quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). However, limited efforts have been made in other omics branches like proteomics, metabolomics, and ionomics. Extensive cataloging of omics resources made here has highlighted the need for integration of omics approaches for efficient utilization of resources and a better understanding of the molecular mechanism. The information provided here will be helpful to understand the plant responses and the genetic regulatory networks involved in abiotic stress tolerance and efficient utilization of omics resources for tomato crop improvement.
Collapse
Affiliation(s)
- Juhi Chaudhary
- Department of Biology, Oberlin College, Oberlin, OH 44074, USA;
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Pankaj Singla
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Anu Kumari
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Vinaykumar R
- Department of Vegetable Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (V.R.); (A.V.)
| | - Amit Vikram
- Department of Vegetable Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (V.R.); (A.V.)
| | - Salesh Kumar Jindal
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Hemant Kardile
- Division of Crop Improvement, ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh 171001, India;
| | - Rahul Kumar
- Department of Plant Science, University of Hyderabad, Hyderabad 500046, India;
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
- Correspondence: (H.S.); (R.D.)
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
- Correspondence: (H.S.); (R.D.)
| |
Collapse
|
10
|
Hoang M, Wu HY, Lien YX, Chiou MT, Lin CN. A SimpleProbe ® real-time PCR assay for differentiating the canine parvovirus type 2 genotype. J Clin Lab Anal 2018; 33:e22654. [PMID: 30168193 PMCID: PMC6430354 DOI: 10.1002/jcla.22654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 11/30/2022] Open
Abstract
Background Canine parvovirus type 2 (CPV‐2) causes an important canine viral disease worldwide. CPV‐2 belongs to the Protoparvovirus genus in the family Parvoviridae. An amino acid change at position 426 of the VP2 protein differentiate types of CPV‐2, designated as CPV‐2a (Asn), CPV‐2b (Asp), and CPV‐2c (Glu). In this study, we compared CPV‐2 genotyping results obtained by SimpleProbe® real‐time PCR and DNA sequencing analysis to identify the accuracy and sensitivity of these methods. Methods One hundred rectal swabs were collected from CPV‐2 naturally infected dogs from 2015 to 2017 at the Animal Disease Diagnostic Center, National Pingtung University of Science and Technology. CPV‐2 genotyping was performed by SimpleProbe® real‐time PCR and DNA sequencing to compare results. Results CPV‐2a (n = 23), 2b (n = 6) and 2c (n = 71) genotyping results obtained by both techniques were identical with specificity of 100% for SimpleProbe® assay. In the SimpleProbe® assay, amplifying the DNAs prepared from the clinical specimens showed three distinct melting curve peaks. CPV‐2b had the highest melting peak of 57.8°C (CI 95%: 57.7‐58.5°C) followed by CPV‐2c with a slightly lower melting peak of 52.3°C (CI 95%: 52.2‐53.2°C) and CPV‐2a with the lowest peak of 50.2°C (CI 95%: 50.1‐50.5°C). Conclusion This study developed a novel method for genotyping CPV‐2 strains using the SimpleProbe® real‐time PCR assay. This assay is a reliable and sensitive tool for differentiating between the CPV‐2a, 2b and 2c and this technique can be used for molecular CPV‐2 epidemiology studies.
Collapse
Affiliation(s)
- Minh Hoang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Ying-Xiu Lien
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.,Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
11
|
Yerzhebayeva R, Abekova A, Konysbekov K, Bastaubayeva S, Kabdrakhmanova A, Absattarova A, Shavrukov Y. Two sugar beet chitinase genes, BvSP2 and BvSE2, analysed with SNP Amplifluor-like markers, are highly expressed after Fusarium root rot inoculations and field susceptibility trial. PeerJ 2018; 6:e5127. [PMID: 29967753 PMCID: PMC6026450 DOI: 10.7717/peerj.5127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/08/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The pathogens from Fusarium species can cause Fusarium root rot (RR) and other diseases in plant species including sugar beet (Beta vulgaris L.), and they have a strong negative impact on sugar beet yield and quality. METHODS A total of 22 sugar beet breeding lines were evaluated for the symptoms of RR after inoculation with Fusarium oxysporum Sch., isolate No. 5, and growth in a field trial. Two candidate genes for RR resistance, BvSP2 and BvSE2, encoding chitinases Class IV and III, respectively, were previously identified in sugar beet, and used for genotyping using modern Amplifluor-like single nucleotide polymorphism (SNP) genotyping approach. The qPCR expression analysis was used to verify responses of the candidate genes for RR infections. RESULTS A strong association of two SNP markers for BvSP2 and BvSE2 with resistance to RR in sugar beet was found in our study. Very high BvSP2 expression (100-fold compared to Controls) was observed in three RR resistant accessions (2182, 2236 and KWS2320) 14 days after inoculation which returned to the control level on Day 18. RR sensitive breeding line 2210 showed a delay in mRNA level, reaching maximal expression of BvSP2 18 days after inoculation. The gene BvSE2, showed a strong expression level in leaf samples from the infected field trial only in the breeding line 2236, which showed symptoms of RR, and this may be a response to other strains of F. oxysporum.
Collapse
Affiliation(s)
- Raushan Yerzhebayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Almaty District, Kazakhstan
| | - Alfiya Abekova
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Almaty District, Kazakhstan
| | - Kerimkul Konysbekov
- Taldykorgan Branch, Kazakh Research Institute of Agriculture and Plant Growing, Taldykorgan, Almaty District, Kazakhstan
| | - Sholpan Bastaubayeva
- Kazakh Research Institute of Agriculture and Plant Growing, Almalybak, Almaty District, Kazakhstan
| | - Aynur Kabdrakhmanova
- I. Zhansugurov Zhetysu State University, Taldykorgan, Almaty District, Kazakhstan
| | | | - Yuri Shavrukov
- College of Science and Engineering, School of Biological Sciences, Flinders University of South Australia, Bedford Park, SA, Australia
| |
Collapse
|
12
|
Yan M, Byrne DH, Klein PE, Yang J, Dong Q, Anderson N. Genotyping-by-sequencing application on diploid rose and a resulting high-density SNP-based consensus map. HORTICULTURE RESEARCH 2018; 5:17. [PMID: 29619228 PMCID: PMC5878828 DOI: 10.1038/s41438-018-0021-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 01/22/2018] [Indexed: 05/09/2023]
Abstract
Roses, which have been cultivated for at least 5000 years, are one of the most important ornamental crops in the world. Because of the interspecific nature and high heterozygosity in commercial roses, the genetic resources available for rose are limited. To effectively identify markers associated with QTL controlling important traits, such as disease resistance, abundant markers along the genome and careful phenotyping are required. Utilizing genotyping by sequencing technology and the strawberry genome (Fragaria vesca v2.0.a1) as a reference, we generated thousands of informative single nucleotide polymorphism (SNP) markers. These SNPs along with known bridge simple sequence repeat (SSR) markers allowed us to create the first high-density integrated consensus map for diploid roses. Individual maps were first created for populations J06-20-14-3×"Little Chief" (J14-3×LC), J06-20-14-3×"Vineyard Song" (J14-3×VS) and "Old Blush"×"Red Fairy" (OB×RF) and these maps were linked with 824 SNPs and 13 SSR bridge markers. The anchor SSR markers were used to determine the numbering of the rose linkage groups. The diploid consensus map has seven linkage groups (LGs), a total length of 892.2 cM, and an average distance of 0.25 cM between 3527 markers. By combining three individual populations, the marker density and the reliability of the marker order in the consensus map was improved over a single population map. Extensive synteny between the strawberry and diploid rose genomes was observed. This consensus map will serve as the tool for the discovery of marker-trait associations in rose breeding using pedigree-based analysis. The high level of conservation observed between the strawberry and rose genomes will help further comparative studies within the Rosaceae family and may aid in the identification of candidate genes within QTL regions.
Collapse
Affiliation(s)
- Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Jizhou Yang
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
- Present Address: Department of Computer Science, San Francisco State University, San Francisco, CA 94132 USA
| | - Qianni Dong
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
- Present Address: Monsanto Company, 700 Chesterfield Parkway West, Chesterfield, MO 63017 USA
| | - Natalie Anderson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
13
|
Jatayev S, Kurishbayev A, Zotova L, Khasanova G, Serikbay D, Zhubatkanov A, Botayeva M, Zhumalin A, Turbekova A, Soole K, Langridge P, Shavrukov Y. Advantages of Amplifluor-like SNP markers over KASP in plant genotyping. BMC PLANT BIOLOGY 2017; 17:254. [PMID: 29297326 PMCID: PMC5751575 DOI: 10.1186/s12870-017-1197-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND KASP (KBioscience Competitive Allele Specific PCR) and Amplifluor (Amplification with fluorescence) SNP markers are two prominent technologies based upon a shared identical Allele-specific PCR platform. METHODS Amplifluor-like SNP and KASP analysis was carried out using published and own design of Universal probes (UPs) and Gene-specific primers (GSPs). RESULTS Advantages of the Amplifluor-like system over KASP include the significantly lower costs and much greater flexibility in the adjustment and development of 'self-designed' dual fluorescently-labelled UPs and regular GSPs. The presented results include optimisation of 'tail' length in UPs and GSPs, protocol adjustment, and the use of various fluorophores in different qPCR instruments. The compatibility of the KASP Master-mix in both original and Amplifluor-like systems has been demonstrated in the presented results, proving their similar principles. Results of SNP scoring with rare alleles in addition to more frequently occurring alleles are shown. CONCLUSIONS The Amplifluor-like system produces SNP genotyping results with a level of sensitivity and accuracy comparable to KASP but at a significantly cheaper cost and with much greater flexibility for UPs with self-designed GSPs.
Collapse
Affiliation(s)
- Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Akhylbek Kurishbayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Lyudmila Zotova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Gulmira Khasanova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Dauren Serikbay
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Askar Zhubatkanov
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Makpal Botayeva
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Aibek Zhumalin
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Arysgul Turbekova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Astana, Kazakhstan
| | - Kathleen Soole
- School of Biological Sciences, Flinders University, Bedford Park, SA Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA Australia
| | - Yuri Shavrukov
- School of Biological Sciences, Flinders University, Bedford Park, SA Australia
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA Australia
| |
Collapse
|
14
|
Shavrukov Y, Zhumalin A, Serikbay D, Botayeva M, Otemisova A, Absattarova A, Sereda G, Sereda S, Shvidchenko V, Turbekova A, Jatayev S, Lopato S, Soole K, Langridge P. Expression Level of the DREB2-Type Gene, Identified with Amplifluor SNP Markers, Correlates with Performance, and Tolerance to Dehydration in Bread Wheat Cultivars from Northern Kazakhstan. FRONTIERS IN PLANT SCIENCE 2016; 7:1736. [PMID: 27917186 PMCID: PMC5114286 DOI: 10.3389/fpls.2016.01736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/03/2016] [Indexed: 05/18/2023]
Abstract
A panel of 89 local commercial cultivars of bread wheat was tested in field trials in the dry conditions of Northern Kazakhstan. Two distinct groups of cultivars (six cultivars in each group), which had the highest and the lowest grain yield under drought were selected for further experiments. A dehydration test conducted on detached leaves indicated a strong association between rates of water loss in plants from the first group with highest grain yield production in the dry environment relative to the second group. Modern high-throughput Amplifluor Single Nucleotide Polymorphism (SNP) technology was applied to study allelic variations in a series of drought-responsive genes using 19 SNP markers. Genotyping of an SNP in the TaDREB5 (DREB2-type) gene using the Amplifluor SNP marker KATU48 revealed clear allele distribution across the entire panel of wheat accessions, and distinguished between the two groups of cultivars with high and low yield under drought. Significant differences in expression levels of TaDREB5 were revealed by qRT-PCR. Most wheat plants from the first group of cultivars with high grain yield showed slight up-regulation in the TaDREB5 transcript in dehydrated leaves. In contrast, expression of TaDREB5 in plants from the second group of cultivars with low grain yield was significantly down-regulated. It was found that SNPs did not alter the amino acid sequence of TaDREB5 protein. Thus, a possible explanation is that alternative splicing and up-stream regulation of TaDREB5 may be affected by SNP, but these hypotheses require additional analysis (and will be the focus of future studies).
Collapse
Affiliation(s)
- Yuri Shavrukov
- School of Agriculture, Food and Wine, Faculty of Sciences, University of AdelaideUrrbrae, SA, Australia
- School of Biological Sciences, Flinders University, Bedford ParkSA, Australia
- *Correspondence: Yuri Shavrukov, ;
| | - Aibek Zhumalin
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical UniversityAstana Kazakhstan
| | - Dauren Serikbay
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical UniversityAstana Kazakhstan
| | - Makpal Botayeva
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical UniversityAstana Kazakhstan
| | - Ainur Otemisova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical UniversityAstana Kazakhstan
| | | | - Grigoriy Sereda
- Karaganda Research Institute of Plant Industry and BreedingKaraganda, Kazakhstan
| | - Sergey Sereda
- Karaganda Research Institute of Plant Industry and BreedingKaraganda, Kazakhstan
| | - Vladimir Shvidchenko
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical UniversityAstana Kazakhstan
| | - Arysgul Turbekova
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical UniversityAstana Kazakhstan
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical UniversityAstana Kazakhstan
| | - Sergiy Lopato
- School of Agriculture, Food and Wine, Faculty of Sciences, University of AdelaideUrrbrae, SA, Australia
| | - Kathleen Soole
- School of Biological Sciences, Flinders University, Bedford ParkSA, Australia
| | - Peter Langridge
- School of Agriculture, Food and Wine, Faculty of Sciences, University of AdelaideUrrbrae, SA, Australia
| |
Collapse
|
15
|
Huang CW, Lin YT, Ding ST, Lo LL, Wang PH, Lin EC, Liu FW, Lu YW. Efficient SNP Discovery by Combining Microarray and Lab-on-a-Chip Data for Animal Breeding and Selection. ACTA ACUST UNITED AC 2015; 4:570-95. [PMID: 27600241 PMCID: PMC4996412 DOI: 10.3390/microarrays4040570] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/16/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022]
Abstract
The genetic markers associated with economic traits have been widely explored for animal breeding. Among these markers, single-nucleotide polymorphism (SNPs) are gradually becoming a prevalent and effective evaluation tool. Since SNPs only focus on the genetic sequences of interest, it thereby reduces the evaluation time and cost. Compared to traditional approaches, SNP genotyping techniques incorporate informative genetic background, improve the breeding prediction accuracy and acquiesce breeding quality on the farm. This article therefore reviews the typical procedures of animal breeding using SNPs and the current status of related techniques. The associated SNP information and genotyping techniques, including microarray and Lab-on-a-Chip based platforms, along with their potential are highlighted. Examples in pig and poultry with different SNP loci linked to high economic trait values are given. The recommendations for utilizing SNP genotyping in nimal breeding are summarized.
Collapse
Affiliation(s)
- Chao-Wei Huang
- Department of Animal Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Tsung Lin
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shih-Torng Ding
- Department of Animal Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Ling-Ling Lo
- Department of Animal Science, Chinese Culture University, Taipei 11114, Taiwan.
| | - Pei-Hwa Wang
- Department of Animal Science, National Taiwan University, Taipei 10617, Taiwan.
| | - En-Chung Lin
- Department of Animal Science, National Taiwan University, Taipei 10617, Taiwan.
| | - Fang-Wei Liu
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yen-Wen Lu
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
16
|
Kajiwara H. Gene analysis using mass spectrometric cleaved amplified polymorphic sequence (MS-CAPS) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). Methods Mol Biol 2015; 1245:205-214. [PMID: 25373760 DOI: 10.1007/978-1-4939-1966-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mass spectrometric cleaved amplified polymorphic sequence (MS-CAPS) is a method for detecting genes using a combination of short PCR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). MS-CAPS can identify a single nucleotide polymorphism (SNP) in less than one hour and is suitable for plants, animals, bacteria, and food.
Collapse
Affiliation(s)
- Hideyuki Kajiwara
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan,
| |
Collapse
|
17
|
Fitzgerald TL, McQualter RB. The quantitative real-time polymerase chain reaction for the analysis of plant gene expression. Methods Mol Biol 2014; 1099:97-115. [PMID: 24243198 DOI: 10.1007/978-1-62703-715-0_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The quantitative real-time polymerase chain reaction is used to simultaneously amplify and quantify a targeted DNA molecule. It can be used to determine exact copy number of a molecule within a sample and/or to compare the quantity of a molecule between samples. When combined with reverse transcription, it is a powerful tool for the analysis of gene expression, and it is widely used for this purpose in plant species. Here we provide an introduction to fundamental concepts relevant for the analysis of gene expression in plants using this technique and a protocol for quantification of the relative expression of a sucrose phosphate synthase gene along the maturation gradient of a sugarcane leaf.
Collapse
|
18
|
Morishige DT, Klein PE, Hilley JL, Sahraeian SME, Sharma A, Mullet JE. Digital genotyping of sorghum - a diverse plant species with a large repeat-rich genome. BMC Genomics 2013; 14:448. [PMID: 23829350 PMCID: PMC3716661 DOI: 10.1186/1471-2164-14-448] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Background Rapid acquisition of accurate genotyping information is essential for all genetic marker-based studies. For species with relatively small genomes, complete genome resequencing is a feasible approach for genotyping; however, for species with large and highly repetitive genomes, the acquisition of whole genome sequences for the purpose of genotyping is still relatively inefficient and too expensive to be carried out on a high-throughput basis. Sorghum bicolor is a C4 grass with a sequenced genome size of ~730 Mb, of which ~80% is highly repetitive. We have developed a restriction enzyme targeted genome resequencing method for genetic analysis, termed Digital Genotyping (DG), to be applied to sorghum and other grass species with large repeat-rich genomes. Results DG templates are generated using one of three methylation sensitive restriction enzymes that recognize a nested set of 4, 6 or 8 bp GC-rich sequences, enabling varying depth of analysis and integration of results among assays. Variation in sequencing efficiency among DG markers was correlated with template GC-content and length. The expected DG allele sequence was obtained 97.3% of the time with a ratio of expected to alternative allele sequence acquisition of >20:1. A genetic map aligned to the sorghum genome sequence with an average resolution of 1.47 cM was constructed using 1,772 DG markers from 137 recombinant inbred lines. The DG map enhanced the detection of QTL for variation in plant height and precisely aligned QTL such as Dw3 to underlying genes/alleles. Higher-resolution NgoMIV-based DG haplotypes were used to trace the origin of DNA on SBI-06, spanning Ma1 and Dw2 from progenitors to BTx623 and IS3620C. DG marker analysis identified the correct location of two miss-assembled regions and located seven super contigs in the sorghum reference genome sequence. Conclusion DG technology provides a cost-effective approach to rapidly generate accurate genotyping data in sorghum. Currently, data derived from DG are used for many marker-based analyses, including marker-assisted breeding, pedigree and QTL analysis, genetic map construction, map-based gene cloning and association studies. DG in combination with whole genome resequencing is dramatically accelerating all aspects of genetic analysis of sorghum, an important genetic reference for C4 grass species.
Collapse
|
19
|
Garvin MR, Saitoh K, Gharrett AJ. Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour 2013; 10:915-34. [PMID: 21565101 DOI: 10.1111/j.1755-0998.2010.02891.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Single nucleotide polymorphisms (SNPs) have gained wide use in humans and model species and are becoming the marker of choice for applications in other species. Technology that was developed for work in model species may provide useful tools for SNP discovery and genotyping in non-model organisms. However, SNP discovery can be expensive, labour intensive, and introduce ascertainment bias. In addition, the most efficient approaches to SNP discovery will depend on the research questions that the markers are to resolve as well as the focal species. We discuss advantages and disadvantages of several past and recent technologies for SNP discovery and genotyping and summarize a variety of SNP discovery and genotyping studies in ecology and evolution.
Collapse
Affiliation(s)
- M R Garvin
- Fisheries Division, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK 99801, USA National Research Institute of Fisheries Science, Fukuura, Kanazawa, Yokohama 236-8648 Japan
| | | | | |
Collapse
|
20
|
Kumar S, Banks TW, Cloutier S. SNP Discovery through Next-Generation Sequencing and Its Applications. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:831460. [PMID: 23227038 PMCID: PMC3512287 DOI: 10.1155/2012/831460] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/08/2012] [Indexed: 05/08/2023]
Abstract
The decreasing cost along with rapid progress in next-generation sequencing and related bioinformatics computing resources has facilitated large-scale discovery of SNPs in various model and nonmodel plant species. Large numbers and genome-wide availability of SNPs make them the marker of choice in partially or completely sequenced genomes. Although excellent reviews have been published on next-generation sequencing, its associated bioinformatics challenges, and the applications of SNPs in genetic studies, a comprehensive review connecting these three intertwined research areas is needed. This paper touches upon various aspects of SNP discovery, highlighting key points in availability and selection of appropriate sequencing platforms, bioinformatics pipelines, SNP filtering criteria, and applications of SNPs in genetic analyses. The use of next-generation sequencing methodologies in many non-model crops leading to discovery and implementation of SNPs in various genetic studies is discussed. Development and improvement of bioinformatics software that are open source and freely available have accelerated the SNP discovery while reducing the associated cost. Key considerations for SNP filtering and associated pipelines are discussed in specific topics. A list of commonly used software and their sources is compiled for easy access and reference.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Travis W. Banks
- Department of Applied Genomics, Vineland Research and Innovation Centre, Vineland Station, ON, Canada L0R 2E0
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, MB, Canada R3T 2M9
- *Sylvie Cloutier:
| |
Collapse
|
21
|
Vila-Aiub MM, Neve P, Roux F. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity (Edinb) 2011; 107:386-94. [PMID: 21540885 DOI: 10.1038/hdy.2011.29] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Plants exhibit a number of adaptive defence traits that endow resistance to past and current abiotic and biotic stresses. It is generally accepted that these adaptations will incur a cost when plants are not challenged by the stress to which they have become adapted--the so-called 'cost of adaptation'. The need to minimise or account for allelic variation at other fitness-related loci (genetic background control) is frequently overlooked when assessing resistance costs associated with plant defence traits. We provide a synthesis of the various experimental protocols that accomplish this essential requirement. We also differentiate those methods that enable the identification of the trait-specific or mechanistic basis of costs (direct methods) from those that provide an estimate of the impact of costs by examining the evolutionary trajectories of resistance allele frequencies at the population level (indirect methods). The advantages and disadvantages for each proposed experimental design are discussed. We conclude that plant resistance systems provide an ideal model to address fundamental questions about the cost of adaptation to stress. We also propose some ways to expand the scope of future studies for further fundamental and applied insight into the significance of adaptation costs.
Collapse
Affiliation(s)
- M M Vila-Aiub
- Department of Ecology, IFEVA (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| | | | | |
Collapse
|
22
|
Shi A, Chen P, Vierling R, Zheng C, Li D, Dong D, Shakiba E, Cervantez I. Multiplex single nucleotide polymorphism (SNP) assay for detection of soybean mosaic virus resistance genes in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:445-57. [PMID: 20931170 DOI: 10.1007/s00122-010-1459-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/13/2010] [Indexed: 05/30/2023]
Abstract
Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybean (Glycine max). Three independent loci for SMV resistance have been identified in soybean germplasm. The use of genetic resistance is the most effective method of controlling this disease. Marker assisted selection (MAS) has become very important and useful in the effort of selecting genes for SMV resistance. Single nucleotide polymorphism (SNP), because of its abundance and high-throughput potential, is a powerful tool in genome mapping, association studies, diversity analysis, and tagging of important genes in plant genomics. In this study, a 10 SNPs plus one insert/deletion (InDel) multiplex assay was developed for SMV resistance: two SNPs were developed from the candidate gene 3gG2 at Rsv1 locus, two SNPs selected from the clone N11PF linked to Rsv1, one 'BARC' SNP screened from soybean chromosome 13 [linkage group (LG) F] near Rsv1, two 'BARC' SNPs from probe A519 linked to Rsv3, one 'BARC' SNP from chromosome 14 (LG B2) near Rsv3, and two 'BARC' SNPs from chromosome 2 (LG D1b) near Rsv4, plus one InDel marker from expressed sequence tag (EST) AW307114 linked to Rsv4. This 11 SNP/InDel multiplex assay showed polymorphism among 47 diverse soybean germplasm, indicating this assay can be used to investigate the mode of inheritance in a SMV resistant soybean line carrying Rsv1, Rsv3, and/or Rsv4 through a segregating population with phenotypic data, and to select a specific gene or pyramid two or three genes for SMV resistance through MAS in soybean breeding program. The presence of two SMV resistance genes (Rsv1 and Rsv3) in J05 soybean was confirmed by the SNP assay.
Collapse
Affiliation(s)
- Ainong Shi
- Syngenta Seeds Inc., 2369 330th St., Slater, IA 50224, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA, Anderson JM, Wisniewski Morehead NH, Adhikary D, Jellen EN, Maughan PJ, Brown Guedira GL, Chao S, Beattie AD, Carson ML, Rines HW, Obert DE, Bonman JM, Jackson EW. Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. BMC Genomics 2011; 12:77. [PMID: 21272354 PMCID: PMC3041746 DOI: 10.1186/1471-2164-12-77] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/27/2011] [Indexed: 11/16/2022] Open
Abstract
Background Genetic markers are pivotal to modern genomics research; however, discovery and genotyping of molecular markers in oat has been hindered by the size and complexity of the genome, and by a scarcity of sequence data. The purpose of this study was to generate oat expressed sequence tag (EST) information, develop a bioinformatics pipeline for SNP discovery, and establish a method for rapid, cost-effective, and straightforward genotyping of SNP markers in complex polyploid genomes such as oat. Results Based on cDNA libraries of four cultivated oat genotypes, approximately 127,000 contigs were assembled from approximately one million Roche 454 sequence reads. Contigs were filtered through a novel bioinformatics pipeline to eliminate ambiguous polymorphism caused by subgenome homology, and 96 in silico SNPs were selected from 9,448 candidate loci for validation using high-resolution melting (HRM) analysis. Of these, 52 (54%) were polymorphic between parents of the Ogle1040 × TAM O-301 (OT) mapping population, with 48 segregating as single Mendelian loci, and 44 being placed on the existing OT linkage map. Ogle and TAM amplicons from 12 primers were sequenced for SNP validation, revealing complex polymorphism in seven amplicons but general sequence conservation within SNP loci. Whole-amplicon interrogation with HRM revealed insertions, deletions, and heterozygotes in secondary oat germplasm pools, generating multiple alleles at some primer targets. To validate marker utility, 36 SNP assays were used to evaluate the genetic diversity of 34 diverse oat genotypes. Dendrogram clusters corresponded generally to known genome composition and genetic ancestry. Conclusions The high-throughput SNP discovery pipeline presented here is a rapid and effective method for identification of polymorphic SNP alleles in the oat genome. The current-generation HRM system is a simple and highly-informative platform for SNP genotyping. These techniques provide a model for SNP discovery and genotyping in other species with complex and poorly-characterized genomes.
Collapse
Affiliation(s)
- Rebekah E Oliver
- USDA-ARS, Small Grains and Potato Germplasm Research Unit, Aberdeen, ID, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fitzgerald TL, Kazan K, Li Z, Morell MK, Manners JM. A high-throughput method for the detection of homologous gene deletions in hexaploid wheat. BMC PLANT BIOLOGY 2010. [PMID: 21114819 DOI: 10.1186/1471-2229-10.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Mutational inactivation of plant genes is an essential tool in gene function studies. Plants with inactivated or deleted genes may also be exploited for crop improvement if such mutations/deletions produce a desirable agronomical and/or quality phenotype. However, the use of mutational gene inactivation/deletion has been impeded in polyploid plant species by genetic redundancy, as polyploids contain multiple copies of the same genes (homologous genes) encoded by each of the ancestral genomes. Similar to many other crop plants, bread wheat (Triticum aestivum L.) is polyploid; specifically allohexaploid possessing three progenitor genomes designated as 'A', 'B', and 'D'. Recently modified TILLING protocols have been developed specifically for mutation detection in wheat. Whilst extremely powerful in detecting single nucleotide changes and small deletions, these methods are not suitable for detecting whole gene deletions. Therefore, high-throughput methods for screening of candidate homologous gene deletions are needed for application to wheat populations generated by the use of certain mutagenic agents (e.g. heavy ion irradiation) that frequently generate whole-gene deletions. RESULTS To facilitate the screening for specific homologous gene deletions in hexaploid wheat, we have developed a TaqMan qPCR-based method that allows high-throughput detection of deletions in homologous copies of any gene of interest, provided that sufficient polymorphism (as little as a single nucleotide difference) amongst homologues exists for specific probe design. We used this method to identify deletions of individual TaPFT1 homologues, a wheat orthologue of the disease susceptibility and flowering regulatory gene PFT1 in Arabidopsis. This method was applied to wheat nullisomic-tetrasomic lines as well as other chromosomal deletion lines to locate the TaPFT1 gene to the long arm of chromosome 5. By screening of individual DNA samples from 4500 M2 mutant wheat lines generated by heavy ion irradiation, we detected multiple mutants with deletions of each TaPFT1 homologue, and confirmed these deletions using a CAPS method. We have subsequently designed, optimized, and applied this method for the screening of homologous deletions of three additional wheat genes putatively involved in plant disease resistance. CONCLUSIONS We have developed a method for automated, high-throughput screening to identify deletions of individual homologues of a wheat gene. This method is also potentially applicable to other polyploidy plants.
Collapse
|
25
|
Fitzgerald TL, Kazan K, Li Z, Morell MK, Manners JM. A high-throughput method for the detection of homologous gene deletions in hexaploid wheat. BMC PLANT BIOLOGY 2010; 10:264. [PMID: 21114819 PMCID: PMC3017838 DOI: 10.1186/1471-2229-10-264] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/29/2010] [Indexed: 05/21/2023]
Abstract
BACKGROUND Mutational inactivation of plant genes is an essential tool in gene function studies. Plants with inactivated or deleted genes may also be exploited for crop improvement if such mutations/deletions produce a desirable agronomical and/or quality phenotype. However, the use of mutational gene inactivation/deletion has been impeded in polyploid plant species by genetic redundancy, as polyploids contain multiple copies of the same genes (homologous genes) encoded by each of the ancestral genomes. Similar to many other crop plants, bread wheat (Triticum aestivum L.) is polyploid; specifically allohexaploid possessing three progenitor genomes designated as 'A', 'B', and 'D'. Recently modified TILLING protocols have been developed specifically for mutation detection in wheat. Whilst extremely powerful in detecting single nucleotide changes and small deletions, these methods are not suitable for detecting whole gene deletions. Therefore, high-throughput methods for screening of candidate homologous gene deletions are needed for application to wheat populations generated by the use of certain mutagenic agents (e.g. heavy ion irradiation) that frequently generate whole-gene deletions. RESULTS To facilitate the screening for specific homologous gene deletions in hexaploid wheat, we have developed a TaqMan qPCR-based method that allows high-throughput detection of deletions in homologous copies of any gene of interest, provided that sufficient polymorphism (as little as a single nucleotide difference) amongst homologues exists for specific probe design. We used this method to identify deletions of individual TaPFT1 homologues, a wheat orthologue of the disease susceptibility and flowering regulatory gene PFT1 in Arabidopsis. This method was applied to wheat nullisomic-tetrasomic lines as well as other chromosomal deletion lines to locate the TaPFT1 gene to the long arm of chromosome 5. By screening of individual DNA samples from 4500 M2 mutant wheat lines generated by heavy ion irradiation, we detected multiple mutants with deletions of each TaPFT1 homologue, and confirmed these deletions using a CAPS method. We have subsequently designed, optimized, and applied this method for the screening of homologous deletions of three additional wheat genes putatively involved in plant disease resistance. CONCLUSIONS We have developed a method for automated, high-throughput screening to identify deletions of individual homologues of a wheat gene. This method is also potentially applicable to other polyploidy plants.
Collapse
Affiliation(s)
| | - Kemal Kazan
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Zhongyi Li
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
- CSIRO Food Futures National Research Flagship, PO Box 93, North Ryde 1670, NSW, Australia
| | - Matthew K Morell
- CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
- CSIRO Food Futures National Research Flagship, PO Box 93, North Ryde 1670, NSW, Australia
| | - John M Manners
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, QLD 4067, Australia
| |
Collapse
|
26
|
Délye C, Michel S, Bérard A, Chauvel B, Brunel D, Guillemin JP, Dessaint F, Le Corre V. Geographical variation in resistance to acetyl-coenzyme A carboxylase-inhibiting herbicides across the range of the arable weed Alopecurus myosuroides (black-grass). THE NEW PHYTOLOGIST 2010; 186:1005-1017. [PMID: 20345631 DOI: 10.1111/j.1469-8137.2010.03233.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
*The geographical structure of resistance to herbicides inhibiting acetyl-coenzyme A carboxylase (ACCase) was investigated in the weed Alopecurus myosuroides (black-grass) across its geographical range to gain insight into the process of plant adaptation in response to anthropogenic selective pressures occurring in agricultural ecosystems. *We analysed 297 populations distributed across six countries in A. myosuroides' main area of occupancy. The frequencies of plants resistant to two broadly used ACCase inhibitors and of seven mutant, resistant ACCase alleles were assessed using bioassays and genotyping, respectively. *Most of the resistance was not endowed by mutant ACCase alleles. Resistance and ACCase allele distribution patterns were characterized by mosaicism. The prevalence of resistance and of ACCase alleles differed among countries. *Resistance clearly evolved by redundant evolution of a set of resistance alleles or genes, most of which remain unidentified. Resistance in A. myosuroides was shaped by variation in the herbicide selective pressure at both the individual field level and the national level.
Collapse
Affiliation(s)
- Christophe Délye
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| | - Séverine Michel
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| | - Aurélie Bérard
- INRA, UR1279 Étude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique, Centre National de Génotypage, F-91000 Évry, France
| | - Bruno Chauvel
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| | - Dominique Brunel
- INRA, UR1279 Étude du Polymorphisme des Génomes Végétaux, CEA-Institut de Génomique, Centre National de Génotypage, F-91000 Évry, France
| | | | - Fabrice Dessaint
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| | - Valérie Le Corre
- INRA, UMR1210 Biologie et Gestion des Adventices, F-21000 Dijon, France
| |
Collapse
|
27
|
Bérard A, Le Paslier MC, Dardevet M, Exbrayat-Vinson F, Bonnin I, Cenci A, Haudry A, Brunel D, Ravel C. High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). PLANT BIOTECHNOLOGY JOURNAL 2009; 7:364-74. [PMID: 19379285 DOI: 10.1111/j.1467-7652.2009.00404.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Over the past few years, considerable progress has been made in high-throughput single nucleotide polymorphism (SNP) genotyping technologies, largely through the investment of the human genetics community. These technologies are well adapted to diploid species. For plant breeding purposes, it is important to determine whether these genotyping methods are adapted to polyploidy, as most major crops are former or recent polyploids. To address this problem, we tested the capacity of the multiplex technology SNPlex with a set of 47 wheat SNPs to genotype DNAs of 1314 lines that were organized in four 384-well plates. These lines represented different taxa of tetra- and hexaploid Triticum species and their wild diploid relatives. We observed 40 markers which gave less than 20% missing data. Different methods, based on either Sanger sequencing or the MassARRAY genotyping technology, were then used to validate the genotypes obtained by SNPlex for 11 markers. The concordance of the genotypes obtained by SNPlex with the results obtained by the different validation methods was 96%, except for one discarded marker. Furthermore, a mapping study on six markers showed the expected genetic positions previously described. To conclude, this study showed that high-throughput genotyping technologies developed for diploid species can be used successfully in polyploids, although there is a need for manual reading. For the first time in wheat species, a core of 39 SNPs is available that can serve as the basis for the development of a complete SNPlex set of 48 markers.
Collapse
Affiliation(s)
- Aurélie Bérard
- INRA, UR1279 Etude du Polymorphisme des Génomes Végétaux, CEA-IG/Centre National de Génotypage, 2 rue Gaston Crémieux, CP5724, F-91057 Evry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
RODEN SUZANNEE, DUTTON PETERH, MORIN PHILLIPA. Characterization of single nucleotide polymorphism markers for the green sea turtle (Chelonia mydas). Mol Ecol Resour 2009; 9:1055-60. [DOI: 10.1111/j.1755-0998.2009.02573.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
A nanoliter fluidic platform for large-scale single nucleotide polymorphism genotyping. Biotechniques 2009; 46:ix-xiii. [DOI: 10.2144/000112887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Discovery, evaluation, and understanding the biological relevance of single nucleotide polymorphisms (SNPs) and their associated phenotypes is relevant to many applications, including human disease diagnostics, pathogen detection, and identification of genetic traits impacting agricultural practices, both in terms of food quality and production efficiency. Validation of putative SNP associations in large-scale cohorts is currently impeded by the technical challenges and high cost inherent in analyzing large numbers of samples using available SNP genotyping platforms. We describe in this report the implementation of the 5′-exonuclease, biallelic PCR assay for SNP genotyping (TaqMan) in a nanofluidic version of a high-density microplate. System performance was assessed using a panel of 32 TaqMan SNP genotyping assays targeted to human polymorphisms. This functional test of the nanoliter fluidic SNP genotyping platform delivered genotyping call rates and accuracies comparable to the same larger volume reactions in microplate systems.
Collapse
|
30
|
Brenan CJH, Roberts D, Hurley J. Nanoliter high-throughput PCR for DNA and RNA profiling. Methods Mol Biol 2009; 496:161-74. [PMID: 18839111 DOI: 10.1007/978-1-59745-553-4_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The increasing emphasis in life science research on utilization of genetic and genomic information underlies the need for high-throughput technologies capable of analyzing the expression of multiple genes or the presence of informative single nucleotide polymorphisms (SNPs) in large-scale, population-based applications. Human disease research, disease diagnosis, personalized therapeutics, environmental monitoring, blood testing, and identification of genetic traits impacting agricultural practices, both in terms of food quality and production efficiency, are a few areas where such systems are in demand. This has stimulated the need for PCR technologies that preserves the intrinsic analytical benefits of PCR yet enables higher throughputs without increasing the time to answer, labor and reagent expenses and workflow complexity. An example of such a system based on a high-density array of nanoliter PCR assays is described here. Functionally equivalent to a microtiter plate, the nanoplate system makes possible up to 3,072 simultaneous end-point or real-time PCR measurements in a device, the size of a standard microscope slide. Methods for SNP genotyping with end-point TaqMan PCR assays and quantitative measurement of gene expression with SYBR Green I real-time PCR are outlined and illustrative data showing system performance is provided.
Collapse
|
31
|
Paris M, Roux F, Bérard A, Reboud X. The effects of the genetic background on herbicide resistance fitness cost and its associated dominance in Arabidopsis thaliana. Heredity (Edinb) 2008; 101:499-506. [PMID: 18766202 DOI: 10.1038/hdy.2008.92] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The advantage of the resistance conferred by a mutation can sometimes be offset by a high fitness-cost penalty. This balance will affect possible fate of the resistance allele. Few studies have explored the impact of the genetic background on the expression of the resistance fitness cost and none has attempted to measure the variation in fitness-cost dominance. However, both the fitness penalty and its dominance may modify evolutionary trajectory and outcome. Here the impact of Arabidopsis thaliana intraspecific genetic diversity on fitness cost and its associated dominance was investigated by analysing 12 quantitative traits in crosses between a mutant conferring resistance to the herbicide 2,4-D and nine different natural genetic backgrounds. Fitness cost values were found to be more affected by intraspecific genetic diversity than fitness cost dominance, even though this effect depends on the quantitative trait measured. This observation has implications for the choice of the best strategy for preventing herbicide resistance development. In addition, our results pinpoint a potential compensatory improvement of the resistance fitness cost and its associated dominance by the genetic diversity locally present within a species.
Collapse
Affiliation(s)
- M Paris
- UMR1210 Biologie et Gestion des Adventices, INRA, Dijon, France
| | | | | | | |
Collapse
|
32
|
Fusari CM, Lia VV, Hopp HE, Heinz RA, Paniego NB. Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC PLANT BIOLOGY 2008; 8:7. [PMID: 18215288 PMCID: PMC2266750 DOI: 10.1186/1471-2229-8-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/23/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD) and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs) and short insertion and/or deletions (indels) to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. RESULTS A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (theta = 0.0056), as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 +/- 1.88). Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2), with a large proportion of the inbred lines being assigned to one of them (G1). Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data) than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance). CONCLUSION Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop improvement strategies. The relatively high frequency of SNPs within the elite inbred lines studied here, along with the predicted extent of LD over distances of 100 kbp (r2 approximately 0.1) suggest that high resolution association mapping in sunflower could be achieved with marker densities lower than those usually reported in the literature.
Collapse
Affiliation(s)
- Corina M Fusari
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
| | - Verónica V Lia
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H Esteban Hopp
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ruth A Heinz
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Norma B Paniego
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina
| |
Collapse
|
33
|
Fusari CM, Lia VV, Hopp HE, Heinz RA, Paniego NB. Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC PLANT BIOLOGY 2008; 8:7. [PMID: 18215288 DOI: 10.1186/147-2229.8-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/23/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD) and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs) and short insertion and/or deletions (indels) to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. RESULTS A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (theta = 0.0056), as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 +/- 1.88). Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2), with a large proportion of the inbred lines being assigned to one of them (G1). Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data) than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance). CONCLUSION Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop improvement strategies. The relatively high frequency of SNPs within the elite inbred lines studied here, along with the predicted extent of LD over distances of 100 kbp (r2 approximately 0.1) suggest that high resolution association mapping in sunflower could be achieved with marker densities lower than those usually reported in the literature.
Collapse
Affiliation(s)
- Corina M Fusari
- Instituto Nacional de Tecnología Agropecuaria, Instituto de Biotecnología (CNIA), CC 25, Castelar (B1712WAA), Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
34
|
Garcés-Claver A, Fellman SM, Gil-Ortega R, Jahn M, Arnedo-Andrés MS. Identification, validation and survey of a single nucleotide polymorphism (SNP) associated with pungency in Capsicum spp. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:907-16. [PMID: 17882396 DOI: 10.1007/s00122-007-0617-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 07/11/2007] [Indexed: 05/17/2023]
Abstract
A single nucleotide polymorphism (SNP) associated with pungency was detected within an expressed sequence tag (EST) of 307 bp. This fragment was identified after expression analysis of the EST clone SB2-66 in placenta tissue of Capsicum fruits. Sequence alignments corresponding to this new fragment allowed us to identify an SNP between pungent and non-pungent accessions. Two methods were chosen for the development of the SNP marker linked to pungency: tetra-primer amplification refractory mutation system-PCR (tetra-primer ARMS-PCR) and cleaved amplified polymorphic sequence. Results showed that both methods were successful in distinguishing genotypes. Nevertheless, tetra-primer ARMS-PCR was chosen for SNP genotyping because it was more rapid, reliable and less cost-effective. The utility of this SNP marker for pungency was demonstrated by the ability to distinguish between 29 pungent and non-pungent cultivars of Capsicum annuum. In addition, the SNP was also associated with phenotypic pungent character in the tested genotypes of C. chinense, C. baccatum, C. frutescens, C. galapagoense, C. eximium, C. tovarii and C. cardenasi. This SNP marker is a faster, cheaper and more reproducible method for identifying pungent peppers than other techniques such as panel tasting, and allows rapid screening of the trait in early growth stages.
Collapse
Affiliation(s)
- Ana Garcés-Claver
- Technology for Plant Production Department, Centro de Investigación y Tecnología Agroalimentaria (CITA), Apdo 727, 50080, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
35
|
Jones ES, Sullivan H, Bhattramakki D, Smith JSC. A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:361-71. [PMID: 17639299 DOI: 10.1007/s00122-007-0570-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 04/25/2007] [Indexed: 05/16/2023]
Abstract
We report on the comparative utilities of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for characterizing maize germplasm in terms of their informativeness, levels of missing data, repeatability and the ability to detect expected alleles in hybrids and DNA pools. Two different SNP chemistries were compared; single-base extension detected by Sequenom MassARRAY, and invasive cleavage detected by Invader chemistry with PCR. A total of 58 maize inbreds and four hybrids were genotyped with 80 SSR markers, 69 Invader SNP markers and 118 MassARRAY SNP markers, with 64 SNP loci being common to the two SNP marker chemistries. Average expected heterozygosity values were 0.62 for SSRs, 0.43 for SNPs (pre-selected for their high level of polymorphism) and 0.63 for the underlying sequence haplotypes. All individual SNP markers within the same set of sequences had an average expected heterozygosity value of 0.26. SNP marker data had more than a fourfold lower level of missing data (2.1-3.1%) compared with SSRs (13.8%). Data repeatability was higher for SNPs (98.1% for MassARRAY SNPs and 99.3% for Invader) than for SSRs (91.7%). Parental alleles were observed in hybrid genotypes in 97.0% of the cases for MassARRAY SNPs, 95.5% for Invader SNPs and 81.9% for SSRs. In pooled samples with mixtures of alleles, SSRs, MassARRAY SNPs and Invader SNPs were equally capable of detecting alleles at mid to high frequencies. However, at low frequencies, alleles were least likely to be detected using Invader SNP markers, and this technology had the highest level of missing data. Collectively, these results showed that SNP technologies can provide increased marker data quality and quantity compared with SSRs. The relative loss in polymorphism compared with SSRs can be compensated by increasing SNP numbers and by using SNP haplotypes. Determining the most appropriate SNP chemistry will be dependent upon matching the technical features of the method within the context of application, particularly in consideration of whether genotypic samples will be pooled or assayed individually.
Collapse
Affiliation(s)
- E S Jones
- Pioneer Hi-Bred International Inc. (DuPont Agriculture and Nutrition), 7300 NW 62nd Avenue, Johnston, IA 51031-1004, USA.
| | | | | | | |
Collapse
|
36
|
Clark KA, Krysan PJ. Protocol: An improved high-throughput method for generating tissue samples in 96-well format for plant genotyping (Ice-Cap 2.0). PLANT METHODS 2007; 3:8. [PMID: 17565700 PMCID: PMC1924850 DOI: 10.1186/1746-4811-3-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 06/12/2007] [Indexed: 05/08/2023]
Abstract
BACKGROUND We previously developed a high-throughput system called 'Ice-Cap' for growing Arabidopsis seedlings in a 96-well format and rapidly collecting tissue for subsequent DNA extraction and genotyping. While the originally described Ice-Cap method is an effective tool for high-throughput genotyping, one shortcoming of the first version of Ice-Cap is that optimal seedling growth is highly dependent on specific environmental conditions. Here we describe several technical improvements to the Ice-Cap method that make it much more robust and provide a detailed protocol for implementing the method. RESULTS The key innovation underlying Ice-Cap 2.0 is the development of a continuous watering system. The addition of the watering system allows the seedling growth plates to be incubated without a lid for the duration of the growth period, which in turn allows for much more uniform and robust seedling growth than was observed using the original method. We also determined that inserting wooden skewers between the upper and lower plates prior to tissue harvest made it easier to separate the plates following freezing. Seedlings grown using the Ice-Cap 2.0 method remain viable in the Ice-Cap plates twice as long as seedlings grown using the original method. CONCLUSION The continuous watering system that we have developed provides an effective solution to the problem of sub-optimal seedling growth that can be encountered when using the originally described Ice-Cap system. This novel watering system and several additional modifications to the Ice-Cap procedure have improved the robustness and utility of the method.
Collapse
Affiliation(s)
- Katie A Clark
- Genome Center of Wisconsin and Department of Horticulture, 1575 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Patrick J Krysan
- Genome Center of Wisconsin and Department of Horticulture, 1575 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
37
|
Tindall EA, Speight G, Petersen DC, Padilla EJD, Hayes VM. Novel Plexor™ SNP genotyping technology: comparisons with TaqMan® and homogenous MassEXTEND™ MALDI-TOF mass spectrometry. Hum Mutat 2007; 28:922-7. [PMID: 17458878 DOI: 10.1002/humu.20533] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Analysis of SNPs for association, linkage, haplotype, and pharmacogenetic studies has led to a dramatic increase in the number and evolution of medium- to high-throughput genotyping technologies. This study introduces Plexor as a new method for medium-throughput (single SNP) genotyping. We compare this fluorescent-based chemistry for call rate, accuracy, affordability, throughput, and overall efficiency against two commonly used technologies. These include fluorescent-based TaqMan allelic discrimination for single SNP analysis (medium-throughput) and the homogenous MassEXTEND (hME) chemistry using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for multiple SNP analysis (high-throughput). Analysis of 11 SNPs, including all six possible nucleotide substitutions, showed Plexor to be highly comparable for both call rate (94.7%) and accuracy (99.2%) to the TaqMan (94.6% and 99.8%, respectively) and hME (91.9% and 98.1%, respectively) chemistries. We demonstrate that this novel method is an efficient, cost-effective alternative to TaqMan genotyping commonly used in diagnostic settings.
Collapse
Affiliation(s)
- E A Tindall
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | | | | | | | | |
Collapse
|
38
|
MORIN PHILLIPA, AITKEN NICOLAC, RUBIO-CISNEROS NADIA, DIZON ANDREWE, MESNICK SARAH. Characterization of 18 SNP markers for sperm whale (Physeter macrocephalus). ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1471-8286.2006.01654.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|